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Introduction
Finding differentially expressed proteins (DEPs) between 
two conditions is a common problem in biological and clinical 
research. There are several quantification methods for measur-
ing DEPs based on liquid chromatography–mass spectrom-
etry/tandem mass spectrometry (LC-MS/MS). These are 
either label-free or stable isotope labeling methods.1 Label-
free methods offer wider dynamic range and broader proteome 
coverage, while stable isotope labeling approaches offer higher 
quantification precision and accuracy.2

Among many labeling methods, chemical isobaric 
tagging (including Isobaric tag for relative and absolute 

quantitation [iTRAQ ] and Tandem mass tag [TMT]) 
provides up to 8-plex analysis by quantifying at the tandem 
MS level. However, it suffers from severe dynamic range com-
pression and reduced quantitative accuracy due to precursor 
interference when samples are complex.3,4 Considering that a 
lot of research studies need to deal with complex samples, we 
have to consider quantification at the LC-MS level.

Among labeling methods at the LC-MS level, stable iso-
tope labeling of amino acid in cell culture (SILAC)5 has high 
quantification accuracy. However, SILAC requires several cell 
cycles to incorporate the labels, and in research like microRNA 
(miR) target prediction, the miR-mediated regulation of 
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proteins with long half-lives may not be detected by measuring 
steady-state protein levels using SILAC.6 Pulsed SILAC, 
which only compares the differential expression of newly  
synthesized proteins at different time points, is a great analytical 
tool. However, it is relatively expensive, time-consuming, and 
not practical for analyzing biological samples that cannot be 
grown in culture, such as tissues or body fluids.6 In addition, 
most proteomic centers that run LC-MS/MS experiments 
cannot perform required cell culturing because of licensing 
issues in handling virus-transfected cells. Laboratories with 
cells that need LC-MS/MS analysis may not have the resource 
and time in implementing a complex laboratory protocol, such 
as SILAC/pulsed SILAC. These practical aspects limit the 
application of SILAC/pulsed SILAC.

An alternative LC-MS quantification method based 
on chemical labeling is dimethylation of peptides. However, 
deuterated peptides show a small but significant retention 
time difference in reversed phase chromatography compared 
to their nondeuterated counterparts.7 This complicates data 
analysis because the relative quantities of two peptides cannot 
be determined accurately from one spectrum, and it requires 
integration across the whole chromatographic timescale. 
Considering that there exists a lot of co-eluting peptides that 
contaminate elution peaks, integrating across the whole chro-
matographic timescale becomes impractical.

Isotope-coded affinity tagging is a chemical label-
ing method that was first described by the Aebersold lab. 
This method only quantifies cysteine-containing peptides 
carrying heavy and light isotope tags, which limit its quanti
fication coverage.

Reverse phase protein array8 is another protein quantifi-
cation method; however, it is limited with the availability of 
high-quality protein antibody.

18O/16O labeling has relatively low cost and complexity. 
It does not require specific amino acid in peptides9 and label 
incorporation through several cell cycles, nor does it cause sig-
nificant elution time shifts between heavy- and light-labeled 
peptides. Its dynamic range of quantification is larger than 
that of tandem MS-based quantification methods. These 
properties offer 18O/16O labeling the maximum flexibility 
in application.

In this work, we propose to develop an LC-MS-based 
quantitative proteomic approach for identifying DEPs based 
on 18O/16O labeling and apply the approach to the problem 
of Kaposi sarcoma-associated herpesvirus (KSHV) miR-K1 
target prediction. MiRs are short RNAs that regulate target 
gene expression levels.10,11 Dysregulation of miRs may lead to 
disease progression and cancer pathogensis,12 but the under-
lying mechanisms are still not very clear. The understand-
ing of miR function is not possible without the knowledge 
of target messenger RNAs (mRNAs) of miRs. KSHV is the 
causative agent of Kaposi sarcoma (KSar), which is associated 
with primary effusion lymphoma (PEL), and a subset of mul-
ticentric Castleman disease.13 KSHV encodes dozens of miRs 

derived from 12 pre-miRNAs, among which miR-K1 is a very 
important one. It directly regulates the lκBα protein by target-
ing the 3′ untranslated region (UTR) of its transcript. The 
expression of miR-K1 is sufficient to rescue lκBα protein activity  
and inhibit viral lytic replication, whereas the inhibition of 
miR-K1 in KSHV-infected PEL cells has the opposite effect.14 
We aim to identify miR-K1 targets by identifying DEPs 
between the human embryonic kidney 293T cells transfected 
with KSHV miR-K1 and the control group transfected with 
an empty vector for 48 hours.14 We use tandem MS for pep-
tide identification (not quantification) and LC-MS for quanti-
fication. KSHV-transfected sample is digested with trypsin in 
18O-water, and the control sample is digested in normal water. 
Subsequently, after protein digestion, the samples are mixed 
together. Twenty strong cation exchange (SCX)15 fractions of 
peptides are collected, and each fraction is further divided into 
three technical replicates.

In 18O/16O data processing, one needs to properly address 
the following issues.

