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Background. Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer, which was highly correlated
with metabolic dysfunction. Nevertheless, the association between nuclear mitochondrial-related transcriptome and HCC
remained unclear. Materials and Methods. A total of 147 nuclear mitochondrial-related genes (NMRGs) were downloaded
from the MITOMAP: A Human Mitochondrial Genome Database. The training dataset was downloaded from The Cancer
Genome Atlas (TCGA), while validation datasets were retrieved from the International Cancer Genome Consortium (ICGC)
and Gene Expression Omnibus (GEO). The univariate and multivariate, and least absolute shrinkage and selection operator
(LASSO) Cox regression analyses were applied to construct a NMRG signature, and the value of area under receiver operating
characteristic curve (AUC) was utilized to assess the signature and nomogram. Then, data from the Genomics of Drug
Sensitivity in Cancer (GDSC) were used for the evaluation of chemotherapy response in HCC. Results. Functional enrichment
of differentially expressed genes (DEGs) between HCC and paired normal tissue samples demonstrated that mitochondrial
dysfunction was significantly associated with HCC development. Survival analysis showed a total of 35 NMRGs were
significantly correlated with overall survival (OS) of HCC, and the LASSO Cox regression analysis further identified a 25-
NMRG signature and corresponding prognosis score based on their transcriptional profiling. HCC patients were divided into
high- and low-risk groups according to the median prognosis score, and high-risk patients had significantly worse OS (median
OS: 27.50 vs. 83.18 months, P < 0:0001). The AUC values for OS at 1, 3, and 5 years were 0.79, 0.77, and 0.77, respectively.
The prognostic capacity of NMRG signature was verified in the GSE14520 dataset and ICGC-HCC cohort. Besides, the NMRG
signature outperformed each NMRG and clinical features in prognosis prediction and could also differentiate whether patients
presented with vascular invasions (VIs) or not. Subsequently, a prognostic nomogram (C-index: 0.753, 95% CI: 0.703~0.804)
by the integration of age, tumor metastasis, and NMRG prognosis score was constructed with the AUC values for OS at 1, 3,
and 5 years were 0.82, 0.81, and 0.82, respectively. Notably, significant enrichment of regulatory and follicular helper T cells in
high-risk group indicated the potential treatment of immune checkpoint inhibitors for these patients. Interestingly, the NMRG
signature could also identify the potential responders of sorafenib or transcatheter arterial chemoembolization (TACE)
treatment. Additionally, HCC patients in high-risk group appeared to be more sensitive to cisplatin, vorinostat, and
methotrexate, reversely, patients in low-risk group had significantly higher sensitivity to paclitaxel and bleomycin instead.
Conclusions. In summary, the development of NMRG signature provided a more comprehensive understanding of
mitochondrial dysfunction in HCC, helped predict prognosis and tumor microenvironment, and provided potential targeted
therapies for HCC patients with different NMRG prognosis scores.
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1. Introduction

Globally, primary liver cancer is one of the most aggressive
and difficult-to-treat malignant cancers, with a 5-year sur-
vival rate of less than 21% [1]. Hepatocellular carcinoma
(HCC) comprises the most common type of primary liver
cancer, accounting for 90% of all liver cancer cases [2].
Besides, patients with HCC were often diagnosed in
advanced stage owing to no apparent symptoms in early
stage, probably leading to the poor survival. With the
approval of sorafenib, lenvatinib, and other immunotherapy
regimens for advanced HCC patients, the survival of metas-
tatic or unresectable HCC patients has been improved in
these years, but the therapeutic outcomes are still largely
unsatisfactory [3, 5]. As is known, alpha-fetoprotein (AFP)
is the most widely used serum biomarker for the HCC detec-
tion and treatment evaluation; however, it is not a robust
and specific biomarker for HCC [4]. In addition, vascular
invasion (VI), as a critical risk factor, is the main herald of
HCC recurrence though for HCC patients receiving surgical
resection [5]. Vascular invasion could be divided into two
subtypes, macroscopic vascular invasion and microscopic
vascular invasion, both were highly associated with tumor

recurrence and poor performance status [6]. However, the
limitation in the detection of VI hinders its application as
a robust biomarker for determining the clinical outcomes
of HCC patients. Therefore, novel prognostic models and
better prognostic molecular markers are urgently required
to improve the HCC management and accurately predict
clinical outcomes of HCC, especially for the AFP-negative
HCC.

The liver and mitochondria are the two centers of
metabolism at the whole organism and cellular levels,
respectively. Emerging evidences clearly suggested that
mitochondrial dysfunction or maladaptation contributed to
the detrimental effects on hepatocyte bioenergetics, reactive
oxygen species (ROS) homeostasis, endoplasmic reticulum
(ER) stress, inflammation, and cell death [7–9]. The liver
mitochondria have unique features because the liver plays
a central role in the regulation of a variety of metabolic func-
tions including maintaining the homeostasis of carbohy-
drate, lipid, amino acid, and protein. Previous studies have
revealed critical roles of mitochondrial genes in the carcino-
genesis and development of HCC. For example, mitochon-
drial trans-2-enoyl-CoA reductase (MECR) had been
identified as an oncogene which was significantly
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Figure 1: The flow-process diagram for the construction of the NMRG signature and exploration of clinicopathological association and
potential targeted therapy.
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overexpressed in HCC cell lines [10]. Likewise, overexpres-
sion of mitofusin1 (MFN1) in HCC cells promoted mito-
chondrial fusion and inhibited cell proliferation, invasion,
and migration via modulating metabolic shift from aerobic
glycolysis to oxidative phosphorylation [11]. In addition, it
has been proved that upregulation of aspartyl-tRNA synthe-
tase (DARS2) promoted hepatocarcinogenesis through the
MAPK/NFAT5 pathway [12]. However, most of these stud-
ies focused on a single gene instead of the integrated cluster
of mitochondrial-related genes. Therefore, it will be of more
value to evaluate the role of all the mitochondrial-related
genes in the prognosis of HCC.

