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Abstract: Background: Early identification of critically ill neonates with poor outcomes can optimize
therapeutic strategies. We aimed to examine whether machine learning (ML) methods can improve
mortality prediction for neonatal intensive care unit (NICU) patients on intubation for respiratory
failure. Methods: A total of 1734 neonates with respiratory failure were randomly divided into
training (70%, n = 1214) and test (30%, n = 520) sets. The primary outcome was the probability of
NICU mortality. The areas under the receiver operating characteristic curves (AUCs) of several
ML algorithms were compared with those of the conventional neonatal illness severity scoring
systems including the NTISS and SNAPPE-II. Results: For NICU mortality, the random forest (RF)
model showed the highest AUC (0.939 (0.921–0.958)) for the prediction of neonates with respiratory
failure, and the bagged classification and regression tree model demonstrated the next best results
(0.915 (0.891–0.939)). The AUCs of both models were significantly better than the traditional NTISS
(0.836 (0.800–0.871)) and SNAPPE-II scores (0.805 (0.766–0.843)). The superior performances were
confirmed by higher accuracy and F1 score and better calibration, and the superior and net benefit
was confirmed by decision curve analysis. In addition, Shapley additive explanation (SHAP) values
were utilized to explain the RF prediction model. Conclusions: Machine learning algorithms increase
the accuracy and predictive ability for mortality of neonates with respiratory failure compared with
conventional neonatal illness severity scores. The RF model is suitable for clinical use in the NICU,
and clinicians can gain insights and have better communication with families in advance.

Keywords: neonatal mortality; artificial intelligence; big data analysis; early prediction; machine learning

1. Introduction

Despite innovations in perinatal resuscitation and advances in neonatal care, the
in-hospital mortality rate for neonatal intensive care unit (NICU) patients has remained un-
changed at 6.4–10.9% over the last decade [1–4]. NICU mortality is influenced by multiple
factors, including underlying chronic comorbidities, artificial device-associated nosocomial
infections, immature immune defense, and prolonged intubation [4–6]. Respiratory failure
is one of the most important problems in the NICU, and 19.7–34% of total admissions have
experienced respiratory failure [7–9]. In addition, respiratory failure is always the most
common issue preceding the final mortality of preterm or critically ill neonates [10,11].
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NICU scoring systems have been developed using a variety of admission factors to
help prognosis prediction and communications between clinicians and parents [12–14].
However, it is often time-consuming to input the data, and these models often lack incorpo-
ration of important variables, including the influence of NICU characteristics, interventions,
and therapeutic responses [12,15–17]. These limitations can be overcome by newly de-
veloped machine learning (ML) methods that make use of the increased computational
capability to handle large amounts of linear and nonlinear parameters and time-series
features [18,19]. Greater performance and excellent predictive power of the ML models can
be achieved through deep learning and repeated validation [18–20]. An effective and alter-
native approach is required since previous neonatal scoring systems often fail to analyze
numerous variables with nonlinearity and complex relationships in critically ill neonates.
In this study, we aimed to develop and validate an ML algorithm that can accurately predict
the in-hospital mortality of neonates with respiratory failure in the NICU.

2. Methods
2.1. Patients, Setting, and Study Design

A total of 1760 neonates who received intubation due to severe respiratory failure
in the NICUs of Taipei and Linkou Chang Gung Memorial Hospital (CGMH) between
January 2013 and December 2019 were retrospectively reviewed. The NICUs of Taipei and
Linkou CGMH contain a total of four units and a total capacity of 57 beds equipped with
ventilators and 70 beds of special care nurseries. The annual number of inpatients in these
NICUs is 900 and accounts for approximately 30% of all critically ill and premature infants
in Taiwan.