1.	 We need to perform peptide feature alignment between 
different technical replicates, so that a peptide can 
be quantified multiple times to reduce quantification 
variations.

2.	 Due to interactions between peptide ion clouds inside 
mass spectrometers, smaller ion clouds in Orbitrap 
instruments can get torn apart by larger ion clouds16 and 
the abundance measurements of smaller ion clouds are 
suppressed randomly, as shown in our previous research.17 
This suppression effect leads to unknown bias and varia-
tion in fold change measurements.

3.	 Multiple peptides of a protein could have been quanti-
fied in different data fractions with different bias and 
variation, which cannot be estimated by assuming a 
simple Gaussian noise model.17 Consequently, it is hard 
to estimate protein expression levels based on peptide 
measurements.

4.	 We do not know what statistical test is most appropri-
ate for picking DEPs, given the complex structure of 
LC-MS/MS data, where each peptide has its unique 
measurement variance.

Although there are several algorithms and software 
programs published for 18O/16O labeling,18–22 the abovemen-
tioned issues have not been addressed properly. To overcome 
these issues, we first apply an alignment algorithm called 
statistical corresponding feature identification algorithm 
(SCFIA)23 to boost the total number of quantifications per 
peptide per protein. In this way, the majority of tandem MS-
identified peptides within an SCX fraction can be quantified 
three times in three technical replicates. Otherwise, a lot of 
peptides are only quantified once, as in the widely distrib-
uted packages such as Trans-Proteomic Pipeline (TPP)24 
and MaxQuant.19 With more measurements per peptide, we 
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can reduce the measurement variance. After alignment, we 
employ a peptide quantification method that we developed in 
a previous study25 to partially remove interference and random 
suppression effects.

After peptide quantification, we need to find downreg-
ulated DEPs because miRs regulate proteins through sup-
pression. Thus, we need to estimate the direction of protein 
expression. We develop a variance estimation method, so that 
the estimated variance can be used for weighing peptide mea-
surements. We assume that unique and nonunique peptides 
have uniform variance within their fractions. The uniform 
variance assumption allows us to weigh unique and nonunique 
measurements properly.

After we determine the direction of protein expression, 
various statistical tests are employed for picking DEPs. In 
genomics, tests are either homoscedastic or heteroscedastic. 
The former model assumes uniform variance for all protein/
gene measurements, and obviously, this does not fit our pro-
teomic data. Heteroscedastic model in genomic data processing 
assumes gene-by-gene variance26; however, multiple measure-
ments of genes are still assumed to have the same distribution, 
which does not fit our data either. A recent research27 com-
pares several statistical tests often used in proteomics. How-
ever, none of the tests, including the widely used t-test, clearly 
performs better than other methods with different sample 
size and variance, and there is no clear guide for selecting the 
appropriate statistical test.

In this paper, we select statistical tests by examining the 
enrichment of photoactivatable ribonucleoside-enhanced cross-
linking and immunoprecipitation (PAR-CLIP) predicted tar-
gets with seed match to miR-K1 among top DEPs returned 
by different statistical tests. PAR-CLIP uses 4-thiouridine to 
label mRNAs in vivo combined with ultraviolet cross-linking 
to improve recovery and to facilitate the identification of the 
cross-linking site.28 Although PAR-CLIP pulls down the 
cross-linked mRNAs and miRs, it does not build direct links 
between them and further validation of individual interac-
tions will be required.29

As seed match is one of the known mechanisms of miR–
mRNA binding, a correlation should exist between the PAR-
CLIP-predicted targets with seed match to miR-K1 and the 
DEPs predicted by a good statistical test. On the other hand, 
the two lists are not expected to overlap completely because: 
(1) There may exist other binding mechanisms,30 and conse-
quently, PAR-CLIP plus seed match produces a target list 
that contains false positives. (2) Downregulated DEPs could 
be attributed to secondary effects of miR transfection.

We developed a statistical test called Kullback–Leiberler31 
distance test (KL test), which uses the KL distance as a 
goodness-of-fit measure for comparing peptide fold changes 
of a protein to that of a background protein with the same 
number of peptide measurements. Through the KL test, we 
obtained a significant enrichment of PAR-CLIP-predicted 
targets with seed match to miR-K1 (PAR-CLIPSMK1). We 

also examined the t-test, Kolmogorov–Smirnov (KS) test,32 
and their modified versions when considering the number of 
peptide measurements per protein. None of these tests and 
MaxQuant and TPP returned DEPs that are significantly 
enriched with PAR-CLIPSMK1s.

After the statistical test, we had a list of DEPs whose 
mRNAs are potential miR-K1 targets. However, due to 
protein–protein interactions, the mRNAs of these DEPs may 
not be direct miR-K1 targets, and we have to jointly con-
sider miR-K1 targets returned by other prediction methods. 
Computational methods have been widely used to predict 
miR targets,33 and most of them rely on sequence comple-
mentarity between the 5′UTR end of mature miRs and the 
3′UTR of target genes (seed match).34,35 While seed match 
is an important mechanism for miR target binding, there are 
other possibilities.36 For example, the SVMicro37 miR target 
prediction algorithm investigates over 30 features and statisti-
cally combines these features for target prediction. However, 
computational target prediction algorithms suffer from both 
high false-positive and false-negative rates38 due to the lack of 
a comprehensive understanding of the binding mechanisms.

