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Biological relevance of computationally predicted
pathogenicity of noncoding variants
Li Liu1, Maxwell D. Sanderford2, Ravi Patel2,3, Pramod Chandrashekar 1, Greg Gibson 4 & Sudhir Kumar2,3

Computational prediction of the phenotypic propensities of noncoding single nucleotide

variants typically combines annotation of genomic, functional and evolutionary attributes into

a single score. Here, we evaluate if the claimed excellent accuracies of these predictions

translate into high rates of success in addressing questions important in biological research,

such as fine mapping causal variants, distinguishing pathogenic allele(s) at a given position,

and prioritizing variants for genetic risk assessment. A significant disconnect is found to exist

between the statistical modelling and biological performance of predictive approaches. We

discuss fundamental reasons underlying these deficiencies and suggest that future

improvements of computational predictions need to address confounding of allelic, positional

and regional effects as well as imbalance of the proportion of true positive variants in

candidate lists.
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The past twenty years of sequencing effort has catalogued
more than 300 million single nucleotide variants (SNVs) in
the human genome, with many new and rare novel var-

iants reported with each newly sequenced person1. These
endeavors are enabling discoveries concerning the genetic basis of
a myriad of complex traits and diseases. However, sifting through
the constellation of SNVs to pinpoint pathogenic loci (regions
and positions) is a challenging task. Genome-wide association
studies (GWAS) have produced thousands of credible intervals of
SNVs, which are frequently assumed to tag one or a few causal
variants that influence the trait. In order to discover the under-
lying bona fide causal SNVs, researchers are increasingly adopting
in silico functional analyses to prioritize candidate variants, either
incorporating this information in the mapping algorithm a
priori2–5, or using it as a filter a posteriori in empirical studies6–9.
Although it is clear that credible intervals in regulatory regions
are enriched for functional elements4,10–12, precise mapping of
noncoding SNVs (ncSNVs) lags behind annotation of protein-
coding variants.

Many computational tools have been developed to assess the
functional impact of ncSNVs13. The general framework is to build
predictive models that learn rules of combining multiple genomic
annotations, functional attributes, and evolutionary features to
discriminate pathogenic variants from non-pathogenic ones. Dur-
ing implementation, different assumptions of pathogenicity, various
data and annotation resources, and assorted machine-learning and
statistical algorithms have been employed. We summarize in
Table 1 our survey of six current tools, namely CADD14, CATO15,
DeepSEA16, EIGEN17, GWAVA18, and LINSIGHT19.

In particular, the definition of pathogenicity determines the
class labels of ncSNVs in the training and/or testing steps (i.e., the
positive class contains pathogenic variants and the negative class
contains non-pathogenic variants). GWAVA defines pathogenic
ncSNVs as disease-associated variants (DAVs) documented in the
HGMD20 or the ClinVar21 databases, whereas non-pathogenic
ncSNVs are those represented by common population poly-
morphisms (CPPs) in the 1000 Genomes Project22. Although this
strategy works well for protein-coding variants, the small number
of regulatory DAVs combined with potentially high false positive
rates in the HGMD, and ClinVar annotations limits the gen-
eralizability of this strategy for noncoding variant diagnosis.
CADD and LINSIGHT instead utilize deleteriousness inferred on
evolutionary constraints as a proxy for pathogenicity. Since
pathogenic variants are likely to depress fitness, measures of
evolutionary selection are used to infer whether a site or an allele

has a deleterious effect on health (although it should not be
assumed that the identified disease association is itself the cause
of reduced fitness). Alternatively, molecular phenotypes, such as
perturbation of chromatin structure or transcription factor
binding, can serve as an indicator of potential pathogenicity and
have been adopted by CATO and DeepSEA.

The attributes of an ncSNV that are potential predictors often
include sequence-based features (e.g., motifs), evolution-based
scores (e.g., conservation), summarized regulatory assay results
(e.g., DNase hypersensitivity from ENCODE23), functional
annotations (e.g. splice sites), and population allele frequencies.
Since the function of a regulatory element is often tissue-specific,
CATO further considers cellular context in its model. However,
the high rate of missingness of cellular data has the consequence
that CATO is unable to make predictions for a large number of
ncSNVs. Given these training data, the relationship between
pathogenicity and the various predictors of ncSNVs have been
modeled using traditional statistical approaches (e.g., logistic
regression) and advanced machine-learning techniques (both
supervised an unsupervised learning).

Regardless of the distinguishing theoretical and empirical
aspects of each method, these tools invariably claim excellent
discrimination of pathogenic from non-pathogenic variants
(reported AUROC values up to 0.97, Table 1), which has
encouraged their application in over a thousand studies of the
genetic basis of biomedical phenotypes. Interestingly, with the
exception of GWAVA, the aforementioned methods did not
report explicit cutoff scores to classify pathogenic and non-
pathogenic variants. While ROC curves contrasting specificity
and sensitivity are useful for evaluating the overall performance of
a predictive model over the full range of the impact scores, the
lack of recommended cutoff scores preclude assessment of tra-
ditional accuracy metrics. Users have to rely on ranking or
arbitrarily determined cutoff scores to classify candidate variants.
Consequently, the interpretation of the predictions is largely
subjective. Furthermore, AUROC is insensitive to class imbalance
(i.e. deviation of the ratio of positive and negative samples from
1:1)24. In most empirical studies, researchers aim to identify a
small number of pathogenic variants among a relatively large
number of non-pathogenic variants. Unfortunately, in these cases,
high AUROC values do not imply high precision.