In this study, we initially analyzed the transcriptome
profiling of 147 NMRGs and the corresponding clinical data
of patients with HCC from TCGA and then identified 35
NMRGs having significant influence on the survival of
HCC patients by the univariate Cox regression analysis. Sub-
sequently, we used the least absolute contraction and selec-
tion operator (LASSO) regression analysis and finally
developed a novel 25-NMRG prognosis signature. Besides,
the prediction efficacy of the established NMRG prognosis
signature was verified in the validation datasets, including
ICGC-HCC cohort from the ICGC and GSE14520 from
the GEO. Based on the NMRG signature, a nomogram was
further constructed to predict the prognosis of HCC. More-
over, the good AUC values demonstrated the reliable and
stable predicting ability of the prognosis signature and
nomogram. The functional differentiation, tumor microen-
vironment, and treatment response of precision therapy
between high- and low-risk groups were further investigated
to promote the precision medicine for HCC patients. The
study design was mainly exhibited in a work flowchart
(Figure 1).

2. Materials and Methods

2.1. Data Collection. The gene expression data and the clin-
ical information of 365 HCC patients were collected from
the Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort
from TCGA which was regarded as the training dataset
(Table 1), while the ICGC-HCC (namely, LIRI-JP) cohort
with 260 patients and GSE14520 with 242 patients from
the GEO were defined as two independent validation data-
sets. A comprehensive list of NMRGs was downloaded from
the MITOMAP: A Human Mitochondrial Genome Database
(https://www.mitomap.org/MITOMAP, last updated date:
January 15th, 2021), which comprised a total of 147 NMRGs.

2.2. The Analysis of Differentially Expressed Genes in HCC.
The transcriptome data analysis between 369 HCC tumor
tissues and 50 adjacent paired normal tissues was conducted
online in the GEPIA (http://gepia2.cancer-pku.cn) for the
identification of the differentially expressed genes
(DEGs, ∣log 2 − fold change ðFCÞ ∣ >1,Q − value < 0:01)
between the HCC samples and normal samples. The visual-
ization of the volcano plot and heatmap was performed
using the “ggplot” package.

2.3. Signature Construction Based on Nuclear Mitochondrial-
Related Genes. The univariate Cox regression was used to
identify OS-associated NMRGs. Next, the LASSO regression
model was selected to minimize the overfitting and identify
the most significant survival-associated NMRGs in HCC
via the “glmnet” package. Meanwhile, the multivariate Cox
regression analysis was then used to determine the corre-
sponding coefficients. The following formula based on a
combination of coefficient and gene expression was used to
calculate the prognosis score:

Prognosis score = 〠
n

i=1
Genei ∗ coef i, ð1Þ

Table 1: Clinicopathological features of 365 HCC patients from the
TCGA.

Variables Number

Total 365

Age Median (range) 61 [16, 90]

Gender Male 246

Female 119

Alcohol consumption Yes 115

No 250

AFP Median (range) 15 [14, 203540] ng/mL

VI Non-VI 211

Micro-VI 94

Macro-VI 17

Clinical stage Stage I 170

Stage II 84

Stage III 83

Stage IV 4

NA 24

Histological grading G1 55

G2 175

G3 118

G4 12

NA 15

T stage T1 180

T2 91

T3 78

T4 13

NA 3

N stage N0 248

N1 4

NA 113

M stage M0 263

M1 3

NA 99

Hepatitis_B Yes 102

No 263

Hepatitis_C Yes 56

No 309

HCC: hepatocellular carcinoma; VI: vascular invasion; NA: not applicable.
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Figure 2: Continued.
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Figure 2: Mitochondrial dysfunction potentially promoted the hepatocarcinogenesis. (a) Transcriptional profiling of HCC and adjacent
paired normal tissues. (b) Differentially expressed genes (DEGs) between HCC and adjacent paired normal tissues. Red dots represented
significant upregulation and blue dots represented significant downregulation of DEGs in HCC tissues. (c) Identification of biological
functions via the GO pathway enrichment analysis.
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Figure 3: Continued.
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where n, Genei, and coefi represent the number of genes
involved in the signature, the level of gene expression, and
the coefficient value, respectively.

To stratify patients into low- and high-risk groups, a
median value of prognosis score was set for the cutoff value.
The Kaplan-Meier survival curve analysis was conducted by
using the “survival” and “survminer” packages, and log-rank
test was performed to evaluate the survival rates between the
low- and high-risk groups. The AUC values were calculated
via using the “timeROC” package.

2.4. Establishment of a Novel Prognostic Nomogram for HCC.
Several predominant prognostic factors in clinic including
age, gender, AFP, vascular invasion, histological grading,
clinical stages, TNM stages, alcohol consumption, and hepa-
titis status, together with prognosis score of NMRGs signa-
ture were investigated via the univariate and multivariate
Cox regression analyses using the “rms” and “survival” pack-
ages, to find the independent prognostic factors. Next, we
established a prognostic nomogram based on the indepen-
dent prognostic factors.
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Figure 3: Construction and validation of the nuclear mitochondrial-related gene (NMRG) signature. (a) Univariate Cox regression analysis
for selection of NMRGs correlated with overall survival of HCC patients. (b) LASSO Cox regression analysis determined a total of 25
NMRGs as the optimal combination for the NMRG signature construction. The Kaplan-Meier curves for HCC patients in high- and
low-risk groups, from the TCGA cohort (c), from the ICGC-HCC cohort (e), and from the GSE14520 dataset (g). The ROC curves for
OS at 1, 3, and 5 years in TCGA cohort (d), in ICGC-HCC cohort (f), and in GSE14520 dataset (h).
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2.5. Functional Enrichment Analysis. The GO (Gene Ontol-
ogy) enrichment analysis was performed to determine sig-
nificantly enriched GO terms for the differentially
expressed genes between normal and tumor tissue samples.
In order to investigate any changes in biological functions
and related pathways between the high- and low-risk groups,
HALLMARK gene set (including 50 gene sets from Molecu-
lar Signature Database, https://www.gsea-msigdb.org/gsea/
msigdb/, [13]) enrichment analysis (GSEA), and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway
enrichment analysis were performed. GSEA normalized the
Enrichment Score for each gene set to account for the varia-
tion in gene set sizes, yielding a normalized enrichment
score (NES). Enrichment analysis was performed by the
“clusterprofiler” package and visualized using the “ggplot2”.
The differentially expressed genes were defined with ∣log2
− fold change ðFCÞ ∣ >1, P < 0:05 in the functional enrich-
ment analysis.