Alternatively, we can measure mRNA abundance 
changes using high-throughput microarray approaches39 for 
target prediction because miRs cause downregulation at the 
gene level. However, this method could be problematic if 
most miRs regulate gene expression by translational inhibi-
tion rather than mRNA degradation, which has been shown 
to be the case in animals.40,41 Even if mRNA degradation is 
the main gene regulation mechanism,42 there would still be 
a lot of downregulated genes due to the secondary effects of 
miR binding that are not direct miR targets.

To improve the true positive rate of identified DEPs as 
mi-K1 targets, we propose to combine various target predic-
tion methods by further filtering the list of DEPs picked by 
the KL test using the following criteria: (1) The corresponding 
mRNAs of DEPs must have downregulation in microarray 
experiments; (2) the DEPs must have been predicted to be 
possible targets by SVMicro37; and (3) the DEPs must have 
been reported as PAR-CLIPSMK1s.

After applying these criteria, the list of DEPs is reduced 
to three in our experiment, among which RAB23 and 
HNRNPU are novel. These novel targets have been con-
firmed by both Western blotting and Luciferase reporter 
assays, and it shows that the developed quantitative approach 
based on 18O/16O labeling can be combined with the genomic, 
PAR-CLIP, and target prediction algorithms to identify 
KSHV miR targets with high confidence. The developed 
approach will also have wide applications in other biological 
and clinical research.

Methods
Data collection. The LC-MS/MS data were pre-separated  

in 20 fractions, and each fraction consisted of three techni-
cal replicates. The samples from human embryonic kidney 
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293T cells (ATCC) were cultured in Dulbecco’s modified 
Eagle’s medium with 10% fetal bovine serum. One group 
was transfected with an expression vector expressing miR-
K1 of KSHV, while the control group was transfected with a 
vector for 48 hours.14 These two groups of samples were lysed 
in 8 M urea and 50 mM ammonium bicarbonate (pH 8.3). 
The lysates were subjected to centrifugation at 13,000  rpm 
for 20 minutes, and the supernatants were collected. Then, 
the two samples were denatured in 8 M urea, reduced using 
10 mM dithiothreitol, alkylated with 30 mM iodoacetamide, 
and digested with trypsin (using an enzyme-to-protein ratio 
of 1:50) at 37 °C overnight. The samples were desalted with 
Sep-Pak cartridges, separated into two tubes, and dried in 
a SpeedVac. The first sample was resuspended in 100  mL 
18O-water (purity .  98%), containing 50 mM ammonium 
bicarbonate, 10 mM calcium chloride, and trypsin (1–50 w/w 
trypsin:peptide) pH 7.8. The second sample was treated in the 
same manner except that the 18O-water was replaced with 
purified 16O-water. After incubation with shaking at 450 rpm 
for five hours at 37 °C, the labeling reaction was terminated by 
first boiling the sample for 10 minutes and then adding 5 mL 
of formic acid to further inhibit any residual trypsin activity.  
A bicinchoninic acid assay was performed to determine 
peptide concentration. Two hundred micrograms of equally 
combined sample was fractionated into 20 fractions, using 
SCX. Then, the four samples were subjected to reverse 
phase–reverse phase LC followed by ETD-LTQ-Orbitrap 
Velos MS.

PAR-CLIP data were downloaded from http://bugs.
mimnet.northwestern.edu/labs/gottweinlab/Data.html.

For more information, please refer Ref. 29. Details of 
gene expression data based on miR-K1 transfection were pub-
lished in Ref. 37.

LC-MS/MS data processing. Figure 1 shows the over-
all processing flow chart that consists of four steps: (1) prepro-
cessing, (2) peptide quantification, (3) protein quantification, 
and (4) identification of DEPs.

Preprocessing. The goal of preprocessing is to obtain a list 
of tandem MS-identified peptides, based on which, we can 
quantify these peptides at the LC-MS level. We use TPP for 
this purpose. Raw LC-MS data collected from Orbitrap are 
first converted to the mzXML formats and are submitted for 
tandem MS peptide identification using X! Tandem, which 
is called by TPP. As mentioned in the previous section, there 
are 20 SCX fractions and 3 technical replicates within each 
fraction, which results in 60 LC-MS files. All the 60 files 
are processed in TPP in a signal run. The protein database 
used is International Protein Index (IPI) human database 
version 3.68 (http://www.mmnt.net/db/0/5/ftp.ebi.ac.uk/
pub/databases/IPI/old/HUMAN/). For X! Tandem, the 
parent mass and fragment ions are searched with maximal 
mass errors of 7  ppm and 0.5 dalton, respectively. Methi-
onine oxidation and n-terminal acetylation are considered as 
variable modifications, and cysteine carbamidomethylation 

is selected as the fixed modification. The modification mass 
of the C is set to 57.021464, and the potential modification 
mass of M is set to 15.994915. The input of the cleavage 
C-terminal mass change is set to 21.01. In database search, 
the minimum length of peptide is set to 6 and the maximum 
missed cleavage sites is set to 2. The peptide prophet score 
threshold is set to 0.9 to guarantee high confident identifi-
cation. Peptides that are identified multiple times are com-
bined, which resulted in a list of 31,268 distinct peptides 
and 4,740 distinct proteins. For more information about the 
protein expression, please refer Supplementary File (http://
compgenomics.utsa.edu/zgroup/miRTargetprediction/miR-
Targets.htm).

