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Abstract. Brain metastases (BMs) usually develop in patients 
with non‑small cell lung cancer. In addition to systemic 
therapy, radiation therapy and surgery, anti‑programmed cell 
death‑ligand 1 (PD‑L1) therapy is another promising clinical 
anticancer treatment modality. However, the optimal timing 
and drug‑drug interactions of anti‑PD‑L1 therapy with other 
combined treatments remain to be elucidated. Treatment with 
anti‑PD‑L1 therapy is associated with an increased risk of 
radionecrosis (RN) regardless of tumor histology. The present 
study described a case of RN in a patient with lung adeno‑
carcinoma and with BM who received anti‑PD‑L1 therapy. 
Before anti‑PD‑L1 treatment, the patient received whole brain 
radiotherapy. During durvalumab treatment, the intracranial 
metastases regressed. The progression of intracranial lesions 
9 months later prompted a second‑line of therapy with PD‑L1 
inhibitor durvalumab and stereotactic radiotherapy (SRT). 
Despite stereotactic irradiation, the lesions progressed further, 
leading to surgical resection. On examination, RN was 
detected, but there was no evidence of metastatic lung cancer. 
The aim of the present study was to present the longitudinal 
change in magnetic resonance imaging in RN following 
STR and anti‑PD‑L1 combined therapy. The atypical image 
of RN is conditionally important for making an accurate 
preoperative diagnosis.

Introduction

Brain metastases (BMs) are the most common type of tumor 
in the central nervous system in adults, occurring in ~20% of 
malignant tumors (1). BMs are most common in patients with 
lung cancer compared with other types of cancer and lung 
cancer is responsible for ~50% of all BM cases worldwide, 
which poses a threat to the improvement and effectiveness of 
oncological treatment (2). In addition to traditional methods 
such as chemotherapy, radiation therapy, surgery and molecu‑
larly targeted therapy that have been used in the past, emerging 
immunotherapeutic agents, such as checkpoint inhibitors, are 
also demonstrating promising therapeutic results in the treat‑
ment of lung cancer BMs (3). The development of immune 
checkpoint inhibitor (ICI) therapy, such as anti‑programmed 
cell death‑ligand 1 (PD‑L1) therapy, has been reported to be 
effective in numerous types of cancer, including non‑small 
cell lung cancer and small cell lung cancer (4). In addition, 
ICI therapies have been evaluated in patients receiving 
combination therapy, especially radiotherapy. The results 
obtained from clinical trials provide evidence supporting 
the safety and efficacy of radiotherapy in combination with 
anti‑PD‑1/PD‑L1 treatment, which could be more effective 
than monotherapy (5). Magnetic resonance imaging (MRI) is 
the most commonly used modality to investigate radionecrosis 
(RN) (6). However, the imaging features of RN and tumor 
recurrence overlap considerably, with both entities demon‑
strating a degree of contrast enhancement and perilesional 
edema (7,8). Accordingly, a range of clinical and imaging 
strategies are being developed to evaluate tumor responses and 
to rule out pseudo‑progression or RN. An accurate differential 
diagnosis is required for decision‑making in the management 
of patients.

