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� Two kinds of new fractional-order
autonomous circuits are proposed.

� The fractional-order autonomous
circuits are based on fractional-order
elements with order larger than one.

� The operating frequency or resonant
frequency of the circuits can be
changed by adjusting the resistance.

� The current and voltage of the circuits
can be controlled by adjusting the
orders of fractional-order elements.

� The available simulations verify the
effectiveness of the theoretical
analysis.
g r a p h i c a l a b s t r a c t

Two kinds of fractional-order autonomous circuits are constructed by using fractional-order capacitor
and fractional-order inductor respectively. The orders of the adopted fractional-order elements must
be greater than one. The corresponding circuit simulations were developed and verified the proposed
fractional-order autonomous circuits.
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Fractional-order circuit is a kind of circuit which contains fractional-order elements. It has been proved
that the fractional-order circuit has some characteristics which are hard to be achieved by integer-order
circuits, such as higher degree of freedom in circuit design. For integer-order circuits, there are not only
non-autonomous circuits, but also autonomous circuits. Since there are many applications of
integral-order autonomous circuits in real world, it is also necessary to explore fractional-order
autonomous circuits. However, few research focuses on fractional-order autonomous circuits.
Therefore, this paper proposes two kinds of fractional-order autonomous circuits based on fractional-
order elements with order larger than one. The corresponding mathematical models are also established
based on fractional calculus and their characteristics are analyzed based on circuit theory. Finally, circuit
simulation are performed to verify the correctness of theoretical analysis.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Recent years have witnessed a continuous progress of
fractional-order calculus, which can be applied rheology,
electrochemistry, mechanics, bioengineering, circuit systems
and other fields [1–5]. Fractional-order calculus is defined as the
extension of traditional integer-order calculus to arbitrary
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non-integer-order calculus. The initial application of fractional-
order calculus in circuit systems is to accurately describe the mod-
els of capacitors, because there is no ideal integer-order capacitor
[6]. Since the orders of most capacitors are normally close to 1,
they are often treated as 1 with neglecting their fractional-order
characteristics. However, some capacitors and inductors are found
to have strong fractional-order characteristics, for example, the
order of supercapacitors and relay coils are far less than one
[7,8]. These elements with fractional-order characteristics are gen-
erally called fractional-order elements, mainly including
fractional-order capacitor (FOC) and fractional-order inductor
(FOI). Assuming that iC(t) and vC(t) are the current and voltage of
FOC respectively, then the model that involves both characteristics
can be described by the following relationship, given in [9]

iCðtÞ ¼ Ca
da

dta
vC tð Þ ð1Þ

where a and Ca are the order and capacitance of FOC respectively
and da/dta is the fractional-order derivative operator. For FOC, its
current leads the voltage 0.5pa degree, so the order a is generally
0 < a < 2. This is because if the order is greater than 2, the degree
of current lead voltage will be more than 180�, at this time, the ele-
ment would become inductive and no longer capacitive. Similarly,
assuming that iL(t) and vL(t) are the current and voltage of FOI
respectively, then the model that involves the characteristics can
be described by the following relationship, given in [9]

vLðtÞ ¼ Lb
db

dtb
iL tð Þ ð2Þ

where b and Lb are the order and inductance of FOI respectively, and
0 < b < 2. From (1) and (2), the fractional order element has one
more parameter than the integer-order element. This extra param-
eter makes fractional-order elements have different properties from
integer-order elements. For example, fractional-order elements
possess both real and imaginary impedance part, while an ideal
capacitor or inductor has only an imaginary part [10]. Although
fractional-order elements have not been commercialized, various
FOCs and FOIs have been fabricated in the laboratory [11–19], pav-
ing the way for the application of fractional-order elements.