Notably, the concordance of pathogenicity predictions made by
current tools is low25 and in vitro evidence is frequently at odds
with in silico assessments14. These observations suggest that the
accuracies reported during the development of predictive methods

Table 1 Properties of predictive models for six tools

Method Assumption of
pathogenicity

Predictors Modeling approaches Performance
(AUROC)a

CADD Evolutionary fitness Evolutionary parameters, ENCODE summaries, functional
annotations, population frequencies

Support vector
machines

0.92b

CATO Molecular functions Cell type- and tissue-specific assays, evolutionary parameters,
functional annotations

Logistic regression NAc

DeepSEA Molecular functions Local sequences, evolutionary parameters Deep learning, Logistic
regression

0.85

EIGEN Noned Evolutionary parameters, ENCODE summaries, population
frequencies

Unsupervised learning 0.79

GWAVA DAVs vs. CPPs Evolutionary parameters, ENCODE summaries, population
frequencies

Random forests 0.97

LINSIGHT Evolutionary fitness Evolutionary parameters, ENCODE summaries, functional
annotations

Generalized linear
model

0.96

AUROC = area under the receiver operator characteristic curve, DAV = disease-associated variant, CPP = common population polymorphism
aHighest AUROC values in classifying DAVs and CPPs reported in the original publications
bCADD reported AUROC values that mixed coding and noncoding variants
cCATO predicts transcription factor occupancy instead of pathogenicity
dEIGEN uses an unsupervised learning approach and thus makes no assumption of pathogenicity during training
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may not translate into high success rates when applied to funda-
mental empirical biological research questions. To test this propo-
sition, we evaluate the performance of the aforementioned six
predictive tools for three major biological tasks that represent
common applications of pathogenicity predictions: distinguishing
which of the four alleles at a causal site are pathogenic and which
are protective (with implications for inferring how natural selection
shapes variation at the locus26), fine mapping the causal variant
within a credible interval of physically proximate ncSNVs that have
similar statistical evidence for association27–29, and ranking of
candidate variants across the genome for prioritization of the likely
disease-promoting gene(s). To avoid biases due to unknown cutoff
values and class imbalance, we use relative ranks of pathogenic and
non-pathogenic variants in balanced test sets as the performance
metrics. We then explicitly evaluate the influence of class imbalance
on all the predictions. Our results show that the existing methods
have underwhelming performance with respect to the three dis-
criminatory tasks, and point toward needed areas for improvement.

Results
Task 1: Discriminating pathogenicity of alternative alleles.
Given a genomic position with segregating alleles in a population,
except in rare instances of balancing selection, one allele will
usually be more deleterious than the other, presumably con-
tributing to pathogenesis30–33. At any position, apart from the
reference allele, we need to know which of the other three bases
are pathogenic, because contrasts of their allele frequencies in
different populations and/or relative to the ancestral state can
help to elicit the direction of natural selection and shed light on
the genetic basis of health disparities34–36.

To evaluate the methods’ performance for task #1, we
reasoned that the strongest comparison likely to distinguish
pathogenicity of ncSNVs at the same position by computa-
tional prediction would contrast variants that are commonly
observed in human populations, but have no reported
association with human diseases or quantitative traits (which
we call non-pathogenic) with variants not observed in any of
the species closely related to humans (which we call
pathogenic). An evolutionary approach to assembling patho-
genic variants was taken by the developers of CADD, who used
simulated de novo mutations to represent such variants.
CADD’s mutations are SNVs that are different from the
chimpanzee–human ancestral alleles and different from the
human reference allele, hence presumably would be under
purifying selection. In our study, we extended this concept by
considering evolutionary history beyond human–chimpanzee
and used 57 diverse non-human placental mammals (see the
Methods section). Across the collection of these mammals,

there has been ~2.9 billion years of evolution, which ensures
that a vast majority of sites in the genome have been
evolutionarily tested on multiple mutations, given that the
mutation rate is of the order of 10−8–10−9 per base per
year37,38. Following the strategy adopted by CADD and LIN-
SIGHT using evolutionary principles to identify pathogenic
alleles, and adopting the extensive taxonomic span considered
here, we inferred that alleles never observed in any of these
species are typically evolutionarily forbidden alleles that have
been consistently subject to purifying selection due to their
deleteriousness (they are pathogenic in a broad sense regardless of
association with disease).