MaxQuant processing. MaxQuant is a widely available 
software package that can process 18O/16O data. In order to 
compare our approach with that of MaxQuant, we download 
MaxQuant_1.3.0.5 from the webpage www.maxquant.org. 
IPI human database version 3.83 is selected as the source of 
protein sequences. We set the MS1 tolerance to 20 ppm for the 
first search and 6 ppm for the main search. We set the MS/MS 
tolerance to 20  ppm, peptide false detection rate (FDR) to 
0.01, protein FDR to 0.01, site FDR to 0.01, and heavy labels 

60 data sets are processed by TPP simultaneously
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Figure 1. The overall processing flow chart.
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to 18O. We have selected oxidation (M) and acetyl(protein 
N-term) as modification sites. In database search, the mini-
mum length of peptide is set to 7 and the maximum missed 
cleavage sites is set to 2, as these are the default values of 
the software.

Peptide quantification. Although both TPP and Max-
Quant perform peptide quantification, they are not specifi-
cally optimized for 18O/16O data. The ASAPRatio algorithm 
used in TPP is designed for low resolution data, and Max-
Quant is shown to have large bias.25

The quantification process is briefly described as the fol-
lowing. We first obtain a union list of tandem MS-identified 
peptides across all the three technical replicates in each frac-
tion. Then, candidate LC peaks of peptides are identified at 
the LC-MS level. We employ a special LC peak detection 
algorithm that is effective in removing interference from  
co-eluting peptides.25

If a peptide is identified by tandem MS with elution time 
information, we will pick the LC peak that matches in elution 
time. If a peptide is identified in other technical replicates, 
but not in current one, we employ SCFIA developed by Ciu 
et al.23 to find its LC peak in the current technical replicate.

Once the peptide peaks are identified in all the tech-
nical replicates, a linear regression method is used to quan-
tify the heavy light ratios (HLRs) between the labeled and 
unlabeled peptides.43

Protein quantification. Once peptide level quantification 
is finished, we need to integrate peptide HLRs to that of pro-
teins. However, peptide HLRs have different measurement 
variances. For example, nonunique peptides that are shared 
among several proteins have larger variance than unique 
peptides. Peptides measured on different fractions have differ-
ent variances. These variances cannot be estimated for every 
peptide, and we cannot hope to get accurate protein quanti-
fication without knowing the variances. To best approximate 
the true protein expression level, we have to make some sim-
plifying assumptions so that we can at least estimate the direc-
tion of protein expression. For this purpose, we assume that 
unique or nonunique peptides share the same measurement 
variance, within an LC-MS dataset, which can be estimated 
as described in the following sections:

Estimating peptide expression variances. To estimate the 
variance of measurements within a dataset, we consider two 
peptides from the same protein. Specifically, suppose two pep-
tides from a protein in an LC-MS/MS dataset are measured to 
have HLRs as r1 and r2 and their distributions can be approxi-
mated as normal: log( ) ( , )r N1 1 1

2~ µ σ  and log( ) ( , )r N2 2 2
2~ µ σ , 

their log ratio difference (LRD) can be defined as follows:

	 LRD r r= log( ) log( )1 2− 	 (1)

Then, we have

	 LRD N~ 1 2 1
2

2
2( , ).µ µ σ σ− + 	 (2)

As the peptides of the same protein in the same dataset 
share the same bias in sample preparation and instrument 
suppression/distortion, the means of the two log ratios can be 
assumed identical, and we have:

	
µ µ σ σ1 2 1

2
2
2= =, .and 	 (3)

It is easy to show that

	 σ1
2 2= var( ) / .LRD 	 (4)

As we assume that the variance of LRD of unique peptides 
(varLRDU) is uniform within an LC-MS run, we can take many 
samples within an LC-MS file to estimate the varLRDU, which 
reflects variations from the labeling process and the instrument. 
The LRD of nonunique peptides (varLRDNU) will reflect the 
interference from other proteins in addition to that from the label-
ing process and the instrument. varLRDU and varLRDNU are 
estimated for each dataset (60 in total). We denote varLRDNU 
as Vi,0 and varLRDU as Vi,1, where i is the file number. For details 
of the LRD calculation, please refer Supplementary File (http://
compgenomics.utsa.edu/zgroup/miRTargetprediction/suppl/
Supplementary.pdf). We find that varLRDUs and varLRDNUs 
are similar among replicates, but very different among fractions.