2.6. Tumor Microenvironment Analysis in HCC. The stro-
mal, immune, and ESTIMATE scores were calculated using
ESTIMATE [14], which could illustrate the properties of

tumor infiltrated cells. Then, a heatmap of gene signature
expression profiles denoting the activities of angiogenesis
and immune further clarified the differentiation of tumor
microenvironment between the high- and low-risk groups
[15]. Finally, the CIBERSORT algorithm analysis was
employed to explore 22 types of tumor-infiltrating immune
cells.

2.7. The Evaluation of Precision Treatment and
Chemotherapy Response. The GSE104580 dataset, including
the transcriptomic data of 147 HCC patients (81 responders
vs. 66 nonresponders) treated with TACE treatment, was
enrolled in the present study to explore the predictive ability
of novel prognosis score in the treatment response. Besides,
GSE109211 dataset, including a total of 67 HCC patient
samples treated with sorafenib (21 responders vs. 46 nonre-
sponders) from the phase III STORM clinical trial
(NCT00692770), was investigated to evaluate the capacity
of prognosis score to predict sorafenib efficacy [16]. Mean-
while, the cell line data from the Genomics of Drug Sensitiv-
ity in Cancer (GDSC, https://www.cancerrxgene.org/) were
downloaded to predict the treatment response of
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Figure 4: Association analysis between the NMRG signature and clinical features. (a) The boxplots showed the distribution of age at
diagnosis between the high- and low-risk groups. (b) The percentage-staked bar plots for gender distribution between the high- and low-
risk groups. (c) The percentage-staked bar plots for the distribution of alcohol consumption between the high- and low-risk groups. (d)
The boxplots showed the distribution of AFP concentration between the high- and low-risk groups. The percentage-staked bar plots for
the distribution of neoplasm cancer stages (e), histological grading (f), T stages (g), N stages (h), M stages (i), Hepatitis_B status (j), and
Hepatitis_C status (k) between the high- and low-risk groups.
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Figure 5: The application of the NMRGs signature in the groups with vascular invasions (VIs) or not. (a) The percentage-staked bar plots
for the distribution of VIs between high- and low- risk groups. (b) Comparison of prognosis score between groups with VIs or not. (c)
Comparison of prognosis score between groups with macro-VIs, micro-VIs, and without VIs. The Kaplan-Meier curves for HCC
patients between micro-VI and none-VI groups (d). (e) Green and purple lines represent macro-VI group and none-VI group,
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chemotherapeutic regimens between high- and low-risk
groups, and the chemical drugs utilized in HCC, such as cis-
platin, paclitaxel, and gemcitabine, for HCC patients were
investigated. The index of half-maximal inhibitory concen-
tration (IC50) was used for the response evaluation.

2.8. Statistical Analysis. All statistical analyses were con-
ducted with the R package (v. 3.4.3, https://rstudio.com/).
Fisher’s test was executed for the comparison of categorical
variables. The Kaplan-Meier curve analysis by using the
log-rank test was used to evaluate the statistical significance
of the survival rates between different risk groups. Concor-

dance index, time-dependent ROC, and calibration were also
important indicators used to assess the nomogram. P < 0:05
was considered statistically significant.

3. Results

3.1. Mitochondrial Dysfunction Contributed to the HCC
Development. Using the ANOVA method, a total of 2,207
DEGs were identified between 369 HCC tumor tissues and
50 adjacent paired normal tissues (∣log2FC ∣ >1,Q − value
< 0:01, Supplementary Table 1), and it was demonstrated
that there were 1,482 genes significantly upregulated and
725 genes significantly downregulated in the HCC tumor
samples (Figures 2(a), 2(b)). In addition, biological
functions and involved pathways of these identified 2,207
DEGs were analyzed by GO enrichment analysis, revealing
that the DEGs were abundantly enriched in the pathways
related to cell metabolisms, including mitochondrial inner
membrane, ATP-dependent chromatin remodeling, and
mitochondrial electron transport, NADH to ubiquinone
pathways (Figure 2(c)), indicating that mitochondrial
dysfunction was closely related to the carcinogenesis and
development of HCC.

3.2. Construction of a Novel Nuclear Mitochondrial-Related
Gene Prognosis Signature for HCC. Univariate Cox regres-
sion analysis was performed to analyze the correlation
between the transcriptional expression level of 147 NMRGs
and the overall survival (OS) of HCC patients from the
TCGA cohort. It was found that the elevated expression of
17 NMRGs was significantly correlated with the poorer
prognosis of HCC patients, whereas the overexpression of
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Figure 6: Comparison of overall survival between high- and low-risk HCC patients in the groups with macro-VIs or micro-VIs. The
Kaplan-Meier curves between high- and low-risk HCC patients in the macro-VI group (a) and micro-VI group (b).

Table 2: Hazard ratios for the NMRG signature and clinical
features via the multivariate Cox regression analysis.

