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Abstract: Peach is a fruit cultivated in temperate regions and its use generates waste composed of
seeds and skin. Inadequate disposal of this waste generates an environmental impact; therefore,
an alternative is to apply a vermicomposting degradation process. In this research, these four
laboratory-scale reactors were used: RC (no earthworms), R1, R2, and R3 (50 earthworms each) to
get mixtures in the following proportions of peach waste and load material (vegetable waste and
eggshell): RC (50%-50%), R1 (50%-50%), R2 (60%-40%), and R3 (40%-60%). In addition, during
this process, physicochemical parameters were analyzed (temperature, pH, humidity, total organic
carbon (TOC), total nitrogen (TN), and carbon/nitrogen ratio (C/N)). For each mixture, the reaction
order and rate constants were determined using mathematical models. After analysis of the reaction
kinetics, the results showed that zero- and first-order reactions were best suited for the degradation
of this waste in the vermicomposting process. The highest rates of degradation in the mixtures were
for RC and R1, which means faster completion of the process, and consequently, smaller dimensions
of the facilities necessary for vermicomposting. Thus, this research provides important information
for the design of reactors that use similar substrates.

Keywords: vermicomposting; peach waste; kinetics models; reaction rate constant; order reaction

1. Introduction

Peach (Prunus persica) is a round fruit that measures 5 to 7.5 cm in diameter. It is
yellow with reddish tinges and has a velvet-like texture and a seed in the center. Along
with apples, strawberries, pears, plums, and cherries, it belongs to the Rosaceae family.
Similar to almonds, its seeds are used as an oil substitute in the field of cosmetics [1].

In the 2020/21 cycle, world peach production was 21,029,000 metric tons according to
data obtained from the United States Department of Agriculture (USDA) Foreign Agricul-
tural Service. China predominates with 14,500,000 metric tons (68.95%), followed by the
European Union with 3,475,000 metric tons (16.52%), and Turkey with 870,000 metric tons
(4.14%) [2].

Peach waste is composed of seeds and skin [3]. Its seeds contain 50% oil [4], 27.5%
protein, and nutritional properties owing to the presence of unsaturated fats with high
oleic (58%), linoleic (32%), and palmitic acid (8%) content [5].

To dispose of fruit waste, there are several alternatives, including landfilling and open
burning. If there is no control, the use of these alternatives can cause various environ-
mental impacts, such as generation of unpleasant odors and release of greenhouse gases
that contribute to global warming and atmospheric pollution, which may affect human
health [6].

Life 2022, 12, 1290. https://doi.org/10.3390/life12091290 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life12091290
https://doi.org/10.3390/life12091290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0001-7423-7455
https://orcid.org/0000-0002-3180-4373
https://orcid.org/0000-0003-0390-9925
https://doi.org/10.3390/life12091290
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life12091290?type=check_update&version=2


Life 2022, 12, 1290 2 of 11

However, there are different techniques to valorize organic waste, such as compost-
ing, vermicomposting, anaerobic digestion, and entomoremediation using insect larvae,
i.e., black soldier fly larvae [7–9], among others.

Composting and vermicomposting of organic waste have been considered economi-
cally viable and sustainable waste management technologies [10]. Composting is an aerobic
process that, under proper temperature and humidity conditions, results in stable materials
that can be used for soil treatment in agriculture [11]. Vermicomposting is a practice involv-
ing the addition of earthworms to the composting process. Both techniques are inexpensive
and improve soils due to their macro- and micronutrients [12].

Vermicomposting allows organic nutrient sources for crops to be obtained in less time,
which is nutritionally (nitrogen, potassium, phosphorus, and calcium), physically, and
biochemically efficient [13,14] as a soil conditioner [15]. It is also one of the most feasible and
environmentally friendly techniques for the bioconversion of industrial wastes/sludges
into useful and high-quality vermicompost [16]

For vermicomposting to be implemented on an industrial scale, it is necessary to
design reactors and treatment facilities properly. Therefore, it is fundamental to understand
the reaction kinetics that occur during these processes, considering that high degradation
rates lead to lower construction and operational costs for composting and vermicomposting
plants [17–19].