Determining protein expression direction using weighted 
average of peptide HLRs. Before protein quantification, we first 
need to combine peptide HLRs in three technical replicates 
within each fraction. We first consider taking the weighted aver-
age of three measurements when assuming independent instru-
ment noise. However, this approach results in higher varLRDU 
and varLRDNU within each fraction. This can be attributed to 
the fact that distortions caused by the instrument are not com-
pletely independent in technical replicates. Therefore, we opt for 
selecting the replicate with the smallest varLRDU.

After peptide measurements within each fraction have been 
determined, we further consider the problem of combining differ-
ent peptide measurements from different fractions. In such cases, 
the variation can be attributed to operational and experimental 
sources in different LC-MS runs, which are much larger than 
instrumental variations and can be assumed as independent.

Suppose a protein is measured for N times on different 
peptides with [( , ),( , ), ,( , )],, , ,r V r V r Vj j N n j1 1 2 2 …  in which ri 
represents the ith peptide measurement, and it is annotated 
with its measurement variance, Vi,j, where j ∈ (0,1) indicates 
whether the peptide is unique or not. The weighted mean (µ) 
and variance (V) of the protein are:

	
µ =

−
∑1 1

1V
rV i

j

N

i j,
,	 (5)

and

	
V

Vi j

1
1∑
,

	 (6)
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Of note, the sign of µ does not change if the set of 
estimated variances, Vi,js, are proportional to the true variance 
of a peptide. Using this method, we have quantified 4,740  
proteins, and in contrast, TPP has quantified 4,665 proteins 
in total.

Differential expression prediction. The variance of pep-
tides is calculated based on the assumption that all unique/
nonunique peptides share the same variance within the 
same LC-MS run. While this is a reasonable assumption 
for estimating the direction of protein expressions, it ignores 
that each peptide has different labeling efficiency and goes 
through the instrument with its own random distortion.17 We 
cannot rely on the estimated protein expression level for pick-
ing DEPs.

Popular statistical tests, such as the t-test, assume a Gaussian 
distribution and uniform variance for different peptide measure-
ments, which do not fit our data. The KS test32 is a goodness- 
of-fit test that does not assume any specific distribution among 
the samples; however, it can only be applied appropriately for 
relatively larger sample sizes (.4). However, a lot of proteins only 
have 1–3 peptide measurements in our case, and it is not a perfect 
statistical test as well. For this reason, we developed our own sta-
tistical test named as the KL test, which is described as follows.

The KL31 divergence (information divergence) is a non-
symmetric measure of the difference between two prob-
ability distributions, and the KL divergence between two 
normalized histograms P and Q is D(P||Q)  =  Σipilog(pi/qi), 
where i represents the ith interval on the histogram of P/Q. 
pi and qi are the portion of samples within the ith interval in  
P and Q, respectively.

We want to determine if a protein with N peptide mea-
surements with a normalized histogram P is differentially 
expressed when compared to the background histogram Q. 
The problem is that there is a great size mismatch: P is usually 
derived based on few peptide measurements and Q is based 
on many samples drawn randomly from the pool of all the 
peptide measurements. P is usually a poor representation of a 
distribution, and random variations could affect the statistics 
of the KL test when P is poorly represented.

To avoid such problems, we draw 5,000 random sam-
ples of normalized histograms Jks, where k ε {1,…, 5,000}. 
Each Jk is built by drawing N random peptide measurements  
from Q, which allow us to calculate KL D J Q kk k= ∀( ), .||  
Subsequently, we treat the histogram of KLks as the null dis-
tribution and use it to score the significance of D(P||Q). In 
this way, as we match the number of peptide measurements 
between Jks and P, we do not have to worry about the effect of 
great size mismatch between P and Q. In Figure 2, we show 
the flow diagram of the KL test. We notice that the effective 
null distributions based on KLks are different for proteins with 
different sizes and ranking the DEPs based on the P-values is 
no longer valid. On the other hand, D(P||Q) is evaluated for 
different proteins based on the same Q, and therefore, we can 
sort DEPs based on D(P||Q) directly.

We have also applied other statistical tests and quantification 
methods (TPP and MaxQuant) to pick the DEPs. As there 
is also the problem of significant mismatch in sample size in 
the t-test and KS test, we have also investigated two modified 
versions of these tests, which are described as follows.

In these tests, we construct the background pep-
tide distribution Q by randomly picking 5,000 peptide 
measurements from the pool of all the peptide measurements 
(31,312 peptides).

1.	 In t-test, if a protein has N (N . 2) measurements and 
forms an empirical distribution R, the t-test between  
R and Q is first calculated and the resulted P-values are con-
verted to FDRs44 by an MATLAB function mafdr. Down-
regulated proteins with FDR , 0.01 are picked as DEPs.

2.	 The KS test is applied in a similar way as the t-test.
3.	 TPP returns a list of protein measurements and P-values. 

Downregulated proteins with P-value ,0.05 are picked 
as DEPs.