Fractional-order elements can be used to construct a variety of
fractional-order circuits such as fractional-order DC-DC converter,
fractional-order impedance network, fractional-order RLC resonant
circuit, wireless power transfer system, fractional-order PID con-
troller and so on [20–31]. In [20], the FOIs are used in DC-DC con-
verters, and the result shows that the output voltage gain can be
adjusted by changing the order of the FOI. In fractional-order impe-
dance matching networks, only a single FOI or FOC match any
inductive or capacitive impedance, so extra resistance does not
needed [24]. Reference [26] presents a fractional-order RLC reso-
nant circuit, which demonstrates that the resonant frequency can
be controlled not only by inductance and capacitance but also by
the fractional-order a and b. FOC can also be used to realize a
fractional-order wireless power transfer circuit, whose output
characteristic is determined by the order of FOC, and when the
order is constant, constant current output of the circuit can be real-
ized, while integer-order circuits is difficult to achieve [29,30]. In
[31], using simple analog circuits can realize a fractional-order
PID controller, which has more control freedom than the integer-
order PID controller. Therefore, the fractional-order circuits and
have shown more design flexibility and beneficial performance
than the integer-order circuit.

The above fractional-order circuits are all non-autonomous. Just
like the integer-order circuits have non-autonomous circuits and
autonomous circuits, the fractional-order circuits also have non-
autonomous circuits and autonomous circuits. The integer-order
autonomous circuits have been proved to play an important role
in signal processing, aerospace, chaotic secure communications
and other fields [32,33]. At the same time, although fractional-
order non-autonomous circuits have demonstrated more charac-
teristics than integer-order non-autonomous circuits. However,
there are few researches on fractional-order autonomous circuits,
as the work done by Ana Dalia Pano-Azucena in [34]. Therefore,
it is of great significance to study fractional-order autonomous
circuits.

In [35], the characteristics of fractional-order autonomous sys-
tem is analyzed, but only stays at the mathematical level. In [36], a
fractional-order autonomous wireless power transfer system con-
structed by FOC is proposed for the first time, and its experiment
demonstrates that fractional-order autonomous system has better
anti-interference performance than integer-order system. How-
ever, reference [36] mainly analyzes the energy transfer character-
istics based on coupled-mode theory, and lacks the analysis of the
basic circuit characteristics of a single fractional-order autono-
mous circuit.

This paper focuses on the topologies and properties of
fractional-order autonomous circuits and is organized as follows.
The characteristics of fractional-order elements are introduced in
Section2. The structures and mathematical models of the proposed
fractional-order autonomous circuits are described in Section 3.
The circuit characteristics are analyzed in Section 4. Circuit simula-
tions are demonstrated in Section 5. Final conclusions are offered
in Section 6.

Fractional-order elements with order bigger than one

By processing Laplace transformation of (1) and (2) respectively,
the impedances of FOI and FOC can be derived as ZC(s) = 1/(saCa)
and ZL(s) = sbLb, where s is the Laplace operator. Let s = jx, the impe-
dance expressions can be respectively expressed as

ZC ¼ 1
jxð ÞaCa

ð3Þ

ZL ¼ jxð ÞbLb ð4Þ
where x is the operating angle frequency of the fractional-order
elements. According to Euler formula, we have ej0.5p = cos(0.5p) +
jsin(0.5p) = j. Then the following equation can be obtained.

ja ¼ ej0:5pa ¼ cos 0:5pað Þ þ jsin 0:5pað Þ ð5Þ
By substituting (5) into (3), the impedance of FOC can be

described as

ZC ¼ 1
xaCa

cos 0:5pað Þ � j
1

xaCa
sin 0:5pað Þ ð6Þ

Similarly, the impedance of FOI can be derived as

ZL ¼ xbLbcos 0:5pbð Þ þ jxbLbsin 0:5pbð Þ ð7Þ
From (6) and (7), the real part of the FOC and FOI impedance can

be described as

RCeq ¼ 1
xaCa

cos 0:5pað Þ ð8Þ

RLeq ¼ xbLbcos 0:5pbð Þ ð9Þ

From (8) and (9), when a > 1 and b > 1, RCeq < 0 and RLeq < 0, so
such a FOC or FOI has the characteristic of negative resistor.