Case report

A 61‑year‑old female patient with stage IV adenocarcinoma 
of the lung was initially admitted to Suning County People's 
Hospital (Cangzhou, China) with a 6‑month history of a dull 
headache and left upper limb weakness in December 2020. In 
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Suning County People's Hospital, the patient ordered a service 
to perform next‑generation sequencing (NGS) and PD‑L1 
immunohistochemistry (Topgen‑Biopharm). The NGS was 
performed using an OncoDrug‑Seq™ kit (Topgen‑Biopharm) 
for a panel of 33 tumor‑targeting genes and was performed 
on the NextSeq500 system (Illumina, Inc.). The lung cancer 
samples were fixed with 10% formalin at room temperature 
for 24 h and 4‑µm paraffin‑embedded samples were used for 
PD‑L1 immunohistochemistry. Rabbit anti‑human mono‑
clonal antibodies to PD‑L1 (1:50; cat. no. ab205921; Abcam) 
were used. Briefly, sections were dewaxed, dehydrated with a 
series of alcohol (70, 80 and 95%) at room temperature (1 h for 
each alcohol concentration) and the tissues were then placed 
in toluene for 30 min at room temperature for deparaffiniza‑
tion. After neutralization of endogenous peroxidase with 3% 
H2O2 at room temperature for 15 min and microwave antigen 
retrieval (800 W in 0.01 M citrate buffer pH 6), slides were 
preincubated with 5% bovine serum albumin blocking buffer 
(Thermo Fisher Scientific, Inc.) for 1 h at room temperature and 
then incubated overnight with monoclonal antibodies at 4˚C. 
Subsequently, the sections were serially rinsed, incubated with 
Goat anti‑Rabbit IgG H&L (HRP) secondary antibodies (1:200; 
cat. no. ab97051; Abcam) and avidin‑biotinylated peroxidase 
complex for 1 h at 37˚C, and again washed for 10 min with 
PBS at 37˚C. Nuclear counterstaining was performed with 
DAPI (cat. no. C1005; Beyotime Institute of Biotechnology) 
at room temperature for 5 min. The immunohistochemistry 
images were obtained using a light microscope. The results 
of immunohistochemistry indicated PD‑L1 positivity (Fig. 1).

Based on these results, the patient decided to undergo 
further clinical treatment at the Department of Oncology of 
the Affiliated Hospital of Hebei University (Hebei, China). An 
initial computed tomography scan in the Affiliated Hospital 
of Hebei University revealed that the patient presented with a 
space‑occupying lesion in the superior lobe of the right lung, 
with multiple bilateral pulmonary nodules and with masses in 
the mediastinal lymph nodes and liver. Brain MRI revealed a 
space‑occupying lesion in the frontal parietal lobe (Fig. 2A). 
The patient received single‑agent paclitaxel therapy for 2 cycles 
(intravenously; 135 mg/m2, 3 weeks per cycle). On routine reex‑
amination, MRI revealed an enlarged space‑occupying lesion 
(Fig. 2B). The patient was then treated with direct tomotherapy 
(planning target volume, 36 Gy/3 Gy/12 fx). Bevacizumab 
(intravenously, 15 mg/kg) and paclitaxel (intravenously, 
175 mg/m²)‑carboplatin (intravenously, 5 mg) chemotherapy 
was used for 6 cycles (21 days per cycle), which demonstrated 
regression in BM (Fig. 2C). However, new extrapulmonary 
metastases in the pancreas, kidney and ovaries were detected. 
Based on the results of the PD‑L1 immunohistochemistry, the 
PD‑L1 inhibitor, durvalumab (intravenously, 20 mg/kg), and 
systemic chemotherapy (camrelizumab (intravenously, 20 mg) 
plus anlotinib (orally, 12 mg) and gemcitabine (intravenously, 
1,000 mg/m2) for 3 cycles and duvaliumab (intravenously, 
10 mg/kg) plus anlotinib (orally, 12 mg) and gemcitabine (intra‑
venously, 1,000 mg/m2) for 9 cycles (21 days per cycle) were 
administered to the patient (Fig. 2D). However, the progression 
of BM prompted stereotactic radiotherapy (SRT) with 12 Gy 
radiosurgical volume (Fig. 2E). Therapy with a combination 
of anlotinib (orally, 12 mg) and gemcitabine (intravenously, 
1,000 mg/m2) was then administered to the patient for 