Respiratory failure in the present study was defined when mechanical intubation
was required to maintain a SpO2 value of 85–95%, CO2 45–55 cmH2O, and pH 7.35–7.45
and/or the presence of hypotension that required cardiac inotropic agents and intravascular
volume expansion. In our institute, all neonatologists follow the standard guideline that
mechanical intubation will be done if we fail to maintain PaO2 > 60, a pH value > 7.25,
and the requirement of fraction of inspired oxygenation (FiO2) > 60 using a noninvasive
ventilator. Neonates who had severe congenital anomalies (n = 8), those with missing
data on outcomes (n = 18), and those who died within the first day after intubation were
excluded. Thus, 1734 neonates were analyzed in the present study. The subjects were
randomly divided into a training set (70.0%, n = 1214) to develop the models and a test
set (30.0%, n = 520) to test the performance of each model. This study was approved by
the institutional review board of CGMH, with a waiver of informed consent because the
waiver does not adversely affect the rights and welfare of the participants.

2.2. Study Variables

The onset of respiratory failure was defined when intubation was done and mechanical
ventilation was used for the first time. For neonates successfully weaned from ventilators
and reintubated during hospitalization in the NICU, only the first time of each patient
was considered. Baseline patient demographics; the presence of artificial devices; and
chronic comorbidities, including neurological sequelae, bronchopulmonary dysplasia (BPD)
with/without pulmonary hypertension, symptomatic patent ductus arteriosus, cholestasis,
renal function impairment, and gastrointestinal sequelae, were confirmed at the onset of
respiratory failure. The laboratory data including white blood cell count, hemoglobin,
platelet count, C-reactive protein, electrolytes, bilirubin, and renal and hepatic function
results were measured at the timing of respiratory failure.

In our institute, the initiation of mechanical intubation and shift to high-frequency
oscillatory ventilation depend on the decisions of the attending physicians, but most
clinicians follow the basic guidelines of the updated textbook of neonatology [21]. For
ventilator settings and blood gas analyses, four time periods (at onset of respiratory failure
(t0), 1–12 h (t1), 12–24 h (t2), and 24–48 h (t3) after intubation) were evaluated (Figure 1).
The alveolar–arterial oxygen tension difference (AaDO2) and oxygenation index (OI)
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were also calculated during these four time periods. At the onset of respiratory failure
(defined as from 30 minutes before intubation until 1 hour after intubation), the Neonatal
Therapeutic Intervention Scoring System (NTISS) score and Score for Neonatal Acute
Physiology Perinatal Extension II (SNAPPE-II) were calculated based on the calculation
methods presented in the original studies [14,16]. The primary outcome was the NICU
mortality, and the discontinuation of critical care due to family requests to transfer to other
hospitals was censored.
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Figure 1. Time period and time point to collect the whole features and variables of the training and test sets. The study
design highlights that the clinically applicable machine model can be used on the second day of respiratory failure to predict
the in-hospital mortality of neonates with respiratory failure.

2.3. Statistical Analysis

Statistical analyses were performed using SPSS version 15.0 (SPSS, Chicago, IL, USA)
software. Categorical and continuous variables were expressed as proportions and the
median (interquartile, IQR), respectively. Categorical variables were compared by the
χ2 test or Fisher’s exact test; odds ratios (ORs) and 95% confidence intervals (CIs) were
calculated. Continuous variables were compared by the Mann–Whitney U-test and the
t-test, depending on the distributions. R software (version 4.0.3) was used to construct
mortality prediction models, and several machine learning algorithms were used, including
artificial neural network (ANN), k-nearest neighbor (KNN), support vector machine (SVM),
random forest (RF), and extreme gradient boost (XGB), bagged classification and regression
tree (bagged CART), and elastic-net regularized logistic linear regression. The R package
caret (version 6.0-86, https://github.com/topepo/caret) was used to train these predictive
models with hyperparameter fine-tuning. For each of the ML algorithms, we performed
5-fold cross-validations of five repeats to determine the optimal hyperparameters that
generate the least complex model within 1.5% of the best area under the receiver operating
characteristic curve (AUC). The hyperparameter sets of these algorithms were predefined
in the caret package, such as the mtry (number of variables used in each tree) in the RF
model, the k (number of neighbors) in the KNN model, and the cost and sigma in the
SVM model with the radial basis kernel function. The SVM models using kernels of linear,