For the non-pathogenic variant set assembled in our tests,
CPPs were used just as they were in the development of CADD,
DeeepSEA, EIGEN, GWAVA, and LINSIGHT. At these posi-
tions, we further required that the derived alleles have frequencies
between 5 and 15% in the human populations to minimize the
influence of variants potentially under positive selection or
balancing selection. We also tested whether the performance
varied when we applied different population frequency cutoffs of
derived alleles (see the Methods section).

With these criteria, we were able to assemble a position-
matched balanced allelic test set of 55,453 positions. At each
position, we identified a pair of pathogenic (i.e., evolutionarily
forbidden) and non-pathogenic (i.e., CPP) alleles (see the
Methods section). Our expectation was that a pathogenic allele
would receive a significantly higher impact score (as defined for
each of the six tested methods) than a non-pathogenic allele at
the same position. Instead, we found that these methods were
unsuccessful at this task. In fact, four of them (LINSIGHT,
EIGEN, GWAVA, and CATO) reported identical scores for all
alternative alleles at every position as they were not designed
for allelic contrasts (Fig. 1a). Two methods (CADD and
DeepSEA) produced different scores for pathogenic and non-
pathogenic alleles at a position, but the AUROC was only
slightly higher than 0.5 (AUROC= 0.54 and 0.51, DeLong test
p-value= 10−11 and 10−13, respectively). Despite the statistical
significance, the small effect sizes implied that the biological
usefulness of these methods for task #1 is extremely limited,
which was further confirmed by the statistically significant yet
largely overlapping distributions of impact scores for patho-
genic and non-pathogenic alleles (Wilcoxon signed-rank test
p-value= 0, Fig. 1b, c). Similar results were also observed when
pathogenic alleles were sampled only from positions that were
completely conserved across all 58 mammalian species
analyzed and contained no alignment gaps (AUROC= 0.49
and 0.57 for CADD and DeepSEA, respectively; see the Online
Methods section and Supplementary Figure 1).
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Fig. 1 Performance of tested methods on detecting pathogenic variant in position-matched ncSNVs. a ROC curves with AUROC values displayed for each
method. b Cumulative distribution of CADD scores. c Cumulative distribution of DeepSEA scores. Pathogenic ncSNVs were limited to variants not
observed in human or any of the 57 non-human placental mammals
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Therefore, it is apparent that none of the six methods are
suitable for distinguishing among the alleles segregating at a site
with respect to deleteriousness.

Task 2: Resolving the identity of causal alleles. Since GWAS
typically resolves associations to credible intervals that may
contain from a few to a hundred or more candidate SNVs39,40, it
has been proposed that algorithmic incorporation of functional
and evolutionary scores might resolve true causal variants27–29.
We thus next examined if the six prediction methods can
distinguish pathogenic from non-pathogenic positions within
credible intervals defined by physical distance or linkage dis-
equilibrium. To simulate fine-mapping studies, we constructed a
region-matched test set containing known pathogenic and non-
pathogenic variants within certain genomic distances. As patho-
genic variants, we used a collection of 764 DAVs that was a subset
of 2037 HGMD variants, where we applied three filters that
corresponded to one strong and two moderate criteria of
pathogenicity in the clinical guidelines published by the American
College of Medical Genetics and Genomics (ACMG)41. Even
though ACMG guidelines are currently recommended only for
defining pathogenic variants in the coding regions, we used them
in an effort to enrich our collection with truly pathogenic variants
(see the Methods section). To assemble a collection of putatively
non-pathogenic variants, we used all noncoding CPPs with MAF
> 5% that were located within the 1000 base pairs (1kbps) region
surrounding the anchor DAV. Only those CPPs with no known
disease associations were chosen. We then paired a DAV with
each of its nearby CPPs to construct a region-matched balanced
test set (see the Methods section). On average, there were 4.3
CPPs per anchor DAV, and this test set consisted of 3298 such
pairs.

Between each pair of a DAV and a nearby CPP, a successful
method should assign a higher impact score to the DAV.
However, we were unable to reject the null hypothesis for CATO
when the distance between a DAV and a CPP is less than 1 kbps,
for EIGEN when distance <100 bps, for GWAVA when distance
<50 bps, and for CADD, DeepSEA, and LINSIGHT when
distance <10 bps (paired one-sided t-test p-value > 0.05). Even
when the statistical tests reached the significance threshold, the
effect size represented by the score difference between a pair of
DAVs and CPPs was usually very small (Fig. 2a). For example,
the DeepSEA score of a DAV, on average, was only 0.02 higher
than its nearby CPP, while the full range of the DeepSEA score is
between 0 and 1. Among all tested methods, CADD and
LINSIGHT had relatively large positive components. However,
even for these two methods, less than a quarter of the evaluations
are greater than a standard deviation unit.

As the physical distance increases, the differences between the
impact scores for DAVs and CPPs generally become more
evident, i.e., pathogenic variants can be distinguished from non-
pathogenic variants when they are located further apart (Fig. 2a).
These results are likely explained by the high correlation between
the impact scores of DAVs and matching adjacent CPPs, which
decreases with increasing physical distance (Fig. 2b). For different
tests, this may reflect contributions of evolutionary history of the
haplotype block yielding similar conservation patterns, or the
likelihood that closely linked alleles all lie within an extended
regulatory stretch of chromatin with similar epigenetic marks.