11 cycles (21 days per cycle). Brain MRI revealed an abnormal 
signal (no enhancement) and intracranial nodular enlargement 
(Fig. 2F). After 13 cycles of treatment with anlotinib and 
gemcitabine, brain MRI demonstrated an enlarged nodule with 
strong enhancement (Fig. 2G and H). Before SRT, magnetic 
resonance spectroscopy (MRS) was performed. The results 
suggested pseudo‑progression with choline/N‑acetyl‑aspartate 
ratio (Cho/NAA) 0.92, choline/creatine ratio (Cho/Cr) 1.95 and 
N‑acetyl‑aspartate/creatine ratio (NAA/Cr) 2.12. In the contra‑
lateral normal brain tissue, the metabolite ratios of Cho/NAA 
Cho/Cr and NAA/Cr were 0.672, 1.08 and 1.16, respectively. 
Three‑dimensional arterial spin labeling (3DASL) of the brain 
revealed low perfusion in the intracranial nodule (Fig. 3A‑C). 
Before the surgical operation, the patients had another MRS 
scan and the results suggested RN with Cho/NAA 1.54, 
Cho/Cr 1.79 and NAA/Cr 1.16. In the contralateral normal 
brain tissue, the metabolite ratios of Cho/NAA Cho/Cr and 
NAA/Cr were 0.537, 0.904 and 1.68, respectively. The 3DASL 
of the brain also revealed low perfusion in the intracranial 
nodule (Fig. 3D‑F). The patient decided to undergo surgical 
treatment at the Department of Neurosurgery of the Affiliated 
Hospital of Hebei University. The progressive BM was 
surgically removed and subjected to neuropathological exami‑
nation. The brain tumor tissue was fixed with 10% buffered 
formalin at 37˚C for 8‑10 min. Subsequently, sections (5 µm) 
were cut from paraffin blocks and stained with hematoxylin 
and eosin at room temperature for 5 min (cat. no. C0105M; 
Beyotime Institute of Biotechnology), and DAPI for histo‑
pathological examination under a light microscope (Leica 
DM4000 M; Leica Microsystems GmbH). Histopathological 
analysis revealed RN with no evidence of metastatic lung 
cancer (Fig. 4).

Discussion

The present case demonstrated the side effects of the concur‑
rent use of radiotherapy and anti‑PD‑L1 inhibitors in patients 
with BM. The principle of anti‑programmed cell death protein 
1 (PD‑1)/PD‑L1 therapy is to block the negative regulatory 
process of the PD‑1/PD‑L1 signaling pathway on T‑cell acti‑
vation and proliferation by inhibiting the complex formed by 
PD‑1 and its ligand, PD‑L1. Thus, T cells gradually recover 
immune activity by reactivation of the recognition and necrotic 
function of tumor cells (9). PD‑1/PD‑L1 inhibitors combined 
with radiotherapy mediate the antitumor effect in the dynamic 
interaction between effector cells and regulatory cells, such 
as CD8‑positive T cells and tumor‑infiltrating Tregs (10). In a 
previous study, melanoma tumors were irradiated with 10 Gy 
radiation; after tumor radiation, two important co‑stimulatory 
molecules, CD86 and CD70, were revealed to be substantially 
upregulated on dendritic cells, which serve an important role 
in T‑cell‑mediated immune responses (11). Radiotherapy can 
regulate the expression of immune checkpoints, affect the 
expression levels of cytokines and promote the antitumor 
effects of immune drugs. Evidence has shown that several 
inflammatory cytokines, including tumor necrosis factor α, 
interleukin 1 and interleukin 2 can be upregulated by radiation 
therapy, which may be caused by an acute‑phase inflamma‑
tory response (12). Conversely, radiation therapy can lead to 
substantial increases in the immunosuppressive cytokine 
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transforming growth factor β in in response to cell death 
and stress, which have important roles in dampening radia‑
tion‑induced immune responses (13). Inflammatory cytokines 

released from the irradiated tissue and the upregulation of 
checkpoint ligands can prevent autoimmune responses against 
healthy and malignant cells. In one study, radiation‑induced 

Figure 1. Immunological exanimation of PD‑L1 of lung tissue. (A) A computed tomography image of the lungs of the patient. Arrow indicates the tumor. 
(B) PD‑L1 immunological staining in lung cancer tissue. Scale bar, 200 µm. PD‑L1, programmed cell death ligand 1.