Index Hazard ratio 95% CI P value

Prognosis score 4.65 2.59-8.34 <0.0001
Age 1.04 1.01-1.07 0.01

Gender 0.99 0.47-2.11 0.99

Alcohol consumption 0.77 0.30-1.96 0.58

AFP 1.62 0.79-3.33 0.19

Histological grading 0.66 0.30-1.45 0.30

T stage 1.08 0.1-11.61 0.61

N stage 0.43 0.04-4.48 0.48

M stage 14.53 1.31-160.62 0.03

Hepatitis_B 0.69 0.31-1.54 0.36

Hepatitis_C 1.41 0.49-4.08 0.52

Vascular invasion 1.43 0.68-3.01 0.34

CI: confidence interval. Bold for “significant” in statistical analysis.
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Figure 7: Construction of a novel nomogram for HCC patients based on the NMRG signature. The ROC curves of a variety of clinical features
for overall survival (OS) at 1 (a), 3 (b), and 5 years (c). (d) The NMRG-based nomogram was constructed to predict the OS of HCC patients. (e)
The calibration plots for the evaluation of predicted OS at 1, 3, and 5 years. (f) The ROC curves of the nomogram for OS at 1, 3, and 5 years in the
analysis of TCGA-HCC cohort.
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Figure 8: Continued.
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other 18 NMRGs significantly contributed to the improved
survival (P < 0:05, Figure 3(a)). These 35 OS-related NMRGs
were then enrolled in the LASSO Cox regression analysis,
finally constructing a NMRG prognosis signature for HCC
patients based on the transcriptional profiling of selected
25 NMRGs (NDUFV2, NDUFAF1, COX15, LRPPRC,
MPV17, CARS2, DARS2, GARS, HARS2, LARS, PARS2,
VARS2, MTFMT, TRMT10C, TRMU, C12ORF65, MRPL3,
FRDA, ISCU, COQ6, COQ7, PDSS1, CABC1, SPG7, and
ATAD3), with the optimal value of λ ðλ = 0:0106127Þ
(Figure 3(b)). This novel prognosis score was calculated by
multiplying the gene expression of each gene and its corre-
sponding coefficient (Supplementary Table 2), which was
obtained by the multivariate Cox regression analysis.

3.3. Survival Analysis and Validation of the NMRG
Signature. According to the median prognosis score value,
365 HCC patients were divided into high-risk group and
low-risk group. The analysis of the Kaplan-Meier curve
showed that patients in high-risk group had significantly
worse OS (median OS: 27.50 vs. 83.18 months, P < 0:0001,
Figure 3(c)). Time-dependent ROC analysis was used to
evaluate the prognostic evaluation ability of the NMRG sig-
nature (Figure 3(d)), and the AUC values at 1, 3, and 5 years
for predicting OS were 0.79, 0.77, and 0.77, respectively. Fur-
thermore, two independent cohorts were retrieved to vali-
date the NMRG signature. The Kaplan-Meier curve
analysis demonstrated that patients in high-risk group, from
the ICGC cohort, had the significantly worse OS (median

OS: 48.02 months vs. unreached, P < 0:0001, Figure 3(e)).
The AUC values for predicting OS at the 1-, 2-, and 3-year
timepoints were 0.78, 0.74, and 0.78, respectively
(Figure 3(f)). Furthermore, the NMRG signature was veri-
fied in another independent dataset of GSE14520 from the
GEO database. It could be also observed that patients in
high-risk group had significantly worse OS (median OS:
unreached vs. unreached, P = 0:012, Figure 3(g)). The AUC
values for predicting OS at 1, 3, and 5 years were 0.61,
0.56, and 0.58, respectively (Figure 3(h)).

3.4. Comparison of Clinicopathological Features between the
High- and Low-Risk Groups. The differences of clinicopath-
ological features of patients from the high- and low-risk
groups, in the TCGA cohort, were subsequently analyzed.
The age at diagnosis of patients in the high-risk group did
not differ with that in the low-risk group (median age: 60
[18, 85] vs. 63 [16, 90] months, P = 0:21, Figure 4(a)). Mean-
while, there was no statistically significant difference in gen-
der between these two groups (P > 0:05, Figure 4(b)).
Besides, no significant difference of the alcohol consumption
level was found between the high- and low-risk groups,
either (P = 0:57, Figure 4(c)). As for the level of AFP, it dem-
onstrated that patients in high-risk group had the signifi-
cantly higher level of AFP (median level: 28 vs. 7 ng/mL,
P
̲
< 0:01, Figure 4(d)). Moreover, there were more patients

from the high-risk group having advanced neoplasm cancer
stages (45.35% vs. 54.44% in stage I, 23.84% vs. 25.44% in
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Figure 8: The analysis of genomic alterations between the high- and low-risk groups. (a) The boxplots showed the mutation counts between
the high- and low-risk groups. The genomic profiling of the top 20 most frequently altered genes in the high-risk group (b) and in the low-
risk group (c). (d) Genomic alteration enrichment of altered genes between the high- and low-risk groups. (e) Genomic alteration
enrichment of altered signaling pathways between the high- and low-risk groups. The genomic profiles of altered events in DDR (f),
PI3K (g), and WNT signaling pathways (h).
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stage II, 30.23% vs. 18.34% in stage III, and 0.58% vs. 1.78%
in stage IV, P = 0:05, Figure 4(e)) and higher histological
grading (G1: 7.18% vs. 23.46%, G2: 44.75% vs. 52.51%, G3:
43.09% vs. 22.34%, and G4: 4.97% vs. 1.68%, P < 0:01,

Figure 4(f)). However, no statistically significant difference
in the tumor stage, lymph node invasion, and metastasis
(TNM stage) was observed between these two groups
(P > 0:05, Figures 4(g)–4(i)). Finally, it was found that there
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Figure 9: Functional enrichment analysis between the high- and low-risk groups. The HALLMARK gene set enrichment analysis (a) and
the KEGG pathway enrichment analysis (b). P < 0:05 was considered statistically significant.
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was no significant difference in the ratio of patients infected
with hepatitis B, nor with hepatitis C between the high- and
low-risk groups (P > 0:05, Figures 4(j) and 4(k)).