A similar analysis was performed by defining vicinity with
respect to linkage disequilibrium (LD) blocks with r2 thresholds
ranging between 0.8 and 0.99. Unlike physical distances, degree of
genetic linkage does not affect the performance of CADD, CATO,
EIGEN, and LINSIGHT significantly (ANOVA p-value range
from 0.27 to 0.79, Supplementary Figure 2A). For the other two

methods (DeepSEA and GWAVA), the influence was significant
when r2 > 0.9 (ANOVA p-value < 0.001), but disappeared when r2

dropped below 0.9 (ANOVA p-value= 0.35 and 0.14). This was
likely due to the similar distributions of the sizes of LD blocks
irrespective of r2 thresholds (Supplementary Table 1), which also
explains the relatively stable correlation of impact scores
(Supplementary Fig. 2B).

We also stratified the data by using the evolutionary
conservation of the position where a DAV is found: ultra-,
well-, and least-conserved categories (absolute evolutionary rate
= 0, <2, and ≥2 substitutions/site/billion years, respectively42,43).
As reported previously19,44, the maximum success rate of ranking
a pathogenic ncSNV higher than an adjacent ncSNV was
achieved when the variant affected an ultra-conserved position,
which is up to twice as good as that at the least-conserved
positions (Fig. 2c).

Among different types of regulatory elements, the prediction
methods work best in identifying pathogenic ncSNVs disrupting a
promoter (Fig. 2d). This may be because promoter regions are
among the best studied regulatory elements in the genome, and
most of the tools provide quite good discrimination for up to 97%
of true DAVs in promoters. The improved performance may be
attributed to the conservation of promoters45,46 reflecting the
strong evolutionary component of the impact scores. Alterna-
tively, there may be an ascertainment bias toward experimental
evaluation of the candidate variant on the basis of ENCODE-
related criteria. We must note that previous comprehensive
comparisons14–19 have rarely ruled out the alternate hypothesis
that one of the adjacent site encodes the causal variant.

To test whether the above results are sensitive to the presence
of false positive DAVs in our collection of pathogenic ncSNVs, we
used various filters to control population frequencies in selecting
HGMD variants (see the Online Methods section). We observed
qualitatively similar patterns regardless of data source (1000
Genomes Project or gnomAD) or frequency threshold (1%, 0.1%,
0.01%, or 0%) used for filtering variants (Supplementary Figs. 3
and 4). Supporting this result, we did not observe a relationship
between variant population frequency and predicted impact score
(Supplementary Fig. 5). We also experimented with using the
ClinVar database as an alternative data source, which confirmed
our findings in using HGMD variants (Supplementary Fig. 6). We
also noted that DAVs are not evenly distributed across genes.
Some genes, such as CCDC107 and HBB, have more than 40
DAVs within their 1 kbps upstream regions. To test if
these clustered ncSNVs affect the performance, we randomly
chose one DAV from each gene when available and repeated the
analyses. Similar, but slightly worse, results were attained
(Supplementary Fig. 7).

Task 3: Prioritizing loci for gene set enrichment/prediction. In
order to identify gene sets enriched for contributions of multiple
loci, or to assemble polygenic risk scores for prediction of disease
risk, researchers often rank loci by genome-wide test statistics.
Owing to the low power of GWAS to discover variants with small
effects47, spurious false positives greatly outnumber bona fide
disease loci in any list of candidate intervals that includes regions
below the conservative genome-wide Bonferroni threshold48.
Similarly, among all ncSNVs generated via statistical association
tests in a credible interval, parsimony suggests that only one or a
small number of sites will be truly causal, which leads to the
expectation of a low signal to noise ratio in candidate lists. To
simulate these situations, we constructed test sets by mixing
varying ratio of CPPs (non-pathogenic) and DAVs (pathogenic)
ranging from 1:1 to 100:1. To avoid the confounding of physically
proximate variants, we included only ncSNVs located beyond 1
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kbps from each other. For each test set, we ranked ncSNVs using
impact scores and evaluated the ability to place pathogenic var-
iants in the top 10 percentiles.

The expectation is that short-listed ncSNVs will be enriched
with pathogenic variants, and indeed greater than 94% of ncSNVs
in the top ranked predictions were from the pathogenic set when
the test datasets consisted of non-pathogenic and pathogenic
variants in equal numbers (mixing ratio= 1:1) (Fig. 3a). Since
predictive models are usually trained using balanced datasets
consisting of equal numbers of pathogenic and non-pathogenic
variants14–16,18,19, this result confirms that our test data are not
unduly biased relative to those used to generate the impact scores.