Figure 2. Timeline of the treatments and longitudinal enhanced MRI of intracranial lesions. (A) Enhanced MRI of right frontal metastasis at initial diagnosis. 
(B) Before receiving whole brain radiosurgery, the lesion was treated with paclitaxel. (C) Subsequently, the patient began bevacizumab and paclitaxel‑carbo‑
platin chemotherapy for 3 cycles and durvalumab treatment for 1 cycle. (D) Enhanced MRI of right frontal metastasis following 3 cycles of treatment with 
camrelizumab, anlotinib and gemcitabine. Enhanced MRI of right frontal metastasis following (E) nine, (F) 11 and (G) 13 cycles of treatment with duvaliumab, 
anlotinib and gemcitabine. (H) Enhanced MRI of right frontal metastasis before surgery. MRI, magnetic resonance imaging; WBR, whole brain radiosurgery; 
SRT, stereotactic radiotherapy; pre‑OP, pre‑operation.
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upregulation of PD‑L1 on the surface of tumor cells was shown 
to be dependent on interferon γ derived from CD8 T cells (14). 
In contrast, PD‑1/PD‑L1 inhibitors can promote radiothera‑
peutic effects by inhibition of negative immune‑regulatory 
cells or molecules (15‑17). For example, a previous study have 
showed that PD‑1/PD‑L1 monoclonal antibody could restore 
T‑cell activity, reduce Treg numbers and increase CD8+T/Treg 
ratio, thus enhancing tumor cell death (18). A case‑control trial 
with 93 patients by Trommer et al (19) suggested that the use 
of PD‑1 inhibitors combined with radiotherapy had benefits 
and could improve overall survival rates. However, with the 
wide application of combination therapy in clinical practice, an 
increasing number of studies have reported adverse reactions 
after the use of PD‑1/PD‑L1 inhibitors (20‑22). A previous 
study indicated that anti‑PD‑1 therapy could increase the risk 
of RN when combined with radiotherapy (23). The present 
case highlights the difficulty in differentiating between RN 
and pseudo‑progression, following sequential treatment with 
PD‑1/PD‑L1 inhibitors and radiotherapy.

In the present case, the patient also received bevacizumab. 
Bevacizumab, a recombinant human monoclonal antibody, 
binds vascular endothelial growth factor (VEGF) and prevents 
VEGF from binding its receptors (VEGFR‑1 and kinase 
insert domain receptor) on the endothelial cell surface, which 
serves a role in pruning blood vessels, regulating vascular 

permeability, reducing brain edema caused by brain necrosis 
and treating brain necrosis (24). In 2007, Gonzalez et al (25) 
first reported using bevacizumab to treat radiation brain 
necrosis. At present, clinical studies have proven the clinical 
efficacy of bevacizumab. For example, Dashti et al (26) 
reported that a single low‑dose targeted bevacizumab infu‑
sion resulted in durable clinical and imaging improvements 
in 80% of patients. Another randomized double‑blind study 
with 14 patients also supported consideration of this treatment 
option for patients with RN (27). At present, the majority of 
patients respond well to bevacizumab. However, the effect 
of bevacizumab on RN could not be ruled out in the present 
case. Jeyaretna et al (28) reported an exacerbation of cerebral 
RN by bevacizumab, which could lead to the hypothesis that 
initial treatment with bevacizumab might result in a reduction 
in cerebral edema. However, prolonged treatment might result 
in the over‑pruning of at‑risk blood vessels within the radiation 
field. The underlying mechanisms of bevacizumab‑induced 
enlargement of RN remains unclear. At present, the duration, 
optimal dose and dosing interval of bevacizumab, require 
further evaluation.