4.	 The modified t-test is very similar to our proposed KL test. 
The difference is, instead of calculating KLk = D(Jk||Q), 
we calculate the t-test statistics between Jk and Q as 
( ( , ), )T J Q kk k ∀ , using the MATLAB function t-test(). 
Then, we treat Tk as the null distribution and estimate 
the P-value of T(P, Q). Finally, we pick proteins with 
P-value ,0.05 as DEPs.

5.	 Modified KS test is constructed by replacing the t-test 
with the KS test in the modified t-test.

6.	 MaxQuant is a popular software package that can 
process 18O/16O data. MaxQuant returns a list of protein 

Caculate
D(P||Q)

Sample 5000
HLRs and

form Q

Pool of all
peptide
HLRs

A protein with
N peptides
HLRs with

histogram P

Score the
significance of

D(P||Q)
against KLks

Calculate
KLk= D(Jk||Q)

for k in
[1,5000] 

Sample N
peptide HLRs

form Jk

Figure 2. The flowchart of calculating the KL score and significance of 
each protein.
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measurements. As MaxQuant does not offer P-values, we 
rank downregulated proteins with their HLRs in ascend-
ing order.

Results
We compared and evaluated different test statistics based on 
the enrichment of PAR-CLIPSMK1 proteins within the top 
ranked DEPs picked by different methods. The rationale is 
that if the test statistics reflects the real differential expression, 
then enriched PAR-CLIPSMK1 proteins should exist among 
top ranked proteins.

The enrichment rate is calculated by counting the percent-
age of PAR-CLIPSMK1 targets among all downregulated 
DEPs at a given rank of the DEPs sorted by the selected test 
statistics. For comparison, we also calculated the enrichment 
rate of PAR-CLIP targets without seed match to miR-K1.

The results are summarized in Figure 3. From these figures, 
we can see that DEPs ranked through the KS test/modified KS 
test, t-test/modified t-test, TPP, and MaxQuant do not show 
an enrichment of PAR-CLIPSMK1, especially among the top 
50 DEPs. However, clear enrichment of PAR-CLIPSMK1s is 
shown based on the KL test. Thus, we have selected the DEPs 
returned by the KL test for further verification.

Further filtering of DEPs. Based on the KL test, 331 sig-
nificantly DEPs are identified. Among them, 13 proteins are 
found to have overlap with PAR-CLIPSMK1 proteins. The 
proteins and their corresponding information are listed in 
Table 1. The enrichment curve is plotted in Figure 3D.

We further filtered the 13 proteins by inspecting if their 
corresponding gene expressions are downregulated and if their 
mRNAs are predicted as miR-K1 targets using the bioinformatics 
tool SVMicro.37 This cuts down the list to RAB23, PPP2CA, 

and HNRNPU. Of note, CAMK2D had three protein isoforms 
and their returned SVMicro scores are different in all the three 
cases. We did not include it after filtering.

MiR-K1 target verification. In order to verify that the 
mRNAs of the three DEPs are identified by the proposed 
approach as miR-K1 targets, we have further performed 
Western blotting and Luciferase reporter assay.

Western blotting. For target verification, 293T cells were 
transfected with synthetic miR-K1 mimic (50 nM). Forty-eight 
hours after transfection, endogenous protein levels were assessed 
by Western blotting. Tubulin was used as internal controls. Nitro-
cellulose (NC) was used as negative control for miR-K1 mimic, 
which was synthesized by Sigma-Aldrich. Locked Nucleic Acid 
(LNA) suppressors were chemically synthesized by Exiqon. The 
sequences are listed in Supplementary Table 1 (http://compge-
nomics.utsa.edu/zgroup/miRTargetprediction/suppl/Supple-
mentary.pdf ). Reverse transfection of RNA oligoribonucleotide(s) 
was done using Lipofectamine RNAiMAX (Invitrogen) accord-
ing to the manufacturer’s protocol.

In Western blotting, equal amount of protein samples 
was separated by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis and transferred to nitrocellulose membranes. 
The blots were blocked with 5% nonfat milk and incubated 
with primary antibody followed by a horseradish peroxidase- 
conjugated secondary antibody (Sigma-Aldrich). Specific bands 
were revealed with chemiluminescence substrates (Roche) 
and recorded with BioSpectrum Imaging System (UVP Inc.). 
Antibodies to PPP2CA were obtained from Cell Signaling 
Technology (CST). Antibodies to RAB23 and HNRNPU 
were obtained from Abcam.

RNA oligoribonucleotides and cell transfection. miR-K1 
mimic was obtained from Sigma-Aldrich. The sequences 
were listed in Table 2. A scrambled oligonucleotide contain-
ing random sequence was used as a control. RNA oligos were 
transfected using Lipofectamine RNAiMAX (Invitrogen). 
The transfection of plasmid DNA with RNA oligos was per-
formed using Lipofectamine 2000 (Invitrogen).