In the more realistic scenario where the mixing ratio reaches
10:1, the short list contains approximately the same proportions of
pathogenic and non-pathogenic variants, i.e., 50% false positives.
As the mixing ratio of ncSNVs increases further, the discovery of
the needle-in-the-haystack becomes progressively more difficult.
The area under the precision-recall curve (AUPRC, Fig. 3b)
provides a robust metric for unbalanced datasets, which has been a
critical measure in assessing clinical diagnostic tests24. At the

desired AUPRC of 0.8, CADD and EIGEN are only suitable if
>50% of the candidate ncSNVs in the collection are pathogenic,
whereas DeepSEA and LINSIGHT retain some discrimination if
>25% are pathogenic. GWAVA may be suitable up to a mixing
ratio of 10:1. However, because 65% of our positive test data
overlapped with the positive training data for the GWAVA model,
its superior performance is likely an overestimation.

Performance is strongly a function of evolutionary conserva-
tion, since all tools performed better when the pathogenic
ncSNVs were located at ultra-conserved positions. For example,
LINSIGHT achieved AUPRC= 0.8 even when the ncSNV
collection contained 64 times more non-pathogenic than
pathogenic ncSNVs at ultra-conserved positions, although it
performed poorly when the pathogenic ncSNVs were at least-
conserved positions (Fig. 3c).

We also found that the performance varied with genomic
context (Fig. 3d). Pathogenic ncSNVs in promoter regions are
most likely to be correctly prioritized by DeepSEA, GWAVA, and
LINSIGHT, while CADD works better on prioritizing pathogenic
ncSNVs in introns. Interestingly, all tools are even more likely to
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identify pathogenic ncSNVs in gene downstream regions than in
upstream regions (+100 kbp versus −100 kbp). Two-way strati-
fication of genomic context and evolutionary conservation
showed that pathogenic ncSNVs in gene downstream regions
were significantly enriched at ultra-conserved positions as
compared to those in gene upstream regions (odds ratio= 3.1,
Fisher’s exact test p-value= 6 × 10−5). We again tested if these
patterns changed with varying stringencies of defining pathogenic
ncSNVs and with gene clustering patterns, yielding similar
findings (Supplementary Figs. 8-10).

Discussion
With the realization that the majority of GWAS association sig-
nals lie in regulatory noncoding DNA, computational methods
have quickly become indispensable for interpretation of the
pathogenic propensities of ncSNVs with respect to their con-
tributions to complex traits and human health2–9. Our assessment
finds that six commonly used predictions are not suitable for
discriminating between alternative alleles at the same position,
and that they have a strong bias towards producing similar
(pathogenic) impact scores for closely-located pathogenic and
non-pathogenic ncSNVs. The lack of power to distinguish among
alleles at the same position is likely because the tools were not
designed to capture the characteristics of different alleles at the
same position or closely-located positions. By contrast, we do
observe some resolution of current methods at the regional level,
particularly in the promoters and at ultra-conserved sites. These
methods also have limited power to prioritize pathogenic ncSNVs
when the proportion of pathogenic relative to non-pathogenic
ncSNVs in a candidate list is small. Table 2 summarizes the

strengths and weakness of each method on the three biological
tasks. In light of these patterns, low concordance of predictions
made by current tools and the discordance between in vitro and
in silico results is understandable14,25.

A major component of the lack of predictive power for task
#2 seems to be the high correlation between parameters char-
acterizing sites located within at least a few hundred base pairs
(Fig. 4). For example, CADD uses 63 parameters to build its
model14, all of which show high correlation with each other,
many over a distance of 1 kb or more. Genomic features mea-
suring sequence complexity and ENCODE features measuring
functional features of chromatin23 have the lowest discriminative
power, either because the assays do not always resolve to a few
nucleotides, or because the features aggregate signals covering
tens of base pairs. As might be expected, motif scores are dis-
criminative for ncSNVs separated by more than 10 bps. DNA
structure features show the lowest correlation across all distance
categories, but we found them neither to show consistent direc-
tional effects, nor to contribute much to pathogenicity predic-
tions. Among evolutionary features, PhyloP49 and PhastCon50

scores computed using primate, mammalian, or vertebrate
sequence alignments are also sensitive to the distance between
sites, but GERP51 scores are not.

Considering the potentially high ascertainment errors in
labeling pathogenic vs. non-pathogenic ncSNVs, modeling tech-
niques that are robust to noise in training data may offer potential
gains in predictive accuracy. An alternative approach is to
develop a composite score that may improve upon individual
methods. We examined one such method, namely PRVCS52,
which unfortunately had poor performance (Supplementary
Figure 11). Meanwhile, new high-throughput functional in vitro
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assays have shown positional and even allelic resolutions. For
example, massively parallel reporter gene53 and CRISPR/Cas954

mapping are beginning to quantify the expression changes due to
all possible regulatory sites in a credible interval. When these
datasets accumulate to cover a significant fraction of the human
genome and tissue types, we expect computational methods
integrating this information in the model will have improved
performance.