3.5. Association between NMRG Prognosis Signature and VIs.
In the TCGA cohort, there were 111 patients presented with
VIs (17 patients with macrovascular invasions and 94
patients with microvascular invasions), and 211 patients
did not present with VIs. Further investigation for histopa-
thological subtypes found that more HCC patients with
VIs were included in the high-risk group (macro-VI: 8.05%
vs. 2.47%, micro-VI: 33.56% vs. 24.69%, and none-VI:
58.39% vs. 72.84%, P < 0:01, Figure 5(a)). Remarkably, it
was revealed that patients with VIs had the significantly
higher prognosis score, compared to those without VIs
(Figure 5(b)), while patients with macrovascular invasions
had the highest prognosis score (Figure 5(c)). The survival
analysis demonstrated that patients with macro-VI pheno-
type had significantly worse OS than those without VIs
(median OS macro-VI vs. none-VI: 48.95 vs. 70.01
months, P = 0:024), while there was no significant differ-
ence in the OS between patients with micro-VI and none-
VI, neither between patients with micro-VI and macro-VI
(Figures 5(d)–5(f)). Nevertheless, it was shown that HCC
patients having high prognosis score had worse OS, regard-
less of whether presenting with VI or not (median OS in VI

group: 37.75 vs. 81.67 months, P = 0:011; none-VI group:
55.35 vs. 83.51 months, P = 0:0018, Supplementary
Figure 1A-1B). Of note, in macro-VI group, patients with
high prognosis score exhibited extremely poorer OS (15.77
vs. 48.95 months, P = 0:037, Figure 6(a)). Similarly, patients
in micro-VI group having high prognosis score also had
worse OS, however, with no statistically significant
difference (45.89 vs. 81.67 months, P = 0:15, Figure 6(b)),
mainly owing to the limited patient number.

3.6. Establishment of a Prognostic Nomogram. The multivar-
iate Cox regression analysis exhibited that the prognosis
score was an independent prognostic indicator for OS in
HCC patients from the TCGA cohort (Table 2) and the
ROC curve analysis revealed that the NMRG signature had
the highest sensitivity and specificity in predicting the OS
of HCC patients, compared with clinic-related features,
including AFP, VI, histological grading, and TNM clinical
stages (Figures 7(a)–7(c)). Meanwhile, the NMRG signature
also had better sensitivity and specificity than each single
NMRG alone in the prognosis prediction (Supplementary
Figure 2A-2C). Subsequently, we combined three
independent prognostic indexes, including the age, tumor
metastasis status, and prognosis score to construct a
nomogram to predict the OS of HCC patients
(Figure 7(d)). Each patient had an integrated score
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Figure 10: Comparison of tumor microenvironment (TME) between the high- and low-risk groups. (a) The statistical analyses of the
stromal score, immune score, and ESTIMATE score between the high- and low-risk groups. (b) Heatmap demonstrated the expression
of genes related to angiogenesis (purple), immune and antigen presentation (blue), and myeloid inflammation (brown). (c) The analysis
of 22 immune infiltrated cells between high- and low-risk groups. ∗∗∗∗P < 0:0001, ∗∗∗P < 0:001, ∗∗P < 0:01, ∗P < 0:05.
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according to the prognostic parameters, and the higher the
total score indicated a worse outcome. The calibration
chart showed that the OS probability predicted by the
nomogram approximated the actual OS probability very
well (Figure 7(e)). The C-index of the nomogram was
0.753 (95% CI, 0.703~0.804), and the AUC values of the
nomogram were 0.82, 0.81, and 0.82 at the 1-, 3-, and 5-
year timepoints, respectively (Figure 7(f)).

3.7. Genomic Feature Associated with the NMRG Signature.
Statistical analysis displayed that there was no significant
difference of the mutation count between the high- and
low-risk groups (P = 0:34, Figure 8(a)), but mutation profiles
revealed that the most frequently altered genes between the
high- and low-risk groups were distinct (Figures 8(b) and
8(c)). HCC patients in the high-risk group had a signifi-
cantly higher prevalence of TP53 (frequency: 46% vs. 15%,

P < 0:05, Supplementary Tables 3–4), whereas a higher
prevalence of CTNNB1 was presented in the low-risk
group (frequency: 32% vs. 21%, P < 0:05, Supplementary
Tables 3–4). Then, the altered events of patients between
the high- and low-risk groups were compared (genes were
excluded if their alteration event count less than 5 times
happened simultaneously in both groups), demonstrating
that the prevalence of a total of 61 genes was significantly
different between the high- and low-risk groups (P < 0:05,
Supplementary Table 5). The result showed that 24 altered
genes, including CTNNB1, FBN1, and MT-CO3, were
significantly prevalent in the low-risk group (P < 0:05,
Figure 8(d), Supplementary Table 5), whereas 37 altered
genes, for instance, TP53, LRP1B, and FAT3, were
significantly prevalent in the high-risk group (P < 0:05,
Figure 8(d), Supplementary Table 5). Subsequently,
genomic alterations of the known cancer-related signaling
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Figure 11: The evaluation of treatment responses by the novel prognosis score based on NMRG signature. (a) The treatment response
prediction of the sorafenib therapy in the GSE109211 dataset. (b) The treatment response prediction of the transcatheter arterial
chemoembolization (TACE) therapy in the GSE104580 dataset. (c–j) The boxplots of the evaluated IC50 for commonly used
chemodrugs between the high- and low-risk groups by the analysis of cell line data from the GDSC database. ∗∗∗∗P < 0:0001, ∗P < 0:05.
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pathways, such as DNA Damage Repair (DDR),
Phosphatidylinositol-3-Kinase (PI3K), and WNT signaling
pathway, were further investigated. Of note, it was found
that WNT signaling-related gene CTNNB1 was more
frequently altered in the low-risk group (P < 0:05,
Figure 8(e)), but TSC2 and MTOR associated with PI3K
signaling pathway were significantly enriched in the high-
risk group (P < 0:05, Figure 8(e)). The genomic alteration
profiles describing the altered events in DDR, PI3K, and
WNT signaling pathways were exhibited in Figures 8(f)–8(h).