The reaction kinetics of multiple types of waste going through the composting process
have been studied [19–25]. The published studies refer to composting processes for different
organic wastes and only a few of them correspond to vermicomposting [26–29]. However,
after conducting an exhaustive literature search, no research related to reaction kinetics
was found for vermicomposting of peach waste.

Thus, this research aimed to analyze the reaction kinetics behavior during the biodegra-
dation of peach waste in different mixtures through the vermicomposting process to de-
termine reaction order and kinetics coefficients associated with the process, setting the
hypothesis that the kinetics of the vermicomposting process for peach waste fits a combined
zero-order and first-order reaction.

2. Materials and Methods
2.1. Substrate

The substrate was made up of 10 kg of peach waste (seeds and skin) to which load
material was added; the latter included vegetable waste, comprised of chard, celery, broccoli,
watercress, cabbage, spinach, and lettuce (10 kg), as well as eggshells (1 kg) to balance
nutrients. Waste was collected from local markets and bakeries and finely chopped into
pieces ranging between 1 and 5 cm to ease the degradation [30,31]. The eggshells were
washed and sun-dried for 24 h [32] and crushed to a size of 0.5 mm.

2.2. Vermicomposting Process

Before the vermicomposting process, the peach waste and load material were subjected
to an initial pre-composting degradation using two plastic containers, each with a capacity
of 11.4 L. The first one contained the peach waste only and the second, the load material.
Both containers were covered with a 5 mm mosquito net to allow gaseous exchange and
avoid potential insect or other undesirable animal infestation [16,33]. The bottom of both
containers was perforated to filter out leachate. The holes were 9 mm in diameter and were
placed at a 2% slope to ease drainage.

The peach waste was pre-composted for 30 days and humidified daily by being
sprayed with water to maintain the humidity parameter within the proper range for the
process. To control this parameter, the fist test was used, as it allows the maintenance
of the correct amount of humidity [34]. Load material was pre-composted 72 h before
the beginning of the pre-composting process, as the degradation rate was high due to its
highwater content.
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The vermicomposting process was performed using four plastic containers measuring
32 cm in length, 9 cm in width, and 20 cm in height, making up a volume of 5.76 L. The
proportions used in each pre-composted mixture are shown in Table 1.

Table 1. Amount of peach and vegetable waste, eggshells, and earthworms in each waste mixture in
the four reactors for the vermicomposting process.

Reactor Peach Waste
(kg)

Vegetable Waste
(kg)

Eggshells
(kg)

Peach Waste and Load
Material Percentages Number of Earthworms

RC 1.00 0.75 0.25 50-50% 0

R1 1.00 0.75 0.25 50-50% 50

R2 1.20 0.60 0.20 60-40% 50

R3 0.80 0.90 0.30 40-60% 50

As was the case in the pre-composting process, the containers were perforated at the
bottom and covered with a fine mesh. The first reactor (RC) was a control; therefore, no
earthworms were added. The rest of the reactors (R1, R2, and R3) received 50 Eisenia fetida
earthworms each because it is one of the most common species used in vermicompost-
ing [35–38]. For the experiment, adult earthworms with an initial size of 5–6 cm and an
average weight of 1 g were obtained from a vermicomposting plant.

During the first five days of the process, the reactors were kept in repose so the
earthworms could adapt to their new environment. The reactors were mixed daily to
guarantee the vermicompost was properly aerated and were sprayed with water every
third day to maintain the required humidity level [39]. During this process, the earthworms
fed off the available organic matter.