A previous study has reported that the incidence of 
radiation‑induced brain necrosis in patients with melanoma 
brain metastasis treated with SRT combined with PD‑L1 
immunotherapy was increased in a retrospective analysis of 

Figure 3. Preoperative MRS and 3DASL images of brain metastasis. (A) T2‑MRI of intracranial nodules using Fig. 2G as a reference. (B) An MRS image of 
the intracranial nodules using Fig. 2G as a reference. (C) An 3DASL image of the intracranial nodules using Fig. 2G as a reference. (D) T2‑MRI of intracranial 
nodules using Fig. 2H as a reference. (E) An MRS image of the intracranial nodules using Fig. 2H as a reference. (F) An 3DASL image of the intracranial 
nodules using Fig. 2H as a reference. (C and F) The color scale shows the expression level of metabolites. red represents high expression and blue represents 
low expression. MRS, magnetic resonance spectroscopy; 3DASL, three‑dimensional arterial spin labeling; T2‑MRI, transverse relaxation time‑magnetic 
resonance imaging.
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patients with melanoma treated with SRT (29). The study 
by Pires da Silva et al (30) followed‑up 135 patients with 
melanoma that received radiotherapy combined with PD‑L1 
immunotherapy for an average of 23.6 months and revealed 
reported the probability of RN was 17% along with a cumulative 
incidence rate of 18% in 2 years. Furthermore, it was proposed 
that the time of occurrence of RN‑associated symptoms was 
similar to the time of occurrence of radiological abnormali‑
ties (30). It has been previously reported that the rate of RN was 
increased with the addition of concurrent systemic therapies to 
SRT and whole brain radiotherapy (WBRT) (Table I) (30‑35). 
A corresponding increase in RN was not reported in patients 
treated with concurrent therapies and SRT alone. The present 
case is consistent with the findings of a previous study (30), 
suggesting that anti‑PD‑1 therapy may increase the risk of 
RN when combined with radiotherapy. In the present case, 
the patient received the PD‑L1 inhibitor duvaliumab and SRT. 
Approximately 3 months following the combined therapy, the 
brain MRI indicated an abnormal signal (no enhancement), and 
~7 months later, the intracranial nodule was enlarged. MRS 
suggested RN. The 3DASL of the brain also indicated low 
perfusion in the intracranial nodule. Pathological examination 
also indicated RN. Numerous previous studies have reported 