3.8. Identification of Differential Biological Functions. Fur-
ther analysis of DEGs revealed a total of 599 genes were sig-
nificantly upregulated and 487 genes were downregulated in
low-risk groups (Supplementary Figure 3). Based on the
identified DEGs, the differential molecular mechanisms
between two groups were further elucidated via
HALLMARK gene set and KEGG pathway enrichment
analyses. The HALLMARK gene set enrichment analysis
showed the significant enrichment of E2F targets, G2M
checkpoint, and Myc targets. (Figure 9(a)), while the
KEGG pathway enrichment analysis exhibited a significant
abundance of cell cycle, DNA replication, and spliceosome
(Figure 9(b)). In addition, both HALLMARK gene set
enrichment analysis and KEGG pathway enrichment
analysis showed that the metabolism-related pathways were
significantly enriched, especially for fatty acid metabolism
(Figures 9(a) and 9(b)).

3.9. Correlation between the NMRG Signature and Tumor
Microenvironment. Notably, the stromal score, immune
score, and ESTIMATE score were nearly equivalent between
the high- and low-risk groups (Figure 10(a)). The gene
expression profiles of angiogenesis, immune and antigen
presentation, and myeloid inflammation signatures between
the high- and low-risk groups demonstrated that there were
no distinct differences in these tumor microenvironment-
related pathways (Figure 10(b)). The CIBERSORT algorithm
analysis revealed that B cell memory, T cell follicular helper,
regulatory T cells (Tregs), activated NK cells, macrophage
M0, and neutrophils were significantly enriched in the high-
risk group (P < 0:05, Figure 10(c)). Besides, the low-risk group
had a significant abundance of naive B cells, resting NK cells,
monocyte, and macrophage M1 (P < 0:05, Figure 10(c)).

3.10. The Signaling Pathways Potentially Targeted by
Sorafenib Therapy. An independent cohort (GSE109211),
including 67 HCC patients treated with sorafenib, was uti-
lized to evaluate the efficacy of sorafenib therapy in
NMRG-risk groups. Notably, HCC patients who responded
to sorafenib had significantly lower prognosis score
(P = 0:0066, Figure 11(a)). Subsequently, the specific signal-
ing pathways potentially targeted by sorafenib were further
investigated. The DEG analysis showed a total of 1399 genes
significantly upregulated and 1547 genes downregulated in
the responders (Supplementary Figure 4). By the statistical
analysis, the overlapping gene cluster between the low-risk
and responder groups included 519 upregulated genes and
457 downregulated genes (Supplementary Figure 5A-5B),

which might be highly correlated with the response of
sorafenib therapy. Moreover, gene set enrichment analysis
revealed that the upregulated pathways of xenobiotic
metabolism, oxidative phosphorylation, apoptosis, and
coagulation (by HALLMARK, Supplementary Figure 5C),
ribosome and glycine, serine and threonine metabolism (by
KEGG, Supplementary Figure 5D), besides, the
downregulated pathways of KRAS signaling_DN (by
HALLMARK, Supplementary Figure 5E) and olfactory
transduction (by KEGG, Supplementary Figure 5F) were
enriched, which was associated with treatment response of
sorafenib.

3.11. Treatment Response Prediction of TACE Therapy and
Chemotherapy. Another independent cohort (GSE104580
dataset) of 147 HCC patients who received the treatment
of TACE was further employed in the present study. Of
note, it was found that HCC patients responding to TACE
therapy had markedly lower prognosis score (P < 0:0001,
Figure 11(b)), further showing the robust capacity of progno-
sis score to predict treatment response. In addition, cell line
data from the GDSC database were employed to predict the
IC50 of commonly used chemodrugs for HCC patients from
TCGA cohort, wherein six chemodrugs (cisplatin, gemcita-
bine, doxorubicin, methotrexate, vorinostat, and vinblastine)
exhibited significantly lower IC50 in the high-risk group,
indicating that those patients seemed to be more sensitive
to the chemotherapeutic regimens containing these drugs
(Figures 11(c)–11(j)). Conversely, the significantly lower
estimated IC50 values in the low-risk group demonstrated
that patients with lower prognosis score could benefit more
from paclitaxel and bleomycin (Figures 11(d) and 11(h)).

Subsequently, the chemodrug efficacy under VI stratifica-
tion (macro-VI, micro-VI, or non-VI) was further evaluated.
The sensitivities to those investigated drugs were nearly equiv-
alent between micro-VI and non-VI groups (Supplementary
Figure 6). However, four chemodrugs (including cisplatin,
gemcitabine, vorinostat, and methotrexate) had significantly
lower IC50 in the macro-VI group (Supplementary
Figure 6), while patients from micro-VI or non-VI group
seemed to be more sensitive to paclitaxel (Supplementary
Figure 6). Furthermore, among patients presented with the
non-VI or micro-VI phenotype, lower estimated IC50 values
of cisplatin, vorinostat, and methotrexate were observed in
the high-risk group, whereas the low-risk group had lower
estimated IC50 values of paclitaxel and bleomycin instead
(Supplementary Figure 7 & 8). Besides, among non-VI
patients, the lower IC50 values of gemcitabine, doxorubicin,
and vinblastine were further found in the high-risk group
(Supplementary Figure 7). Owing to the limited number of
macro-VI patients (N = 17), there was no significant
difference observed in the IC50 values of nearly all
investigated chemodrugs between the high- and low-risk
groups, except bleomycin (Supplementary Figure 9).