2.3. Analytical Methods

During the vermicomposting process, the following physicochemical parameters
were determined in the laboratory using local norms and by triplicate: temperature, pH,
humidity, total organic carbon (TOC), total nitrogen (TN), and carbon/nitrogen ratio
(C/N) [40].

2.4. Statistical Data Analysis

For the statistical analysis, weekly TOC concentration data for each of the reactors were
used. The coefficient of determination (R2) was determined to identify reaction orders in
each mixture. The equation associated with each reaction order was obtained to determine
kinetics coefficients. Data analysis was performed using Microsoft Excel version 16.61.

2.5. Kinetics Models

For the kinetics analysis of this research, figures corresponding to the TOC values were
made. These data were obtained weekly for each reactor RC, R1, R2, and R3. Subsequently,
reaction orders were determined and analyzed using the following equations [41–44]:

2.5.1. Zero-Order Reactions

Equation (1) was used for zero-order reactions

− d(TOC)

dt
= k (1)

where

− d(TOC)

dt
= rate of TOC change with respect to time

[
Percentage

Time

]
k = reaction rate constant

[
t−1]



Life 2022, 12, 1290 4 of 11

Linearizing led to Equation (2):

C = −kt + Co (2)

where
C = TOC concentration at any time t [percentage]
C0 = initial TOC concentration for t = 0 [percentage]
t = time it takes for the reaction to take place [t]
k = reaction rate constant

[
t−1]

2.5.2. First-Order Reactions

Equation (3) was used for first-order reactions:

− dC
dt

= k(C)1 (3)

where

−dC
dt

=rate of TOC change with respect to time
[

percentage
time

]
k = reaction rate constant

[
t−1]

C = TOC concentration at any time t [percentage]
Linearizing the previous equation led to Equation (4):

ln
(

C0

C

)
= kt (4)

where
C0 = initial TOC concentration for t = 0 [percentage]
t = time it takes for the reaction to take place [t]
k = reaction rate constant

[
t−1]

C = TOC concentration at any time t [percentage]

2.5.3. Second-Order Reactions

Equation (5) was used for second-order reactions:

− dC
dt

= k(C)2 (5)

where

−dC
dt

= rate of TOC change with respect to time
[

percentage
time

]
k = reaction rate constant

[
d−1

]
C = TOC concentration at any time t [percentage]
When linearized it led to Equation (6):

1
C

= kt +
1

C0
(6)

where
C0 = initial TOC concentration for t = 0 [percentage]
C = TOC concentration at any time t [percentage]
k = reaction rate constant

[
d−1

]
t = time it takes for the reaction to take place [t]
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3. Results and Discussion
3.1. Physicochemical Parameters in Vermicomposting

The temperature for all four reactors was kept between 18 and 24 ◦C. Multiple authors
have reported that the optimal temperature for earthworm development is within the
15–28 ◦C range [45,46]. The initial pH for all four mixtures was between 6 and 6.5. In the
beginning, pH decreased to values as low as 5.5 due to the generation of organic acids
caused by the organic matter degradation [47]. At the end of the process, the pH range
remained within neutral values between 6 and 7.5, which indicates waste stabilization. The
humidity range during the process was maintained between 62 and 83.87%. Huang et al.,
(2016) and Othman et al., (2012) also reported values from 60 to 80% [45,48].

Organic matter concentration values for all four mixtures at the beginning of the
process were 87.21%, 86.12%, 84.86%, and 81.74%, whereas final concentrations were found
to be 48.34%, 47.91%, 45.02%, and 43.69% for reactors RC, R1, R2, and R3, respectively.
The decrease in organic matter concentration was due to the degradation caused by the
organisms that used carbon as an energy source. Chang et al., (2016) found a decrease in
organic matter concentrations for pig manure and rice straw waste composting processes
due to mineralization and carbon loss through carbon dioxide [49].

Total nitrogen content for reactors RC, R1, R2, and R3 were 1.77%, 1.46%, 1.21%, and
1.23%, while final values were found to be 2.45%, 3.06%, 3.71%, and 3.85%, respectively. An
increase in nitrogen concentration could be observed in every reactor, coinciding with the
consulted literature [50].