On the other hand, our results may be sensitive to the defini-
tions of pathogenicity and also to the presence of false positive
DAVs in the regulatory mutation databases. In this study, we
chose computational and experimental comparisons of ncSNVs
that are likely to be most discriminative given the current evi-
dence. Varying inclusion/exclusion stringency and data source
did not change the overall patterns (Supplementary Figures
3–10). At the same time, we find that the six methods perform
well in task #2 for DAVs disrupting promoters or ultra-conserved
positions, which may reflect a higher proportion of true positives
as anchors. In this case, the reduced success rates in other regions
could be interpreted as an artifact of ascertainment bias, although
we consider this unlikely as a general explanation because DAVs
in our test sets were accompanied with in vivo or in vitro
evidence.

Alternatively, the performance of current tools may actually
be worse than we describe, because we used DAVs implicated
in heritable diseases as pathogenic variants for testing. These
are generally of stronger functional impact than many ncSNVs
that underlie complex diseases and traits. Indeed, adopting a
measure of function expected to be only mildly correlated with
pathogenicity, namely expression quantitative trait loci
(eQTLs), confirms a high false negative rate for all six methods.
Tested on 429 of the most significant functional variants
causing the largest changes of gene expression in the GTEx
dataset55 (eSNVs), even the best-performing method failed to
make correct predictions in 77% of the cases (Fig. 5a, Sup-
plementary Table 2). The concordance among all the tools was
again low. Even when we took a union of eSNVs predicted to
be functional by at least one of the six methods, the collective
sensitivity was less than 50% whether considering the peak
effect size or p-value, individually, as evidence for causality.
Therefore, current tools may not perform well for highly
complex traits and diseases.

Overall, the strong tendency of each of the tools to assign
more severe impact scores to ncSNVs found in evolutionarily
conserved positions means that current approaches are highly
biased toward selecting conserved sites at the expense of causal
variants less constrained by evolutionary history (Fig. 5b).
Among the functionally implicated eSNV alleles, more than
95% are found in non-conserved regions (phastCons score
<0.5), implying as much as 20-fold underestimation of the
number of causal ncSNVs that are not found in evolutionarily
conserved regions.
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Table 2 Performance of six tools on three biological tasks

Method Task 1a Task 2: Positional diagnosisb Task 3: Diagnosis with noisy backgroundc

Adjd UC WC LC Pro 5'U ups int UC WC LC Pro 5'U ups int

CADD o >10 bp ++
+

++ + ++ + ++ ++
+

++ + − + + o +

CATO – >1 kbp + + + + + + + − − − − − − −
DeepSEA o >10 bp ++

+
++
+

+ ++
+

++ ++
+

++
+

++
+

+ o ++ + + +

EIGEN – >100 bp ++ ++ + ++ + ++ ++ + + o o + + o
GWAVA – >50 bp − − − − − − − + + + ++ ++ + −
LINSIGHT – >10 bp ++

+
++ + ++

+
+ ++ ++ ++

+
+ − ++ + + +

Pathogenic variants are defined by location in ultra-conserved (UC), well-conserved (WC), or least-conserved (LC) intervals, or by location in the promoter (pro), 5’UTR (5’U), upstream gene region
(ups) or intron (int)
a– indicates pathogenic scores are not specific to alleles at the same position, o indicates allele-specific scores but with low discriminative power
bsuccess rates are indicated by: − (<50%), o (50–60%), + (60–80%), ++ (80–90%), +++ (>90%)
cnon-pathogenic vs. pathogenic ratios are indicated by: − (<1:1), o (1–2:1), + (2–10:1), ++ (10–20:1), +++ (>20:1)
dAdj refers to adjacency corresponding to the minimum distance between pairs of pathogenic and non-pathogenic variants for which significantly different scores are produced in Task 2
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The most straightforward interpretation of our findings is that
current approaches are not yet sophisticated enough to prioritize
true causal variants. A contributing factor may be that functional
effects are often context-dependent, as seen by the fact that eQTL
are increasingly understood to vary across stimulation condi-
tions56–58. For this reason, we included CATO15, a method that
incorporates cell-type specific epigenetic annotations in its pre-
dictive model, in our evaluations. But CATO does not have
superior performance by our metrics. Newly discovered features,
such as local regulation by lncRNAs or promoters also acting as
enhancers59, continue to suggest that novel features of gene
regulation remain to be uncovered. On the other hand, Kircher
carefully considered interaction effects in their machine-learning
models14, not finding any evidence for combinations of different
types of marks to improve the CADD scoring. To the extent that
closely located variants share conservation and epigenetic scores,
fine resolution of eQTLs to one or two segregating sites may not
be possible by computational criteria alone. Interference between
the effects of multiple functional variants at a locus can even
completely hide the nature of true causal variants for a non-trivial
fraction of analyses60.

A more controversial biological interpretation of the failure
to discriminate pathogenic from non-pathogenic variants in
close vicinity is that the parsimony model, which implicates
only one or a few variants as causal for specific trait differences,
is overly simplistic. On this interpretation, each eQTL (or
GWAS) effect is actually the summation of very mild con-
tributions from multiple variants in the interval. Such sites in
high LD within a region of open chromatin bound by proteins
that assemble an enhancer complex could all jointly contribute
to the statistical signal. It is perhaps for this reason that simply
stating the posterior probabilities for inclusion of a variant in
the candidate list at an interval is more honest than promoting
a single site, in the absence of appropriate experimental dif-
ferentiation of the sites39,61.