Assuming that the voltage of FOC is vC(t) = VCmsin(xt), so the
stead state current of FOC can be derived as

iC tð Þ ¼ xaCaVCmsin xt þ 0:5pað Þ ð10Þ
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Therefore, the instantaneous power of FOC can be acquired as

pCaðtÞ ¼ vC tð ÞiC tð Þ

¼ xaCaV
2
Cm

2
cos 0:5pað Þ 1� cos 2xtð Þ½ �

þxaCaV
2
Cm

2
sin 0:5pað Þsin 2xtð Þ ð11Þ

Then, the average power of fractional capacitor in a sinusoidal
period Ts is

PCa ¼ 1
TS

Z TS

0
pCaðtÞdt ¼

xaCaV
2
Cm

2
cosð0:5paÞ ð12Þ

where TS = 2p/x. From (12), when a < 1, PCa > 0 which means that
the FOC consumes power. However, when a > 1, PCa < 0 which
means that the FOC supply power. Similarly, FOI with b > 1 also
can supply power. Therefore, fractional-order element with order
larger than one is an active element. In fact, this conclusion is also
consistent with the existing experiments, because the existing
fractional-order elements with order greater than one in the labora-
tory are all also constructed by active methods [17,18].
Proposed factional-order autonomous circuit and model

Circuit topology

An negative resistor can be used to construct an integer-order
autonomous oscillation circuit together with integral-order induc-
tor and capacitor [37]. Since fractional-order element of order
greater than one has a part of negative resistance, it can also be
applied to realize autonomous circuits. In this paper, two types
of fractional-order autonomous circuits are proposed as shown in
Fig. 1.

The first type is FOC-based fractional-order autonomous circuit,
which is composed of a FOC, an integer-order inductor and a resis-
tor in series, as shown in Fig. 1a. The second is FOI-based
fractional-order autonomous circuit, which is composed of a FOI,
an integer-order capacitor and a resistor as shown in Fig. 1b. By
using the negative resistance characteristic of order greater than
1, the fractional-order autonomous circuit can be realized without
additional single negative resistance, while the traditional integer-
order autonomous circuit needs a single negative resistance to
excite the circuit and continuously provide the required energy.
For the fractional-order elements with order less than 1, they have
only the characteristic of positive resistance but no negative resis-
tance. Therefore, the autonomous circuit proposed in this paper
can only be constructed by using fractional-order elements with
order larger than 1.
Fig. 1. The proposed fractional-order autonom
According to Fig. 1, the total impedances of the FOC-based cir-
cuit and the FOI-based circuit can be respectively described as

ZTFOC ¼ Rþ 1
xaCa

cos 0:5pað Þ � j
1

xaCa
sin 0:5pað Þ þ jxL1 ð13Þ

ZT FOI ¼ RþxbLbcos 0:5pbð Þ þ jxbLbsin 0:5pbð Þ � j
1

xC1
ð14Þ

When the imaginary part of the circuit impedance is zero, the
circuits resonate. Therefore, using (13) and (14), the resonant fre-
quency xR_FOC of FOC-based circuit can be derived as

xR FOC ¼ sin 0:5pað Þ
L1Ca

� � 1
aþ1

ð15Þ

and the resonant frequency xR_FOI of FOI-based circuit is

xR FOI ¼ 1
LbC1sin 0:5pbð Þ

� � 1
bþ1

ð16Þ

As can be observed from (15) and (16), the resonant frequencies
of fractional-order circuits depend not only on the inductance and
capacitance but also on the order.

Mathematical model

For the fractional-order autonomous circuit based on FOC as
shown in Fig. 1(a), the following voltage equations can be acquired
based on KVL.