that SRT combined with immunotherapy increased the risk of 
radiation necrosis (31,36,37). Therefore, the concern regarding 
the potential risk of RN following SRT combined with PD‑L1 
immunotherapy has increased. Numerous previous studies 
have reported that PD‑L1 immunotherapy combined with 
brain radiotherapy is effective and feasible. However, due to 
the potential of adverse reactions, the sequence, dosage and 
volume should be strictly controlled during the combined 
treatment, and imaging should be closely monitored to reduce 
the occurrence of adverse reactions such as RN. In the present 
case, it was demonstrated that the size of the intracranial 
nodules gradually decreased. After SRT, brain MRI indicated 
an abnormal signal (without enhancement), and that the intra‑
cranial nodule was enlarged. At this stage, it was not easy to 
differentially diagnose RN from tumor recurrence because of 
their shared clinical symptoms such as symptoms of increased 
intracranial pressure and/or seizures, and conventional 
imaging and pathological biopsy are still the best methods 
for differential diagnosis. However, it is difficult to perform 
surgery in the early clinical stage. Therefore, dynamic MRI 
sequence monitoring is often used to confirm the diagnosis in 
the clinic. In the early stages, traditional imaging of RN and 
tumor progression may demonstrate contrast enhancement on 
MRI, and large edema zones are usually observed around the 
lesions. In the long‑term follow‑up, RN indicated a decrease in 
tumor volume, while tumor progression indicated an increase in 
tumor volume (38‑40). In these patients, the T2‑weighted image 
margin ‘mismatched’ the contrast‑enhanced T1‑weighted 
image margin. When the lesion appears indistinct on T2, the 
histology usually indicated necrosis and contrast enhancement 
when the contrast‑enhanced rim on the T1‑weighted image 
is associated with a distinct border on T2, and the pathology 
was usually a recurrent tumor (39). MRI findings of RN are 
often described as ‘Swiss cheese’ or ‘soap bubble’ lesions (40). 
At present, RN, tumor pseudo‑progression and tumor recur‑
rence have different treatment strategies. Pseudo‑progression 
is defined as a radiographic increase in enhancement 
and/or edema on MRI without tumor progression. This 
transient increase in enhancement and/or edema exhibits spon‑
taneous recovery, which usually occurs within a few weeks 
or months after the onset of pseudo‑progression (41). Tumor 
recurrence may require surgical intervention. For RN, therapy 
involves corticosteroids, bevacizumab or surgical interven‑
tion (42). It is difficult to distinguish between RN, tumor 
pseudo‑progression and tumor recurrence using conventional 
structural MRI at an early stage. Currently, regional cerebral 
blood volume and amino acid positron emission computed 
tomography (PET) are used to differentiate the diagnosis 
of these conditions. The most common imaging marker of 
RN in conventional MRI is the ’Swiss cheese’ pattern with 
diffuse enhancements at the margins between the cortex and 
white matter (43). In the present case, these features were not 
apparent on enhanced MRI. Therefore, it was suspected that 
the local tumor had recurred. However, bevacizumab treat‑
ment might influence the results of MRS. Pseudo‑progression 
usually occurs 2‑5 months after radiotherapy, is self‑limiting 
and curable. Post‑radiation damage occurs after a delay of 
>6 months from the time of radiation and consists principally 
of necrosis caused by blood‑brain barrier (BBB) disruption 
and radiation‑induced demyelination leading to white matter 

Figure 4. Histological analysis of the resected lesion. H&E staining of the 
specimens indicated necrosis (red arrow), hypercellularity with scattered 
foamy macrophages (green arrow), reactive astrocytes (black arrow) and rare 
atypical cells (blue arrow). Upper panel: Scale bar, 200 µm; lower panel: 
4x magnification.
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injury (44). RN involves a space‑occupying necrotic lesion 
with a mass effect and neurological dysfunction (45). It is 
not a self‑limiting disease and therefore requires specialized 
treatment (46).

Generally, MRS could not be used to obtain an affirma‑
tive conclusion to diagnose ‘pseudo‑progression’ or ‘RN’. 
One of the main challenges for neurosurgeons or treating 
clinicians is to make a differential diagnosis of either tumor 
recurrence, RN or pseudo‑progression in clinical settings. 
Even with improving neuroimaging methods or different 
diagnostic imaging modalities, such as diffusion‑weighted 
imaging/diffusion tensor imaging, MRS and PET/single 
photon emission computed tomography, it is still chal‑
lenging (47). MRS is a metabolic imaging technique that could 
provide value in differentiating pseudo‑progression from 
recurrent tumors by identifying specific metabolites within 
the tumor that are present during active tumor growth (48). 
Previous studies have reported increased total choline levels 
in recurrent disease and reduced choline levels in tumors 
which exhibited pseudo‑progression (49,50). Tumor recur‑
rence has been reported to show higher Cho/Cr and Cho/NAA 
values compared with those of RN (51,52). In the present case, 
bevacizumab treatment might have influenced the results of 
MRS. Previous studies have reported that bevacizumab treat‑
ment could impact tumor energy and membrane metabolism, 
which resulted in increased intracellular pH and a decrease 
in the ratio of phosphatidylcholine to glycerophosphocholine 

or Cho/NAA values (53,54). However, in the present study, 
this finding was confirmed using histological examination. 
In the present case, there was a longitudinal change in the 
MRI of RN following SRT and anti‑PD‑L1 combined therapy. 
Dynamic changes in RN on enhanced MRI was demonstrated. 
By employing longitudinal MRI, the present case revealed 
atypical images of RN. These treatment‑associated imaging 
changes were necessary for clinicians to make an accurate 
preoperative diagnosis in this case.