https://github.com/topepo/caret
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polynomial, and radial basis functions were constructed. We selected the radial kernel
function for the final SVM model due to the highest AUC. Similar to SVM, the XGB model
contains linear and tree learners. We applied the same highest AUC strategies and selected
the tree learner for the final XGB model. When constructing each of the machine learning
models, features were preselected based on the normalized feature importance to exclude
irrelevancy. Then, the remaining features were considered to train the final models.

Once the models were developed using the training set, the F1 score, accuracy, and
areas under the curves (AUCs) were calculated on the test set to measure the performance
of each model. For the predictive performance of the two traditional scores, NTISS and
SNAPPE-II, we used Youden’s index as the optimal threshold of the receiver operating
characteristic (ROC) curve to determine the probability of mortality, and the accuracy and
F1 score were calculated. The AUCs of the models were compared using the DeLong
test. We also assessed the net benefit of these models by decision curve analysis [22,23].
We converted the NTISS and SNAPPE-II scores into predicted probabilities with logistic
regressions. We also assessed the agreement between predicted probabilities and observed
frequencies of NICU mortality by calibration belts [24]. Finally, we used Shapley additive
explanation (SHAP) values to examine the accurate contribution of each feature or input
within the best prediction model [25]. All P values were two-sided, and a value of less than
0.05 was considered significant.

3. Results

In our cohort, 1214 (70.0%) neonates and 520 (30.0%) neonates with respiratory failure
were randomly assigned to the training and test sets, respectively. The patient demograph-
ics, etiologies of respiratory failure, and most variables were comparable between these
two sets (Table 1). In our cohort, more than half (55.9%) of our patients were extremely
preterm neonates (gestational age (GA) < 28 weeks), and 56.5% were extremely low birth
weight infants (BBW < 1,000g). Among neonates with respiratory failure requiring me-
chanical intubation, 83.1% of instances of respiratory failure occurred in the first week
of life, and 65.1% occurred in the first day of life. A total of 278 (16.0%) patients died,
and the in-hospital mortality rates were similar between the training and test sets. When
the survivors were compared with those who finally died, many variables were different,
including significantly higher severity of illness (higher NTISS and SNAPPE-II scores in the
mortality group than among the survivors), lower birth weight and more preterm, more
therapeutic interventions, and some disease entities (Supplementary Materials, Table S1).

Table 1. Patient demographics, characteristics, and clinical presentation of all neonates with respiratory failure.

Characteristics All Study Subjects
(Total n = 1734)

The Training Set
(Total n = 1214)

The Test Set
(Total n = 520) p Values

Case demographics
Gestational age (weeks), median (IQR) 27.0 (25.0–31.3) 27.3 (25.3–31.0) 27.0 (25.0–31.5) 0.324

Birth weight (g), median (IQR) 915.0 (703.5–1480.0) 915.0 (708.0–1463.8) 908.5 (700.0–1510.0) 0.974
Gender (male), n (%) 1029 (59.3) 732 (60.3) 297 (57.1) 0.220

Birth by NSD/Cesarean section, n (%) 548 (31.6)/1186 (68.4) 389 (32.0)/825 (68.0) 159 (30.6)/361 (69.4) 0.573
5 minutes Apgar score < 7, n (%) 566 (32.6) 409 (33.7) 157 (30.2) 0.163

Inborn/outborn, n (%) 1365 (78.7)/369 (21.3) 944 (77.8)/270 (22.2) 421 (81.0)/99 (19.0) 0.141
Premature rupture of membrane, n (%) 530 (30.6) 375 (30.9) 155 (29.8) 0.691

Maternal fever, n (%) 214 (12.3) 156 (12.9) 58 (11.2) 0.340
Intrapartum antibiotic prophylaxis, n (%) 140 (8.1) 90 (7.4) 50 (9.6) 0.125