For the C/N ratio, the following values were obtained at the beginning of the process
for reactors RC, R1, R2, and R3: 28.58, 34.21, 40.68, and 36.47, respectively. These values
were adequate for the beginning of the vermicomposting process [51]. The final values
of the C/N ratio for the reactors were 11.44, 9.08, 7.04, and 6.58. Several authors have
reported that the C/N values at the end of the vermicomposting process must be less than
20 [52–54].

Table 2 shows the physicochemical values of pH, organic matter, total nitrogen, and
C/N ratio obtained at the end of the vermicomposting process. This reveals that at
63 days a stabilized product was obtained and its quality complied with the Mexican
Standard NMX-FF-109-SCFI-2007 [40] per the following values: pH 5.5–8.5, organic matter
20–50%, total nitrogen 1–4%, and a C/N ratio less than 20. These values confirmed that the
vermicomposting process had reached its end.

Table 2. Results of the physicochemical parameters at the end of the vermicomposting process after
63 days for the four reactors of the experiment and the Local Standard comparison. Values are
presented as mean and standard deviation (n = 3).

Reactor pH Organic Matter N C/N

RC 7.00 ± 0.18 48.34 ± 1.64 2.45 ± 0.04 11.44 ± 0.51

R1 6.95 ± 0.12 47.91 ± 1.58 3.06 ± 0.06 9.08 ± 0.55

R2 7.50 ± 0.20 45.02 ± 1.99 3.71 ± 0.06 7.04 ± 1.01

R3 6.00 ± 0.17 43.69 ± 1.10 3.85 ± 0.07 6.58 ± 1.03

Mexican
Standard [40] 5.5–8.5 20–50% 1–4% Less than 20

3.2. Reaction Kinetics Analysis

Table 3 shows TOC behavior during the period of the vermicomposting process.
Concentrations in all four reactors decreased consecutively throughout each of the seven
weeks (63 days) due to the mineralization of organic matter to CO2 carried out by the
earthworms and microorganisms [46].



Life 2022, 12, 1290 6 of 11

Table 3. Results of remaining TOC concentration during the 9 weeks of the vermicomposting process
for each reactor.

Vermicomposting
Process (days)

Reactor

TOC in RC (%) TOC in R1 (%) TOC in R2 (%) TOC in R3 (%)