However, the exact molecular mechanism of SRT‑induced 
RN is still unclear and has not been fully elucidated. Evidence 
has indicated that high‑dose SRT can damage the vascular 
endothelium by destroying the BBB on a large scale, leading 
to intracranial vasogenic edema and then further to ischemia 
of the surrounding brain tissue (55). Furthermore, this leads 
to an increase in the levels of hypoxia inducible factor‑1A 
and VEGF and finally leads to infarction and necrosis of 
the brain parenchyma. A previous study indicated that RN 
is associated with abnormalities in vascular structures, 
including telangiectasia, hyaline thickening of vessels and 
fibrinoid necrosis with intravascular thromboses (56). The 
expression of VEGF promotes these abnormalities in newly 
formed vascular structures, increases the brittleness and 
permeability of vascular structures, and increases edema 
around the lesion (57). Certain scholars have proposed 
that radiation damage occurs through the combination of 
demyelination and vascular abnormalities (35,58). In the 

Table I. Reported rates of radiation necrosis with anti‑PD‑1 therapy combined with radiation therapy.

    Radiation
    necrosis 
First author, year Histology Cases, n Systemic treatment rate (%) (Refs.)

Pires da Silva et al, Melanoma 137 Anti‑CTLA4, anti‑PD‑1 27 (30)
2019   and all patients received
   immunotherapy combined
   with radiotherapy
Kim et al, 2017 Melanoma 135 Radiotherapy and anti‑PD‑1 17 (31)
   therapy
Colaco et al, 2016 Melanoma, 42/180 Anti‑CTLA4, anti‑PD‑1 37.5 with (32)
 lung, breast, received and all patients received immunotherapy
 renal and immunotherapy immunotherapy combined only
 colorectal  with radiotherapy
 cancer
Martin et al, 2018 Melanoma and 115 Immune checkpoint 20 (33)
 lung cancer  inhibitors therapy combined
   with radiotherapy
Weingarten et al, Melanoma, 57 Immunotherapy combined 7 (34)
2019 renal‑cell  with radiotherapy
 carcinoma,
 lung and
 breast cancer
Andring et al, 2023 Melanoma and 63 Anti‑CTLA4, anti‑PD‑1 22 (35)
 lung cancer  and radiotherapy

CTLA4, cytotoxic T‑lymphocyte‑associated protein 4; PD‑1, programmed cell death protein 1.



ONCOLOGY LETTERS  26:  361,  2023 7

penumbra around the necrotic nucleus, astrocytes, microglia 
and oligodendrocytes produce factors (e.g. VEGF) that 
promote cytokine release and increase the permeability of 
the BBB (37). However, the mechanisms by which the combi‑
nation of anti‑PD‑L1 and radiotherapy promotes RN are still 
unclear. The main limitation of the present case report is 
that the patient received multiple different agents. As well 
as radiotherapy and anti‑PD‑1 therapy, the patient also 
received chemotherapy; therefore, the role of chemotherapy 
in the formation of RN could not be ruled out. The effect 
of bevacizumab on RN is uncertain. In the present case, it 
was hypothesized that neurological symptoms and radio‑
logically suspected radioactive brain necrosis and tumor 
progression may occur after 7 months of treatment with a 
PD‑L1 inhibitor and 2 months of treatment with SRT. The 
side effects of WBRT in the early stage are uncertain, and, to 
the best of our knowledge, there is not any literature which 
clearly reports that the simultaneous application of anlotinib 
and gemcitabine can increase the probability of radioactive 
brain necrosis.

In conclusion, the present study reported a case of RN 
following sequential PD‑1/PD‑L1‑directed immunotherapy, 
WBRT and SRT. RN mimicked cancer progression with 
enlarged intracranial nodules. For the first time, the present 
study demonstrated the dynamic changes in RN on enhanced 
MRI.
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