0 ¼ vCa þ RiC þ vL1 ð17Þ
By substituting vL1 = L1diC/dt and (1) into (17), the model of

Fig. 1a can be deduced as

0 ¼ L1Ca
daþ1

dtaþ1 vCa þ RCa
da

dta
vCa þ vCa ð18Þ

From (18), it can be observed that the circuit of Fig. 1b is an
autonomous circuit

For the fractional-order autonomous circuit based on FOI as
shown in Fig. 1(b), its voltage equations can be acquired as

0 ¼ vC1 þ RiL þ vLb ð19Þ
By substituting iL = C1dvC1/dt and (2) into (19), the model of

Fig. 1a can be derived as

0 ¼ LbC1
dbþ1

dtbþ1 vC1 þ RC1
d
dt
vC1 þ vC1 ð20Þ

From (20), it also can be observed that the circuit of Fig. 1b is an
autonomous circuit.
ous circuits based on (a) FOC and (b) FOI.



Fig. 2. The operating frequency as a function of order (a) FOC- based fractional-order autonomous circuits (b) FOI- based fractional-order autonomous circuits.
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Characteristics analysis

Unlike the non-autonomous circuit that is influenced by the
external power supply, the autonomous circuit is a free oscillation
circuit. For example, the operating frequency of an non-
autonomous circuit is determined by the external power supply,
while the operating frequency of an autonomous circuit is deter-
mined by the circuit parameters. Moreover, for an integer-order
autonomous circuit, the value of the negative resistance needs to
be able to change online, which depends on the circuit parameters
[32]. In an fractional-order autonomous circuit, in analogy with
integer-order autonomous circuit, the fractional-order elements
have fixed order, but should allow capacitance or inductance to
change online. The capacitance or inductance is also determined
by other circuit parameters. In addition, since the energy of the
fractional-order autonomous circuits come from FOC or FOI, the
current and voltage of the circuits are decided by the power capac-
ity of fractional-order element and circuit parameters. Therefore,
this section mainly analyzes the effect of circuit parameters on cir-
cuit characteristics, including operating frequency, values of
fractional-order element, voltage and current. In addition, the sta-
bility of the proposed autonomous circuits is also discussed in this
section.

Operating frequency

Assuming that vCa(0) = vC1(0) = 0, the Laplace transformation of
(18) and (20) can be respectively obtained as

0 ¼ saþ1L1Ca þ saRCa þ 1
� �

VCa sð Þ ð21Þ

0 ¼ sbþ1LbC1 þ sRC1 þ 1
� �

VC1 sð Þ ð22Þ
Let s = jx, we have

0 ¼ jxð Þaþ1L1Ca þ jxð ÞaRCa þ 1 ð23Þ

0 ¼ jxð Þbþ1LbC1 þ jxRC1 þ 1 ð24Þ
Using (5) and separating the real and imaginary part of (23) and

(24), we can obtain

xaþ1L1Cacos 0:5pað Þ þxaRCasin 0:5pað Þ ¼ 0
1�xaþ1L1Casin 0:5pað Þ þxaRCacos 0:5pað Þ ¼ 0

(
ð25Þ

and
xbþ1LbC1cos 0:5pbð Þ þxRC1 ¼ 0
1�xbþ1LbC1sin 0:5pbð Þ ¼ 0

(
ð26Þ

Hence, from (25), the operating frequency fO_FOC of the FOC-
based circuit can be derived as

fO FOC ¼ � R
2pL1

tg 0:5pað Þ ð27Þ

From (26), the operating frequency fO_FOI of the FOI-based cir-
cuit is deduced as

fO FOI ¼
�1

2pRC1
ctg 0:5pbð Þ ð28Þ

According to (27) and (28), the operating frequencies of the
fractional-order autonomous circuits are determined not only by
integer-order elements but also by orders of FOC or FOI. Fig. 2
shows the curves of the operating frequencies with different
orders.