Our analysis clearly shows that the confounding of allelic,
positional, and regional effects impedes the ability of current
tools to correctly predict pathogenicity of ncSNVs, and provides
valuable guidance to researchers who use these tools to prioritize
regulatory variants for biological interpretation. We suggest that
future improvements should be directed to deliberately

addressing the reasons for the high correlation of impact scores
for closely linked SNPs, while also considering the impact of the
proportion of false negatives in the candidate list on predictive
accuracy.

Methods
Datasets. Using the 1000 Genomes Project data, we randomly sampled 100,000
polymorphic noncoding positions that harbored minor alleles with a population
frequency of between 5 and 15%. After filtering against the GRASP database62 of
GWAS associations in 2082 studies at association p-value of 0.05, 19,850 sites were
excluded as potentially functional. At each remaining position, the allele with the
highest observed minor allele frequency (MAF) was designated as non-pathogenic.
Next, we checked if the remaining two alleles were reported as polymorphisms in
the Great Ape Genome Project63 and removed 644 positions. Then we searched the
genome alignments64 of 57 non-human placental mammals that collectively span
~2.9 billion years of evolution. Alleles absent in any of these mammals have been
under persistent purifying selection due to deleteriousness and are presumably
pathogenic. If two pathogenic alleles existed at the same position, we randomly
chose one. If no pathogenic allele was found at a position, it was removed from
further consideration. Using these criteria, we compiled the position-matched test
set that consisted of 55,453 positions, each of which harbors a pair of pathogenic
and non-pathogenic ncSNVs.

We also compiled a highly restricted subset of positions (75) in which
pathogenic alleles were sampled only from positions that were completely
conserved across all 58 species analyzed and did not contain any alignment gaps.
This maximized our chances of sampling pathogenic alleles, because completely
conserved positions are rare when species sampling is diverse and evolution is
strictly neutral. Lindblad-Toh et al.65 estimated this probability to be less than 2%
for a set of 29 mammals. In our sequence alignment, the number of species is
double the count in Lindblad-Toh et al.65, so the completely conserved positions
will occur with even lower probability. We estimated this probability by computer
simulations using the 58 mammalian species phylogeny, a subset from the 100
vertebrate species phylogeny in the UCSC database66, and species divergence times
collected from the TimeTree resource67. We generated 100,000 neutral sites for
many different neutral substitution rates (10−8–10−9 per base per year), G+ C
content biases (10–90%), and transition/transversion ratio68 equal to 3.6 in the
Pyvolve simulation library69,70. The fraction of sites with identical base across all
58 species, which would appear to be completely conserved in a sequence
alignment, was determined from the datasets generated. For example, at most 0.6%
of the positions were completely conserved when the mammalian substitution rate
was 2.2 × 10−9 per base per year71 (Supplementary Fig. 12).

We also built two alternative test sets. In the first alternative set, we increased
the upper limit of the population frequencies of the minor alleles to 95%, which
resulted in a dataset containing 47,799 positions with matched pathogenic and
non-pathogenic ncSNVs. In the second alternative set, we reduced the collection of
non-human genomes to include 11 non-human primates, which resulted in a
collection of 79,506 positions with matched pathogenic and non-pathogenic
ncSNVs.
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DAV-vs-CPP comparison. We used pathogenic variants annotated in the HGMD
database (2015 version) as DAVs. To remove potential false positives, we applied
three filters following the guidelines for the interpretation of sequence variants
published by the American College of Medical Genetics and Genomics (ACMG)41.
These guidelines catalogue four types of evidence of pathogenicity and recommend
rules for combining these evidence types to diagnose the likely clinical significance
of sequence variants. Our first filter removed HGMD variants labelled as DM that
indicates some degree of uncertainty, and removed HGMD variants labelled as DP
that indicates disease-associated variants but with no functional evidence (corre-
sponding to the strong evidence PS3 in the guidelines). The second filter removed
HGMD variants located outside known regulatory elements (corresponding to the
moderate evidence PM1). The third filter removed HGMD variants observed in the
1000 Genome Project populations with >1% frequencies (corresponding to the
moderate evidence PM2). We obtained 764 DAVs out of 2037 HGMD variants. As
alternate filters, we further removed HGMD variants found in the gnomAD
database (http://gnomad.broadinstitute.org/) with >1%, >0.1%, >0.01%, and >0%
frequency, which resulted in 732, 648, 578, and 487 variants, respectively. The
complete list of HGMD variants passing these filters are available in Supplementary
Table 3.