4. Discussion

A robust prognostic predictor for HCC patients is urgently
needed due to the heterogeneous outcomes of HCC patients
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and the difficulties in the management and treatment strat-
egy selection. Evidences from preclinical research supported
mitochondrial dysfunction as a key factor in the pathogene-
sis of metabolic liver disease and cancer, which further sug-
gested the development of targeting treatments for
mitochondrial genes as an attractive strategy to suppress
the HCC progression [17]. In the current study, functional
enrichment analysis of DEGs between HCC tumors and
normal tissue samples revealed that mitochondrial dysfunc-
tion was pivotal in the development of HCC, and aberrant
expression of 35 NMRGs exerted notable influences on the
prognosis of HCC. By the optimal combination, a 25-
NMRG signature based on their transcriptional profiling
was eventually constructed with the good performance in
predicting prognosis and differentiating patients with or
without VIs in HCC. The clinical association analysis also
showed that higher NMRG prognosis score was positively
correlated with advanced stages and tumor progression,
which could help improve the management of patients with
HCC and provide decision-making guidance on the treat-
ment selection. Moreover, the NMRG signature had rela-
tively better sensitivity and specificity as an independent
prognostic predictor compared to the traditionally clinico-
pathological features. The NMRG signature-based prognos-
tic nomogram was finally constructed, with better AUC
values and great potential to be applied to clinical practices.

A pan-cancer study by Yuan et al. revealed that the coex-
pression networks of mitochondrial genes and their related
nuclear genes were distinct across 13 cancer types, and in
HCC the coexpression of mitochondrial genes was highly
correlated with cancer-related signaling pathways, such as
PI3K [18]. Besides, the enriched pathways were further
found to be implicated with cell cycle, such as E2F targets,
G2/M checkpoint, MYC targets, mitotic spindle, and DDR-
related pathways in multiple cancer types [18], consistent
with the results of functional enrichment of DEGs between
the high- and low-risk groups in the present study. As
reported previously, some certain mitochondrial-related
genes have been proved to be strongly associated with prog-
nosis in certain cancer types. For example, NDUFV2, known
as NADH ubiquinone oxidoreductase core subunit V2,
might act as a prognostic factor in uveal melanoma [19].
The aberrant expression of NADH dehydrogenase 1 alpha
subcomplex assembly factor 1 (NDUFAF1) caused mito-
chondrial respiration deficiency, which was correlated with
the carcinogenesis of primary pancreatic cancer [20]. Some
other NMRGs, such as LRPPRC [21], DARS2 [12], GARS
[22], ATAD3 [23], TRMU [24], and PDSS1 [25] had been
identified to be correlated with the carcinogenesis and pro-
gression in HCC. Moreover, the aberrant expression of
COX15 [26], LARS [27], PARS2 [28], MRPL3 [29], ISCU
[30], COQ7 [31], SPG7 [32], TRMT10C [33], and COQ6
[34] were found to have certain influence on the tumor inva-
sions in many other cancer types. However, in the present
study, it was the first time that the expressions of these
NMRGs, including HARS2, MPV17, MTFMT, C12ORF65,
FRDA, CARS2, VARS2, and CABC1, were found to have
influence on the progression of HCC patients. Although
some of them had already been identified to be associated

with metabolic diseases or neurological disorders [35–42].
Further studies are merited to give deep insights on how
they involve in the development of HCC and whether they
could be targeted for treatment. In the present study, com-
prehensive transcriptomic profiling of NMRGs offered a
deep insight for the role of mitochondria in HCC.

Clinical association analysis demonstrated that the high
prognosis score could discriminate HCC patients with
inferior outcomes. Furthermore, some known biomarkers
such as AFP and des-carboxy prothrombin had very low
sensitivity in detecting the HCC invasiveness [43]. VI, as
an aggressive histopathological subtype of HCC, accounts
for nearly 25%~50% of HCC [5, 44]. In the present study
the prognosis score of NMRG signature had the ability to
differentiate HCC patients presented with or without VIs,
especially for patients with macro-VIs. In addition, the
higher NMRG signature prognosis score indicated the
poorer OS of HCC patients no matter whether patients
presented with macro-VIs, micro-VIs, or not. In short,
the novel constructed NMRG signature, which was not
only a prognostic biomarker but also a VI predictor, would
help clinicians and/or physicians better manage the HCC
patients.

In addition to the enriched pathways of cell cycle and
DDR which were of importance to carcinogenesis and pro-
gression of tumor [45, 46], it could be conspicuously found
that fatty acid metabolism was the top-ranked enriched
pathway. The recent study revealed that RIPK3, playing an
important role in necroptosis, could regulate fatty acid
metabolism including fatty acid oxidation in hepatocarcino-
genesis [47], and the abnormal regulation of fatty acid oxida-
tion causing the large amount of ROS promoted HCC cell
migration and invasion [48]. Therefore, the elimination of
ROS via antioxidant drugs [49] and/or the blockade of fatty
acid metabolism [47] could, as an effective treatment strat-
egy, suppress the HCC progression to improve the HCC
prognosis, simultaneously regulating the cell cycle and/or
DDR-related pathway via CDK inhibitors [50]. Moreover,
the accumulation of ROS could induce tumor-associated
macrophage M2 polarization in the tumor microenviron-
ment of HCC [47], which would enhance the progression
of HCC [51]. Thus, the regulation of mitochondrial respira-
tion or ROS level, as a treatment strategy for HCC, also
could restrain the immunosuppressive activities of tumor-
associated macrophages and improve the tumor microenvi-
ronment. In the present study, the high-risk group had the
higher fraction of B cell memory, T cell follicular helper,
and regulatory T cells (Tregs). These tumor-infiltrating lym-
phocytes (TILs) were suggested to be related to the response
of immune checkpoints such as PD-1 and PD-L1 [25, 52], so
that the efficacy of PD-1/PD-L1 inhibitors may be differed
between high- and low-risk patients. Meanwhile, in patients
from the high-risk group there was a significantly higher
abundance of Tregs indicating the suppressive immunother-
apy in HCC as reported before [53], while tivozanib [54] and
cystathionine β-synthase [55] could decrease Tregs infiltra-
tion. Therefore, the combined treatment of immune check-
point inhibitors, such as PD-1/PD-L1 inhibitors, with the
antioxidant drugs and tivozanib or cystathionine β-synthase
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was highly recommended for the advanced HCC patients
with high prognosis score. However, the combinational
treatment of immune checkpoint inhibition, Tregs suppres-
sion, and ROS elimination needed verification in the clinical
trials in the future, and the role of mitochondria in reshap-
ing the tumor microenvironment of HCC also needed fur-
ther investigation.