As can be seen from Fig. 2(a), the operating frequency of FOC-
based autonomous circuit decreases with increase order a, while
from Fig. 2(b), the operating frequency of FOI-based autonomous
circuit increases with increase order b.

Solutions of fractional-order elements

When the fractional-order autonomous circuits operate at
steady-state, the capacitance of FOC and the inductance of FOI
can be respectively derived as follow equations by solving (25)
and (26).

Ca ¼ �1
R

� R
L1

tg 0:5pað Þ
� ��a

cos 0:5pað Þ ð29Þ

Lb ¼ 1
C1sin 0:5pbð Þ

�1
RC1

ctg 0:5pbð Þ
� �� bþ1ð Þ

ð30Þ

Fig. 3 shows the curves of the Ca and Lb with different orders. As
can be observed from Fig. 3(a), the capacitance of FOC is not mono-
tonic with increase order a, while from Fig. 3(b), the inductance of
FOI-based autonomous circuit decreases with increase order b.

In addition, substituting (29) into (15) and substituting (30) into
(16), the resonant angle frequencies of the FOC-based circuit and
FOI-based circuit can be rewritten as follows.

xR FOC ¼ � R
L1

tg 0:5pað Þ ð31Þ



Fig. 3. (a) The capacitance of FOC as a function of order (b) The inductance of FOI as a function of order.
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xR FOI ¼ �1
RC1

ctg 0:5pbð Þ ð32Þ

By comparing (27) and (31), and by comparing (28) and (32), it
can be seen that the resonant frequency of fractional order auton-
omous circuit is consistent with the operating frequency. More-
over, from (31) and (32), the resonant frequency of fractional-
order autonomous circuit can be adjusted by changing the resis-
tance R.
Fig. 4. The RMS values of current and voltage of (a) FOC and (b) FOI as a function of
Current and voltage

The current of fractional-order autonomous circuit depends on
the active power released by fractional-order elements.
Assume that the apparent power of fractional-order elements is S
and a = b = Υ, so the released active power of FOC or FOI is
PFOC = PFOI = �Scos(0.5pΥ). Therefore, the current of the
fractional-order autonomous circuits can be derived as
order. The time-domain waveform of current and voltage of (c) FOC and (d) FOI.
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IC ¼ IL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� Scos 0:5pcð Þ

R

r
ð33Þ

where IC is the RMS value of FOC-based fractional-order autono-
mous circuit and IL is the RMS value of FOI-based fractional-order
autonomous circuit. From (33), the current of fractional-order
autonomous circuit is only related to the apparent power, the order
and the resistance, but not to the inductance or capacitance and
frequency.

As can be seen from Fig. 1(a), the voltage of FOC is equal to the
voltage of the series branch of L1 and R, so the RMS value of FOC
voltage VCa can be deduced as

VCa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� Scos 0:5pað Þ

R

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pf O FOCL1ð Þ2 þ R2

q
ð34Þ

Similarly, the RMS value of FOI voltage VLb can be derived as

VLb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� Scos 0:5pbð Þ

R

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pfO FOCC1

� �2

þ R2

s
ð35Þ

It is worth noting that not only the RMS but also the phase of
voltage and current are related to the orders. The phase between
voltage and current of fractional-order elements is equal to
0.5pΥ. Fig. 4 shows the currents and voltages of FOC and FOI. As
can be seen from Fig. 4(a), when the order of FOC increases, the
RMS of current also increases monotonously, while the voltage
Fig. 5. The roots location in W-plane of the characteristic equation when (a) a = 1.1, (b) a
decreases. From Fig. 4(b), the RMS values of voltage and current
of FOI-based autonomous circuit have the same characteristics
with FOC-based autonomous circuit. Fig. 4(c) and (d) show the
steady-state time-domain waveform of FOC and FOI with Υ = 1.1.
It can be observed that the current of FOC has a leading degree
of 99� from FOC voltage, while the current of FOI lags the voltage
99�.