Considering that the HGMD database collects DAVs from published studies
showing segregation between cases and controls (corresponding to the strong
evidence PS4), our filtering criteria meet or exceed the requirements to diagnose
pathogenic variants in the ACMG guidelines. In total, we retained 764 HGMD
DAVs as pathogenic ncSNVs. Further characterizing our selected set of DAVs, we
found that 32 had a population frequency greater than 1% in the gnomAD
database, 513 were within 1 kb of a transcription start site (due to our selection
criteria of DAVs in known regulatory elements that are enriched in near-TSS
regions), 20 out of 46 intronic variants were within 1 kb of an exon junction, and
238/174/350 were at ultra-/well-/least-conserved sites, respectively. For each DAV,
we searched within its 50,000-bps flanking region for common population
polymorphisms (CPPs) that had a global MAF greater than 5% in 1000 Genomes
Project. We retrieved 87,811 CPPs and designated them non-pathogenic. Linkage
disequilibrium (LD) blocks were defined by r2 value as released by the 1000
Genomes Project.

We also built two alternative test sets by varying criteria of pathogenic ncSNVs.
In the first alternative test set, we used the ClinVar database21 instead. After
removing coding variants and variants with population frequency >1%, we
obtained 272 ClinVar DAVs as pathogenic. In the second alternative set, we chose
one pathogenic variant per gene. Specifically, we identified the closest gene of each
DAV based on the RefSeq annotations. Seven hundred fifty (98%) of the 764 DAVs
are within10 kbps of 306 RefSeq genes. We randomly chose one DAV in the10-
kbps flanking region of a gene and constructed a gene-balanced test set.

GTEx variants. We retrieved single-tissue eQTL datasets from https://www.
gtexportal.org/home/datasets that contains expression change information
regarding significant SNP-gene associations for 1,922,134 mutations at 1,921,848
unique positions across 44 different tissues. For each of these positions, we
retrieved the phastCons primate conservation scores from the UCSC database
(ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons46way/primates/). We
identified the best functional candidates for analysis by first selecting 1000 SNPs
with the largest effect size (change in gene expression, |β|) that were deemed to
have the best association (annotated as chosen by GTEx, based on permutation
testing probability) with the gene they regulated. This set contained many eQTLs
that strongly affected multiple genes across several tissues, and were thus present as
duplicates. Removing 571 such duplicates provided 429 unique positions that serve
as the strongest candidates of functional activity in the GTEx catalog, i.e., they
confer the largest expression change for one or more genes, across one or more
tissues, with the most confidence. Less stringent criteria for putatively causal
variants provided additional datasets: SNPs with 1000 lowest association p-values
and 1000 largest effect sizes. Removing duplicates from these provided 304 and 552
SNPs in the best p-value and largest effect size datasets, respectively. Some scores
were not available for all variants (see Supplementary Table 4).

Prediction tools. For CADD, we downloaded the full set of impact scores and
annotations, for every possible SNV, from http://cadd.gs.washington.edu/
download, and used the tabix program72 to extract the relevant data. For variant
effect prediction we used the CADD phred scores. CADD scores were available for
all the SNVs. For EIGEN, we downloaded the set of scores for all genomic positions
from https://xioniti01.u.hpc.mssm.edu/v1.1/, and used the tabix program to extract
the relevant positions. For variant effect prediction we used the EIGEN-PC Phred
scores, because they produced the highest AUROC value on the DAV-vs-CPP
dataset among the other three EIGEN scores. EIGEN scores were available for 690
DAVs and 82,825 CPPs. For LINSIGHT, we downloaded the full set of patho-
genicity scores for every possible SNV, from http://compgen.cshl.edu/~yihuang/
tracks/LINSIGHT.bw. LINSIGHT scores were available for 739 DAVs and 87,692
CPPs. For DeepSEA, we queried scores from the online interface at http://
DeepSEA.princeton.edu/job/analysis/create/. DeepSEA scores were available for all
SNVs. For GWAVA, we downloaded the set of impact scores from ftp://ftp.sanger.
ac.uk/pub/resources/software/gwava/v1.0/annotated/gwava_db_csv.tgz for all
known population polymorphisms. For variant effect prediction, we used the score

computed by the region-matched model for tasks 1 and 2, and the score computed
by the unmatched model for task 3 and for eQTL prioritization. For our DAV-vs-
CPP dataset, scores were available for 246 DAVs, and 86,744 of the 87,811 CPPs.
For CATO, we downloaded the scores for all SNPs overlapping DNase
I–hypersensitive sites from http://www.mauranolab.org/CATO/dbSNP142.CATO.
V1.1.txt.gz. For our DAV-vs-CPP dataset, scores were available for 155 DAVs, and
17,804 CPPs.

Calculation of evolutionary rates. We estimated the rate of evolution for each
position by using the Fitch algorithm applied to nucleotide sequence alignments of
57 placental mammalian species from the UCSC Genome Browser73,74. This
produced an absolute substitution rate for each nucleotide position in the unit of
substitution per site per billion years. We also used regional phastCons scores
available from the UCSC browser.

Code availability. All scripts used to extract variants from databases, and to
perform computations, are available from the authors upon request.

Data availability
All datasets and identifiers are available for download from mypeg.info/datasets.
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