Construction of wild-type and mutant 3′UTR reporters. 
Wild-type (WT) and mutant 3′UTR reporters were gener-
ated as reported in a previous study.45 A WT 3′UTR fragment 
of the human RAB23 or hnRNPU mRNA containing the 
putative binding sites for miR-K1 and its 5′ and 3′ flanking 
regions (271 and 258 bp for RAB23 site 1, 186 and 355 bp 
for RAB23 site 2, and 344 and 255 bp for hnRNPU, respec-
tively) was polymerase chain reaction (PCR)-amplified and 
inserted into the Kpn I and Xho I sites, downstream of the 
stop codon of the firefly luciferase in the pGL3 vector. The 
mutant 3′UTRs, which carried the mutated sequences in 
the complementary seed region of miR-K1, were generated  
using fusion PCR based on the construct using the WT 
3′UTR reporters as templates.

Luciferase reporter assays. Reporter assays for the 3′UTR 
reporters were carried out in 48-well plates as described in a 
previous study.45 For each well, cells were cotransfected with 

Table 1. Protein expressed level.

Gene  
Name

Protein  
Index

KL  
Distance

SVM  
score

Gene  
Expression

RAB23 IPI00008034 2.4432 0.7998 −0.0245

GTPBP8 IPI00107246 2.4432 −0.6822 0.1717

CAMK2D IPI00172636 2.4432 0.8751; 
−0.9980; 
0.8821

−0.0281

MRPL1 IPI00549381 2.4432 −0.9279 −0.1361

PHF3 IPI00170770 2.4432 1.1149 0.3065

KPNA1 IPI00303292 2.1908 −0.9738 −0.0697

EIF3M IPI00102069 2.1184 −0.6817 0.0242

CPNE3 IPI00024403 2.0685 −0.9892 −0.0997

MTDH IPI00328715 2.0463 0.7519 0.1066

PPP2CA IPI00008380 2.0430 0.7073 −0.1338

RAD21 IPI00006715 1.8131 −1.0477 −0.4094

NUP153 IPI00292059 1.7519 −0.9754 0.0567

HNRNPU IPI00479217 1.7326 0.3299 −0.1262
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10  ng of the luciferase reporter plasmid, 2  ng of pRL-TK 
(Promega Corporation), and 10 nM of miR mimic. Cells were 
collected at 48-hour posttransfection and analyzed using the 
Dual-Luciferase reporter assay system (Promega Corpora-
tion). The pRL-TK vector providing the constitutive expres-
sion of Renilla luciferase was used as an internal control. 
Transfection was performed in duplicate, and all experiments 
were independently repeated at least three times.

Western blotting and reporter assay results. Western blot-
ting results are shown in Figure 4. We can see that Western 

blotting results confirm all the three targets picked through 
the proteomic approach. Among the three confirmed targets, 
RAB23 and HNRNPU are novel. PPP2CA has been reported 
as an miR-K1 target in a previous publication.29 IkBa14 and 
p2146 are confirmed miR-K1 targets, but they are not iden-
tified in this experiment. We investigated and found that 
the proteins of IkBa and p21 are not identified by tandem 
MS before quantification, which randomly samples peptides 
and has limited coverage, which cannot be controlled by our 
quantification methods. The reporter assay results of the two 
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Figure 3. Enrichment of PAR-CLIPSMK1 targets in top ranked DEPs using (A) t-test FDR, (B) KS FDR, (C) TPP, (D) KL tests, (E) modified t-test 
statistics, (F) modified KS test statistics, and (G) MaxQuant protein measurements. X-axis represents the rank of DEPs, and y-axis represents the 
enrichment rate.
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novel targets, RAB23 and HNRNPU, are shown in Figures 5  
and 6, respectively.

These results show that our developed method is 
highly effective in identifying novel biomarkers based on 

18O/16O labeling, which can be applied in a wide range  
of applications.

Function of identified targets. PPP2CA encodes the phos-
phatase 2A catalytic subunit. Protein phosphatase 2A is one 
of the four major Ser/Thr phosphatases, and it is implicated 
in the negative control of cell growth and division, and is 
involved in breast cancer.47

Among the two novel targets, RAB23 encodes a small 
GTPase of the Ras superfamily and Rab proteins are involved 
in the regulation of diverse cellular functions associated with 
intracellular membrane trafficking, including autophagy and 
immune response to bacterial infection.48 The encoded protein 
may play a role in central nervous system development by antag-
onizing sonic hedgehog signaling.49 Disruption of this gene has 
been implicated in Carpenter syndrome as well as cancer.50

HNRNPU belongs to the subfamily of ubiqui-
tously expressed heterogeneous nuclear ribonucleoproteins 
(hnRNPs). The hnRNPs are RNA-binding proteins, and 
they form complexes with heterogeneous nuclear RNA. These 
proteins are associated with pre-mRNAs in the nucleus and 
appear to influence pre-mRNA processing and other aspects 
of mRNA metabolism and transport.51 It has been shown 
that hnRNPU directly interacts with WT1 and modulates 
WT1 transcriptional activation,52 which is the Wilms’ tumor 
suppressor gene. Other diseases associated with HNRNPU 
include diffuse gastric cancer.53

Future Work
In this work, the aim is to return miRNA targets with low 
false-positive rate and we have applied three filtering criteria 
outlined in the Introduction section on DEPs detected by the 
proposed algorithm. The results have shown that these three 
criteria effectively ensured a zero false-positive rate in this 
case, which greatly reduced the cost of biological validation of 
the computed targets. However, the need of applying these fil-
ters has not been investigated, and there could be real miRNA 
targets that have been missed, which should be investigated 
in the future.