Stability analysis

The stability of fractional-order autonomous circuits can be
analyzed by the method of reference [38]. From the math model
of (18), the characteristic equation in the s-domain of the autono-
mous circuit based on FOC can be acquired as

0 ¼ saþ1L1Ca þ saRCa þ 1 ð36Þ
Assuming a can be represented as a rational number a = k/m,

where k andm are positive integers. Let us defineW = s1/m, so equa-
tion (36) can be transferred to W-plane and is rewritten as

0 ¼ WkþmL1Ca þWkRCa þ 1 ð37Þ
Therefore, the ± jx axes of the s-plane can be mapped onto the

lines |hW| = p/2m in W-plane. By using numerical calculation, the
roots of equation (37) with different orders can be obtained, as
shown by the triangle mark in Fig. 5.
= 1.2, (c) a = 1.3, (d) a = 1.4, (e) a = 1.5, (f) a = 1.6, (g) a = 1.7, (h) a = 1.8, (i) a = 1.9.
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As can be seen from Fig. 5, all cases of order have roots on the
lines |hW| = p/2m. According to [38], the system will be stable only
if all roots in the W-plane lie in the region |hW| > p/2m, and will
oscillate if at least one root is on the lines |hW| = p/2m. Hence,
the FOC-based fractional-order autonomous circuit is a sinusoidal
oscillation circuit. The same characteristic can be obtained for
FOI-based fractional-order autonomous circuit.

The poles distribution of FOC-based circuit with order less than
1 in the W-plane are also given by the circle mark in Fig. 6. As can
be seen from Fig. 6, all roots lie in the region |hW | > p/2m, while the
case of order larger than 1 have roots on the lines |hW| = p/2m from
Fig. 5. Therefore, the circuit with order less than 1 is also stable.
However, since the fractional-order element with order larger than
1 has the characteristic of negative resistance which is necessary to
provide required energy for the circuit continuously, the proposed
autonomous circuit must adopt the fractional-order elements with
order larger than 1.
Circuit simulations

To verify the characteristics of the proposed fractional-order
autonomous circuits, circuit simulations based on Power Simula-
tion Software are performed. Power Simulation Software can pro-
vide a powerful simulation environment for the analysis and
research of power electronic circuits. It has the advantages of
Fig. 6. The roots location in W-plane of the characteristic equation when (a) a = 0.9, (b) a
high-speed simulation, user-friendly interface, waveform analysis.
Moreover, it also has a huge component library, which can satisfy
the simulation requirements of fractional-order autonomous
circuits.

FOC-based Fractional-order autonomous circuit

A FOC with order larger than one for autonomous circuit con-
structed in [36] is adopted. The FOC in [36] have a constant order
a and apparent power S, but enable the its capacitance to vary. The
corresponding realization schematic diagram is also shown in
Fig. 7. The FOC circuit consists of a half-bridge converter and a
capacitor C0, S1 and S2 are a pair of power switches that turn ON
and OFF complementarily, VGS1 and VGS2 are the drive signal of
switch S1 and S2, respectively. By controlling the phase difference
of the input voltage vCa and current iC with phase-lock loop
technology, the designed order a can be acquired. Meanwhile, By
controlling the duty of switch, the required apparent power S
can be realized. The specific design process can be seen in the
reference [36].

Fig. 8 shows the simulation waveforms of current and voltage of
the FOC with designed order a = 1.1 in fractional-order autono-
mous circuit. The parameters of fractional-order autonomous cir-
cuit in Fig. 1(a) can be selected by (26), (28), (32) and (33). The
adopted circuit parameters are L1 = 100 lH, R = 20 X, S = 100
VA. From Fig. 8, the current iC leads the voltage vCa 1.36 ls, and
= 0.8, (c) a = 0.7, (d) a = 0.6, (e) a = 0.5, (f) a = 0.4, (g) a = 0.3, (h) a = 0.2, (i) a = 0.1.