Chorioamnionitis, n (%) 32 (1.8) 22 (1.8) 10 (1.9) 0.848
Perinatal asphyxia, n (%) 354 (20.4) 255 (21.0) 99 (19.0) 0.363

Onset of respiratory failure, day
(median (IQR)) 1.0 (1.0–3.0) 1.0 (1.0–3.0) 1.0 (1.0–2.0) 0.101

Diagnoses of respiratory failure, n (%)
Respiratory distress syndrome (≥Gr II) 1047 (60.3) 736 (60.5) 311 (59.8) 0.748

Transient tachypnea of newborn 83 (4.8) 61 (5.0) 22 (4.2) 0.540
Complicated cardiovascular diseases 28 (1.6) 22 (1.8) 6 (1.2) 0.408

Symptomatic patent ductus arteriosus 662 (38.2) 454 (37.4) 208 (40.0) 0.306
Persistent pulmonary hypertension

of newborn 278 (16.0) 187 (15.4) 91 (17.5) 0.284
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Table 1. Cont.

Characteristics All Study Subjects
(Total n = 1734)

The Training Set
(Total n = 1214)

The Test Set
(Total n = 520) p Values

Pulmonary hemorrhage 120 (6.9) 91 (7.5) 29 (5.6) 0.179
Pneumonia 85 (4.9) 54 (4.4) 31 (6.0) 0.183

Air leak syndrome & 188 (10.8) 124 (10.2) 64 (12.3) 0.206
Meconium aspiration syndrome 50 (2.9) 35 (2.9) 15 (2.9) 1.000

Sepsis 271 (15.6) 190 (15.7) 81 (15.6) 1.000
Hydrops fetalis 34 (2.0) 27 (2.2) 7 (1.3) 0.261

Others # 26 (1.5) 20 (1.6) 6 (1.2) 0.523
Presences of any chronic comorbidities,

n (%) 379 (21.8) 272 (22.4) 107 (20.6) 0.410

Presences of central venous catheter, n (%) 522 (30.1) 351 (28.9) 171 (32.9) 0.109
Initial ventilator requirement *, n (%) 0.178

Intubation with mechanical ventilation 1168 (67.4) 819 (67.5) 349 (67.1)
Initial FiO2 ≤ 50 671 (38.7) 464 (38.2) 207 (39.8)
Initial FiO2 > 50 497 (28.7) 355 (29.2) 142 (27.3)

On high frequency oscillatory ventilation 566 (32.6) 395 (32.5) 171 (32.9)
High setting (FiO2 ≤ 50) 248 (14.3) 162 (13.3) 86 (16.5)
Low setting (FiO2 > 50) 318 (18.3) 233 (19.2) 85 (16.3)

Oxygenation index, median (IQR) 11.0 (6.0–20.0) 11.0 (6.0–20.0) 11.0 (6.0–20.0) 0.780
AaDO2, median (IQR) 273.0 (166.0–478.0) 271.0 (165.8–477.0) 280.0 (166.3–486.8) 0.670

Use of iNO 285 (16.4) 193 (15.9) 92 (17.7) 0.359
Clinical features *, n (%)

Intravascular volume expansion 1415 (81.6) 1001 (82.5) 414 (79.6) 0.188
Requirement of cardiac inotropic agents 1206 (69.6) 842 (69.4) 364 (70.0) 0.820

Metabolic acidosis 677 (39.0) 484 (39.9) 193 (37.1) 0.307
Coagulopathy 1226 (70.7) 864 (71.2) 362 (69.6) 0.527

Requirement of blood transfusion ** 558 (32.2) 391 (32.2) 167 (32.1) 1.000
Laboratory data at onset of

respiratory failure
Leukocytosis or leukopenia 446 (25.7) 304 (25.0) 142 (27.3) 0.337

Shift to left in WBC (immature > 20%) 158 (9.1) 103 (8.5) 55 (10.6) 0.172
Anemia (hemoglobin level < 11.5 g/dL) 317 (18.3) 223 (18.4) 94 (18.1) 0.946