Conclusion
In this paper, we developed and applied a proteomic approach 
for identifying the targets of KSHV miR. The developed 
method is shown to be effective in finding miRNA targets. 
The developed method is based on 18O/16O labeling that can 
be used in many applications. Two novel and one previously 
identified miR-K1 targets are picked by the proposed method. 
They are further confirmed based on Western blotting and 
Luciferase reporter assay.

The core of the proteomic approach is based on the statis-
tical test called the KL distance test, which uses the KL dis-
tance as a goodness-of-fit measure for comparing peptide fold 
changes of a protein to that of a background protein with the 
same number of peptide measurements. Through the KL test, 
we obtained a significant enrichment of PAR-CLIP-predicted 

PPP2CA

NC29
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m
iR
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hnRNP U

RAB23

Tubulin

Figure 4. 293T cells transfected with synthetic miR-K1 mimic (50 nM). 
Forty-eight hours after transfection, endogenous protein levels were 
assessed by Western blotting. Tubulin was used as internal controls. NC 
was used as negative control for miR-K1 mimic.

Table 2. Sequences of miRNA mimics and PCR primers.

Name Sequence
miRNA mimics—

miR-K1 AUUACAGGAAACUGGGUGUAAGC 
(Sense)

UUACACCCAGUUUCCUGUAACUU 
(Antisense)

Primers for constructing 3'UTR WT and 
mutant reporters

RAB23  
Site 1 WT

AGTGGTACCTGCAAAATGAGCTTGGGTTT 
(Forward)

AGTCTCGAGTGTGGGACTGACAGCTCTTG 
(Reverse)

RAB23  
Site 1 mutant

AGTCATTCAGGAGGTGGACAGTAGTGTG-
GTGATGC (Forward)

GCATCACCACACTACTGTCCACCTCCT-
GAATGACT (Reverse)

RAB23  
Site 2 WT

AGTGGTACCCAAGAGCTGTCAGTCCCACA 
(Forward)

AGTCTCGAGATTTTGCCCCCAAAACCTAT 
(Reverse)

RAB23  
Site 2 mutant

AGCATTGCAAAATGACATTAAATAACTTT-
TATT (Forward)

AATAAAAGTTATTTAATGTCATTTTGCAAT-
GCT (Reverse)

hnRNPU WT AGTGGTACCAGGACGAGGAAA-
CAATCGTG (Forward)

AGTCTCGAGAGCTTACCCCCTCCACTACC 
(Reverse)

hnRNPU Mutant GGTTCTACATTTTATGACATTAATGT-
GACTTTTT (Forward)

AAAAAGTCACATTAATGTCATAAAATGTA-
GAACC (Reverse)
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Figure 6. hnRNPU is a direct target of miR-K1. (A) Sequence alignment 
of miR-K1 with the hnRNPU 3′UTR. (B) miR-K1 suppressed the activity 
of luciferase through its binding site in hnRNPU 3′UTR. 293T cells were 
cotransfected with the miR-K1 mimic or the scrambled control, a firefly 
luciferase reporter containing the WT or mutant 3′UTR reporter, and a 
Renilla luciferase expressing construct. The firefly luciferase activity of 
each sample was normalized to the Renilla luciferase activity. The mean 
of normalized luciferase activity of scrambled control in each experiment 
was set as 1. 
Notes: P , 0.05; P , 0.001, compared with scrambled control.
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Figure 5. RAB23 is a direct target of miR-K1. (A) Sequence alignment of miR-K1 with the RAB23 3′UTR. (B–C) miR-K1 suppressed the activity of 
luciferase through its binding site 1 (B) and site 2 (C) in RAB23 3′UCTR. 293T cells were cotransfected with the miR-K1 mimic or the scrambled control,  
a firefly luciferase reporter containing the WT or mutant 3′UTR reporter, and a Renilla luciferase expressing construct. The firefly luciferase activity of each 
sample was normalized to the Renilla luciferase activity. The mean of normalized luciferase activity of scrambled control in each experiment was set as 1. 
Notes: P , 0.05; P , 0.001, compared with scrambled control.

targets with seed match to miR-K1 (PAR-CLIPSMK1). In 
comparison, none of the other statistical tests, such as t-test 
and the KS test, and their modified versions, as well as other 
proteomic software programs, including MaxQuant and 
TPP, find any DEPs that are significantly enriched with  
PAR-CLIPSMK1s.

Although the proposed method has a limitation as 
DEPs can arise through some unknown mechanism other 
than miRNA involvement even in miRNA-transfected 
cells, we have shown that the application of additional 
filters based on PAR-CLIP and SVMicro can greatly reduce  
false-positive rate.
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