0 50.59 ± 1.72 49.95 ± 0.91 49.22 ± 1.68 47.41 ± 0.75

7 50.01 ± 1.40 48.66 ± 1.23 47.76 ± 1.25 46.05 ± 1.22

14 49.99 ± 1.58 47.45 ± 0.72 46.66 ± 1.55 45.10 ± 0.86

21 47.62 ± 1.19 44.97 ± 0.82 42.37 ± 1.02 41.06 ± 1.00

28 41.95 ± 1.55 40.59 ± 1.06 38.58 ± 1.36 38.00 ± 0.56

35 39.89 ± 1.28 35.60 ± 0.43 33.57 ± 1.01 36.03 ± 1.11

42 35.11 ± 0.91 31.49 ± 0.70 32.10 ± 0.77 32.66 ± 0.59

49 30.32 ± 0.87 29.80 ± 0.74 30.85 ± 0.98 30.85 ± 0.89

56 29.01 ± 0.65 28.51 ± 0.82 28.86 ± 0.56 28.23 ± 0.97

63 28.04 ± 0.76 27.79 ± 0.55 26.11 ± 1.03 25.34 ± 0.49

Figures 1–4 show degradation behavior in the mixtures, in terms of TOC, for reactors
RC, R1, R2, and R3, respectively, for zero-order, first-order, and second-order reactions.
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Figure 1. Application of zero-order, first-order, and second-order reaction models for the degradation
of peach waste using remaining TOC concentration data for reactor RC (50% peach waste–50% load
material, no earthworms).
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Figure 2. Application of zero-order, first-order, and second-order reaction models for the degradation
of peach waste using remaining TOC concentration data for reactor R1 (50% peach waste–50% load
material, with 50 earthworms).
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Figure 3. Application of zero-order, first-order, and second-order reaction models for the degradation
of peach waste using remaining TOC concentration data for reactor R2 (60% peach waste–40% load
material, with 50 earthworms).
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Figure 4. Application of zero-order, first-order, and second-order reaction models for the degradation
of peach waste using remaining TOC concentration data for reactor R3 (40% peach waste–60% load
material, with 50 earthworms).

Table 4 shows the values of R2 and k obtained from the aforementioned figures of
zero-order, first-order, and second-order reactions in all four reactors.

Table 4. Values of coefficient of determination (R2) and reaction rate constants (k) in all four reactors
according to zero-order, first-order, and second-order reaction models.

Reactor
Zero-Order First-Order Second-Order

R2 k (d−1) R2 k (d−1) R2 k (d−1)

RC 0.9579 2.9416 0.9480 0.0760 0.9305 0.0020

R1 0.9618 2.8736 0.9623 0.0760 0.9571 0.0021

R2 0.9741 2.7585 0.9794 0.0744 0.9731 0.0021

R3 0.9914 2.5565 0.9824 0.0709 0.9585 0.0020

This table allows the observation of concentration behaviors in the mixtures of peach
waste fitted to zero-order and first-order reactions, as the R2 values were approximately 1.

Results coincided with other studies with carbon mineralization rates and we found
that the process followed a combined zero-order and first-order kinetics reaction model for
mixtures of organic waste with sludges from wastewater treatment plants, animal manures,
urban and industrial waste, and vegetables from composting processes [55].

Abu and Al-Widyan also found high R2 values of 0.99, 0.98, and 0.88 for grain dust,
grain dust with coffee processing waste, and coffee-processing waste, respectively [21]. On
the other hand, Rastogi et al. obtained R2 values from 0.743 to 0.992 for municipal solid
waste composting [24].

Zero-order reactions are characterized because the change in concentration with
respect to time is independent of concentration [42,43], indicating that there is a great
affinity between the substrate and the organisms responsible for its degradation. The
higher the complexity of the organic compounds, the higher the reaction order. However,
according to Petric et al., many researchers found that the organic matter degradation
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follows first-order kinetics [19] because it is widely applied in heterogeneous substrates, as
in the case of the present research.

For first-order reactions, the reactors RC and R1 showed the fastest reaction rate
for the biodegradation of the peach waste mixtures, as they obtained the highest value
(k = 0.0760 d−1) in comparison to R2 (k = 0.0744 d−1) and R3 (k = 0.0709 d−1). RC and R1
had the same percentage of waste mixtures and load material (50–50%), which implies the
reaction rate was the same in the vermicomposting process as in the control sample that
did not contain earthworms (composting). These results coincided with the information
reported by Fatemeh et al. because the mixture with the fastest reaction rate was the one
that contained 50% palm oil mill effluent (POME) mixed with palm-pressed fiber [28].

The k values in all four mixtures were found to be within the 0.020–1.13 d−1 range, as
reported by Kumar et al. [23]. Additionally, Tosun et al. reported ranges for reaction rate
constants of 0.087–0.236 d−1 for rose flower waste and the organic fraction of municipal
solid waste, fitting to a first-order kinetics model [20]: 0.005–0.1 d−1 for municipal solid
waste and yard waste (food waste, mixed paper, leaves, branches, grass clippings) [56]; and
0.043–0.082 d−1 for municipal solid waste [57].