Thrombocytopenia (platelet < 150,000/ul) 434 (25.0) 297 (24.5) 137 (26.3) 0.432
C-reactive protein (mg/dL), median (IQR) 5.0 (2.0–19.5) 5.0 (2.0–18.0) 6.0 (2.0–22.0) 0.149
Severity score at onset of respiratory failure

NTISS (median (IQR)) 23.0 (21.0–26.0) 24.0 (21.0–27.0) 23.0 (21.0–26.0) 0.254
SNAPPE-II (median (IQR)) 28.0 (22.0–40.0) 30.0 (22.0–42.0) 28.0 (22.0–40.0) 0.174

Final in-hospital mortality, n (%) 278 (16.0) 198 (16.3) 80 (15.4) 0.379

FiO2: fraction of inspired oxygen; NSD: normal spontaneous delivery; IQR: interquartile range; iNO: inhaled nitric oxide; HFOV: high-
frequency oscillatory ventilator; WBC: white blood cell; NTISS score: Neonatal Therapeutic Intervention Scoring System; SNAPPE-II:
Score for Neonatal Acute Physiology Perinatal Extension II; & including pneumothorax, pneumomediastinum, and pulmonary interstitial
emphysema; * at onset of respiratory failure; ** including leukocyte-poor red blood cell and/or platelet transfusion; # including congenital
diaphragmatic hernia (21), pulmonary sequestration (3), and pulmonary dysplasia (2).

3.1. Development of Mortality Prediction Model

Several ML models were developed using the training set and then validated in the
test set. The F1 scores, accuracy, and AUC values resulting from the test set are presented
in Table 2. The AUC value of the RF model was the highest among the ML models (0.939
(0.921–0.958)), and the next highest AUC value was achieved by the bagged CART (0.915
(0.891–0.939)). The RF models also achieved the highest accuracy and F1 score. The AUC
values of the NTISS and SNAPPE-II for the prediction of in-hospital mortality were 0.836
(0.800–0.871) and 0.805 (0.766–0.843), respectively. Significant performance was achieved
by both the RF and bagged CART models compared with the conventional scoring systems
(NTISS and SNAPPE-II scores) (Figure 2A). The net benefit of both the RF and bagged CART
models ranged from 3 to 100%, which significantly outperformed the ranges corresponding
to the NTISS and SNAPPE-II scores (Figure 2b, without 95% confidence intervals (CIs);
Supplementary Materials, Supplemental Figure S1, with 95% CI).
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Table 2. Mortality prediction models for neonates on mechanical ventilation for severe respiratory failure in the test set.

Models AUC (95% CI) p Value * p Value # Accuracy F1 Score

NTISS 0.836 (0.800–0.871) 0.701 0.629
SNAPPE-II 0.805 (0.766–0.843) 0.757 0.637

Random Forest 0.939 (0.921–0.958) < 0.0001 < 0.0001 0.877 0.777
Bagged CART 0.915 (0.891–0.939) 0.0003 < 0.0001 0.864 0.774

Support Vector Machine 0.884 (0.856–0.912) 0.0343 0.0010 0.833 0.720
Elastic-net Regularized Regression 0.844 (0.888–0.934) 0.7409 0.1386 0.849 0.754

k-Nearest Neighbor 0.795 (0.759–0.832) 0.1200 0.7345 0.698 0.613
Artificial Neural Networks 0.782 (0.742–0.822) 0.0487 0.4186 0.773 0.635
eXtreme Gradient Boosting 0.776 (0.737–0.815) 0.0307 0.2981 0.719 0.582

NTISS: Neonatal Therapeutic Intervention Scoring System; SNAPPE-II: Score for Neonatal Acute Physiology Perinatal Extension II; AUC:
area under the curve, 95% CI: 95% confidence interval; * compared with NTISS score; # compared with SNAPPE-II score.
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Among the machine learning models, the performances of the RF, bagged CART, and
SVM models were significantly better than those of the XGB, ANN, and KNN models
(Supplementary Materials, Table S2). The RF and bagged CART models also had signifi-
cantly higher accuracy and F1 scores than the XGB, ANN, and KNN models. In addition,
the RF model has a significantly better AUC value than the bagged CART model.