Fig. 7. Realization schematic diagram of the constructed FOC in [36].

Fig. 8. The current and voltage of the FOC in fractional-order autonomous circuit.

Fig. 9. Realization schematic diagram of the constructed FOI.

Fig. 10. The current and voltage of the FOI in fractional-order autonomous circuit.
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the operating frequency is 200.97 kHz, so the phase of current
leading voltage can be obtained as 98.39�. Therefore, the actual
order of the FOC can be calculated as a = 98.39�/90 = 1.0932. The
corresponding simulation current and voltage of FOC are
IC = 0.88A and VCa = 113.2 V, so the capacitance of the FOC can
be acquired as Ca = IC/(xaVCa) = 1.66nF/(second)1�a. As can be
observed from Fig. 8, the simulation results are all consistent with
the theoretical analysis.

In addition, it can be seen from Fig. 8 that there is a little har-
monic in the voltage. The construction circuit of the FOC used in
this paper is composed of a switching converter from Fig. 7, and
the switches in the converter would produce harmonics when they
operate. Therefore, the harmonics in the voltage waveforms of the
fractional-order capacitor is generated by the switches of the con-
verter. Nevertheless, the phase and amplitude of voltage and cur-
rent in Fig. 8 can approximately describe the relationship
between the voltage and current of FOC, because the actual order
and capacitance of FOC calculated from Fig. 8 are consistent with
the theoretical values.

FOI-based Fractional-order autonomous circuit

Referring to the construction method of FOC in [36], FOI suit-
able for autonomous circuit is also constructed as shown in
Fig. 9. Different with the constructed circuit of FOC, the FOI is a
converter in series with an integer-order inductor. This inductor
can not only provide inductive reactive power for FOI, but also
block high frequency harmonics.

The simulation waves of current and voltage of FOI with differ-
ent orders in fractional-order autonomous circuit are shown in
Fig. 10. The parameters of fractional-order autonomous circuit in
Fig. 1(b) can be selected by (27), (29), (32) and (34). The adopted
circuit parameters are C1 = 10nF, R = 20 X, S = 100VA. From
Fig. 10, the current iL lags the voltage vLb 2.2 ls, and the operating
frequency is 126 kHz, so the phase of current lagging voltage can
be obtained as 99.79�, which means that the order is b = 99.79�/9
0 = 1.108. The corresponding simulation current and voltage of
FOI are IL = 0.88 and VLb = 113, so the inductance of the FOI is
Lb = VLb/(xbIL) = 37.41 lH/(second)1�b. From Fig. 10, the simulation
results are consistent with the theoretical analysis.
Conclusion

In this paper, two kinds of fractional-order autonomous circuits
based on FOC and FOI are proposed. Firstly, the characteristics of
negative resistance in fractional order elements with order greater
than 1 are analyzed. Then, by utilizing the characteristic of nega-
tive resistance, FOC and FOI are adopt to construct fractional-
order autonomous circuits, and the models of the circuits are
established using fractional calculus. On this basis, the properties
of the fractional-order autonomous circuit are explored. Theoreti-
cal analysis demonstrates that that the operating frequency or res-
onance frequency, the voltage and current of the autonomous
circuits can be changed by adjusting the resistance or the orders.
Moreover, the stability analysis of the fractional-order autonomous
circuits proves that the circuits are sinusoidal oscillation system.
Finally, two circuit simulations were developed to validate the pro-
posed fractional-order autonomous circuits. The simulation results
verified the theoretical analysis.

The proposal of fractional-order autonomous circuits may pro-
mote the development of fractional-order circuit theory. Mean-
while, their potential applications include wireless power
transfer system, communication system, automatic control system
and so on. The future work on this topic might include transient
characteristic analysis, experimental study and application of
fractional-order autonomous circuits.
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