Similarly, k values obtained were higher than those reported in other studies: 0.0204 d−1

for the composting of biodegradable polymers [25]; 0.0195–0.0523 d−1 for the degradation
of POME, also for first-order kinetics [28]; 0.0015–0.0055 d−1 for a variety of agro-industrial
waste, applying first-order kinetics [21]; 0.01–0.02 d−1 for kitchen waste, pruned elm tree
branches, and sheep manure [58]; and 0.044–0.045 d−1 for sludge sewage with lignocellu-
losic waste (wood chips, wheat straw, leaves) [59].

The k values obtained in all four mixtures were less than those reported in another
vermicomposting study that resulted in a range of 0.12–0.59, with different substrates of
cow manure waste and a filter cake made from sugarcane [29].

Table 5 shows the k values of different substrates reported in the literature. The
variability of k values reported by several authors is due to the heterogeneous composition
of the biodegradable waste, taking into consideration that a proper nutrient balance allows
for a faster degradation rate. The trend in the degradation of organic waste, through
the vermicomposting process, is to use balanced substrates enriched by adding nutrients.
As shown in Table 5, researchers used an organic waste mixed with other substances to
balance nutrients and facilitate degradation, while in this research, vegetable waste and
eggshells were used for the same purpose and similar results were obtained. The advantage
of making mixtures of a substrate with others that provide nutrients is to facilitate the
degradation process because it is achieving a greater affinity between the substrate and the
organisms responsible for the degradation, which is closely related to the order reaction.

Table 5. Reaction rate constants (k) for different waste types.

S.
No Main Waste Type Secondary Waste Type k Values (d−1) References

1 Peach waste Vegetable waste and eggshell 0.0709–0.0760 This research (2022) -

2 Biodegradable polymers Organic fraction MSW 0.0204 Rossetti et al., (2021) [25]

3 Poly (lactic acid) (PLA) Food waste compost 0.020–1.13 Kumar et al., (2021) [23]

4 Rose composting Organic fraction MSW 0.087–0.236 Tosun et al., (2008) [20]

5 Palm oil mill effluent Palm-pressed fiber 0.0195–0.0523 Fatemeh et al., (2017) [28]

6 Kitchen waste (mixtures), pruned elm
tree branches and sheep manure Not applicable 0.01–0.02 Ebrahimzadeh et al., (2017) [58]

7

Agro-industrial waste (mixtures)
olive milling waste,
grain dust,
coffee processing wastes

Not applicable 0.0015–0.0055 Abu & Al-Widyan (2016) [21]
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Table 5. Cont.

S.
No Main Waste Type Secondary Waste Type k Values (d−1) References

8 Sewage sludge Lignocellulosic waste (wood
chips, wheat straw, leaves) 0.044–0.045 Kulikowska (2016) [59]

9 Municipal solid waste Not applicable 0.043–0.082 Baptista et al., (2010) [57]

10

Cow manure, cow manure
vermicompost Sugarcane filter,
sugarcane filter cake
vermicompost (mixtures)

Not applicable 0.12–0.59 Nourbakhsh (2007) [29]

11 Municipal solid waste
yard waste (food waste, mixed
paper, yard waste, leaves,
branches, grass clippings)

0.005–0.1 Komilis (2004) [56]

4. Conclusions

This study analyzed kinetics reaction orders in the vermicomposting process of four
different mixtures of peach waste and load material. According to the proposed hypothesis,
it was determined that the degradation fit a combined zero-order and first-order kinetics,
which revealed that earthworms and microorganisms had a high affinity for this waste.

Additionally, mixtures RC and R1, made up of 50% peach waste and 50% load material
with and without earthworms, had the fastest reaction rates due to the highest k value.
Therefore, these mixtures were the most adequate for peach waste degradation.

The results obtained from the kinetics coefficients can be applied to the design and
operation of vermicomposting facilities. For future research, this study can be a referent for
the exploration of new kinetics models that expand the knowledge of mechanisms under
which the degradation processes of organic matter occur, in order to face the challenges of
proper waste management.
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