The calibration belts of the RF and bagged CART models and the conventional scoring
systems for NICU mortality prediction are shown in Figure 3. The RF model showed better
calibration among neonates with respiratory failure who were at a high risk of mortality
than did the NTISS and SNAPPE-II scores, especially when the predicted values were
higher than 0.8–0.83.
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Figure 3. Calibration belts of (A) random forest, (B) bagged classification and regression tree (bagged
CART), (C) NTISS, and (D) SNAPPE-II for NICU mortality prediction in the test set.

3.2. Rank of Predictors in the Prediction Model

A total of 41 variables or features were used to develop the prediction model. Of
these variables, 18 (43.9%) were indicative of therapeutic response at the t1, t2, and t3
time periods, and only 5 (12.2%) indicated the initial severity of illness. Although certain
disease entities were significantly associated with a higher risk of final in-hospital mortality
(Supplementary Materials, Table S1), none of them was in the final RF prediction model.
The importance matrix plot for the RF method is shown in Figure 4, which reveals that the
top five most important variables contributing to the model were the OI value at t3, the
AaDO2 values at t3, the PH value at the onset of respiratory failure, the OI value at t2, and
the initial PaO2.

We depicted the SHAP summary plot of RF using the top 20 features of the predic-
tion model to identify the most important features that influenced the prediction model
(Figure 5). A feature with a higher SHAP value indicates a higher likelihood of NICU
mortality based on the prediction model. The red and blue plots in the SHAP represent
larger and smaller values, respectively, which suggest that increasing values or decreasing
values will increase or decrease the predicted probability of mortality, respectively. The
SHAP is consistent with the perfect performance of our RF model.
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4. Discussion

In the NICU, respiratory failure and the need for mechanical intubation often indicate
a higher severity of illness and that the patient is at risk of death. We developed an
RF model trained on 41 binary and continuous variables from more than 1200 neonates
hospitalized in four tertiary-level NICUs of medical centers in Taiwan. We found that
the RF and bagged CART models have significantly better predictive ability than the
traditional neonatal severity scoring systems including the NTISS and SNAPPE-II. The
clinically applicable RF model was explainable, the top important features were identified,
and this model was confirmed to be superior to other ML methods using calibration,
decision curve analyses, and SHAP methods.

Using machine learning algorithms to help clinicians has formed a major emerging
research trend in the past decade [18–20,24–27]. The mortality of critically ill neonates
with respiratory failure has previously been difficult to predict because most neonates can
survive the initial critical period and various life-threatening events may occur during their
long-term hospital courses [28]. Therefore, the successful development of an ML model to
accurately predict the final outcomes of neonates with respiratory failure, most instances of
which occurred in the first week of life, is very important for clinicians’ insights and early
communication with families. In addition, although some disease entities were associated
with a significantly higher risk of in-hospital mortality, none of them were in the final RF
model. We found that nearly half of the top 20 features or variables on the importance
matrix plot and the SHAP summary plot of RF were parameters of therapeutic responses,
which demonstrated the value of data on the first and second days of respiratory failure
and highlighted the importance of the initial therapeutic strategies.
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Various neonatal scoring systems for illness severity have been applied to predict
outcomes of NICU patients, including SNAPPE-II, NTISS, Score for Neonatal Acute Phys-
iology II (SNAP II), and Modified Sick Neonatal Score (MSNS) [13,14,16]. Most of the
scoring systems have the advantages of high applicability, easy interpretation, and accept-
able predictive power (an AUC of approximately 0.86–0.91 for the prediction of mortal-
ity) [16,29,30]. However, the discriminative abilities of these scores will be influenced by
different cutoff points and the therapeutic interventions of different clinicians [16,31,32],
which limit their clinical applications in decision-making, especially at the most critical
time point [13,14]. Therefore, an AUC value of 0.80–0.83 was found in our cohort, which
is relatively lower [31–33], because most of the neonates in our cohort had higher illness
severity. Mesquitz et al. recently concluded that the discriminative abilities of SNAP II
and SNAPPE-II scores to predict in-hospital mortality were only moderate [34]. Instead, a
machine learning model incorporating parameters of therapeutic responses may be more
suitable for clinicians’ judgments, because we found that the important predictive features
were actionable or could be manipulated by the decisions of clinicians. Because many
parameters of therapeutic responses were in the final RF model, it is necessary to build a
statistical and causal model that investigates how physiological factors interact with and
react to interventions. Therefore, the next step to make this model clinically applicable will
be randomized clinical trials.