In the past researches, though sorafenib was of benefit to
some HCC patients, most of patients had poor response to
sorafenib or eventually had resistance to molecularly tar-
geted therapies [56, 57]. Nevertheless, the estimate of the
treatment strategy of classical drug sorafenib for HCC dem-
onstrated that the prognosis score was significantly corre-
lated with the response of sorafenib treatment. Moreover,
the low prognosis score could predict the response of TACE
treatment as well, revealing that the NMRG signature could
serve as a response-related biomarker in the treatment of
HCC. The response evaluation of commonly used chemo-
therapy in HCC further illustrated that high-risk patients
might be more sensitive to the cisplatin, gemcitabine, doxo-
rubicin, methotrexate, vorinostat, and vinblastine. It was
reported previously that cisplatin could restrain the activity
of androgen receptor to increase the efficacy of immunother-
apies [58]. Gemcitabine, one of nonhepatotoxic chemother-
apy drugs, could improve the prognosis of unresectable
HCC patients [59]. Doxorubicin could synergize with
icaritin-inducing immunogenic cell death and synergistic
effects functioned to remodel the immunosuppressive tumor
microenvironment in HCC [60]. While an antifolate drug of
methotrexate could provoke the oxidative stress to sensitize
HCC cells to sorafenib [61]. The combination of vorinostat
and oxaliplatin had the ability of inhibiting HCC cell prolif-
eration [62]. Moreover, vinblastine in combination with rap-
amycin was found to suppress HCC-related angiogenesis
[63]. In reverse, it was more suitable for patients in the
low-risk group to take the chemotherapy of paclitaxel and
bleomycin. Paclitaxel could suppress the tumorigenesis of
HCC via regulating cell proliferation and apoptosis [64].
While bleomycin was often utilized to induce DNA damage
for cancer therapy, but which was seldomly used in the treat-
ment of HCC except that the TACE combined with bleomy-
cin was recommended for HCC patients [65]. In the present
study, it was found that HCC patients in the low-risk group
seemed to be more sensitive to chemotherapeutic treatment
of paclitaxel and bleomycin, whereas HCC patients in high-
risk group, cisplatin, gemcitabine, doxorubicin, methotrex-
ate, vorinostat, and vinblastine were highly recommended
if receiving the TACE treatment. Of note, all the identified
drugs with more sensitivity in the high- or low-risk groups
are needed to be validated in further clinical trials, though
the GDSC dataset was very useful reporting drug sensitivity
retrieved by experiments with cell lines, but without utilizing
clinical data or tumor tissue samples. As is known, HCC
is resistant to immunotherapy and chemotherapy [66];
however, chemotherapy drugs aiming at the regulation of
tumor microenvironment [60], inhibiting angiogenesis [67],
directly regulating the fatty acid metabolism [68], or the
combinational treatment have the potential to suppress the
HCC progression.

Genomic alteration enrichment analysis further identified
that WNT signaling-related gene CTNNB1 was more fre-
quently altered in the low-risk group. The missense mutation
in CTNNB1 encoding β-catenin had the trunk role in the
tumorigenesis of HCC and regulated tumor cell proliferation
and tumor angiogenesis [69], while molecularly targeted ther-
apy forCTNNB1 had been found to have the potential in treat-
ment of HCC [70], which was suggested as a promising
therapy for HCC patients with low prognosis score in this
study. In the high-risk group, altered genes TSC2 and MTOR
were highly enriched and these genes played important roles
in the activation of PI3K/AKT/mTOR pathways that could
lead to the HCC carcinogenesis, progression, and invasion
[71]; thus, mTOR and/or PI3K inhibitors had a potential value
in treating patients with HCC [72], particularly for the
advanced HCC patients in the present study. But inhibitions
of these signaling pathways might generate a prooncogenic
tumor microenvironment and impel the recurrence of HCC
[72], so an integrated effective strategy in treating HCC
patients was urgently needed by the combinational treatment
of molecularly targeted therapy, immunotherapy, chemother-
apy, and other potential therapeutic strategies.

Overall, the novel constructed NMRG signature had robust
and stable sensitivity and specificity as a prognostic predictor in
HCC. In addition, the NMRG signature-based prognostic
nomogram had the superior ability of predicting OS for HCC
patients. But there were some limitations; in the present study,
bioinformatic analyses were based on the public databases,
and only nuclear mitochondrial-related genes were taken to
construct the signature because of a lack of the transcription
data of mitochondrial genes. We have been collecting the
HCC patient samples, which would be used for the validation
of the NMRG signature, and we also would take both NMRGs
and mitochondrial genes together into consideration to further
investigate the comprehensive role of mitochondria in the pro-
gression of HCC. Moreover, the suggested precision medicines
would be verified in the lab and for clinical trials. Noteworthily,
HARS2,MPV17,MTFMT, C12ORF65, FRDA, CARS2, VARS2,
and CABC1 were newly identified to be correlated with HCC
prognosis, which also needed to be further investigated in fur-
ther studies in vivo and/or in vitro.
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