Among the various machine learning models, we found that decision tree-based
methods, including RF and bagged CART, had superior performances compared to nonlin-
ear methods of ANN or KNN. This observation is also consistent with other ML models
recently developed for medical use [24,35]. Although the tree learner method was applied
in the XGB method, the performance of XGB was the worst in this study. Therefore, we
can conclude that the bootstrap aggregating method of RF and bagged CART was more
suitable than the boosting method of XGB to improve the stability, increase accuracy, reduce
variance, and help to avoid overfitting [36].

The decision curve analysis is used to identify the net benefit of performing various
different ML models at different risk levels and assessing the utility of models for decision-
making [20,21]. The model with a high decision curve analysis can help clinicians in
screening patients who are at higher risk of final mortality. In our analysis, both the RF and
bagged CART models improved the net benefit for predicting the NICU mortality than the
traditional severity scores at a very wide range of threshold probabilities. Therefore, we
showed the threshold range above the prediction curve in the analysis, which indicates the
applicability of our ML algorithms in clinical practice.

In addition, we also applied SHAP to calculate the contribution of each feature to the
RF model. The concept of SHAP is to average the difference between the predicted values
with and without the effect of adding each feature for all combinations and examine the
influence of inputs after machine learning [25,37]. SHAP was used in this study because
most ensemble ML methods have the disadvantage of decreased interpretability after
achieving high accuracy. Because ensemble learning methods are usually more complex
than traditional learning methods, SHAP can be applied to understand the importance of
each feature and which direction the feature affects [25,37]. Thus, we can build a highly
predictive model with good transparency for the outcomes.

There are some limitations in the current study. First, the generalizability of this
model to other institutes has not been determined since this is only a two-center study
and this model has not been validated in a prospective setting. Second, it is inevitable
that some important variables in the training set had missing data in the retrospective
study design of the present study. Although the RF model is proven highly predictive, a
great number of features and therapeutic responses need to be incorporated and complex
computer analyses are needed, which may limit its applicability. Another limitation is
the inability of SHAP values to resolve algorithmic bias [38], because most ML models do
not have underlying causal structure and make predictions based only on the majority of
cases [39]. Last, our RF model incorporated many features of therapeutic responses, which
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were mostly obtained at 12 to 24 h or the second day of respiratory failure; therefore, this
model cannot provide real-time prediction of mortality at the onset of respiratory failure.

5. Conclusions

It has been difficult to estimate the probability of mortality for neonates with respira-
tory failure. We demonstrated that the RF and bagged CART models can more accurately
predict the mortality of critically ill neonates than conventional scoring systems such as
the NTISS and SNAPPE-II scores. These results highlight the applicability of using ML
algorithms for clinical use in the NICU. Further studies are indicated to examine whether
machine learning can also help clinicians make more prompt decisions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedicines9101377/s1, Figure S1: The decision curve analysis; Table S1: Patients charac-
teristics of the survivors versus the NICU mortality; Table S2: P values for differences between the
machine learning models for NICU mortality prediction in the test set.
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