
Chapter 13
Disease Spreading in Time-Evolving Networked
Communities
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Abstract Human communities are organized in complex webs of contacts that may
be represented by a graph or network. In this graph, vertices identify individuals
and edges establish the existence of some type of relations between them. In
real communities, the possible edges may be active or not for variable periods
of time. These so-called temporal networks typically result from an endogenous
social dynamics, usually coupled to the process under study taking place in the
community. For instance, disease spreading may be affected by local information
that makes individuals aware of the health status of their social contacts, allowing
them to reconsider maintaining or not their social contacts. Here we investigate the
impact of such a dynamical network structure on disease dynamics, where infection
occurs along the edges of the network. To this end, we define an endogenous
network dynamics coupled with disease spreading. We show that the effective
infectiousness of a disease taking place along the edges of this temporal network
depends on the population size, the number of infected individuals in the population
and the capacity of healthy individuals to sever contacts with the infected, ultimately
dictated by availability of information regarding each individual’s health status.
Importantly, we also show how dynamical networks strongly decrease the average
time required to eradicate a disease.
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13.1 Introduction

Understanding disease spreading and evolution involves overcoming a multitude
of complex, multi-scale challenges of mathematical and biological nature [1, 2].
Traditionally, the contact process between an infected individual and the susceptible
ones was assumed to affect equally any susceptible in a population (mean-field
approximation, well-mixed population approximation) or, alternatively, all those
susceptible living in the physical neighborhood of the infected individual (spatial
transmission). During recent years, however, it has become clear that disease
spreading [2–5] transcends geography: the contact process is no longer restricted
to the immediate geographical neighbors, but exhibits the stereotypical small-world
phenomenon [6–9], as testified by recent global pandemics (together with the
impressive amount of research that has been carried out to investigate them) or,
equally revealing, the dynamics associated with the spreading of computer viruses
[5, 10–23]. Recent advances in the science of networks [3, 4, 19, 24, 25] also
provided compelling evidence of the role that the networks of contacts between
individuals or computers play in the dynamics of infectious diseases [4, 7]. In
the majority of cases in which complex networks of disease spreading have been
considered [9], they were taken to be a single, static entity. However, contact
networks are intrinsically temporal entities and, in general, one expects the contact
process to proceed along the lines of several networks simultaneously [11, 13–
16, 18, 23, 24, 26–36]. In fact, modern societies have developed rapid means
of information dissemination, both at local and at centralized levels, which one
naturally expects to alter individuals’ response to vaccination policies, their behavior
with respect to other individuals and their perception of likelihood and risk of
infection [37]. In some cases one may even witness the adoption of centralized
measures, such as travel restrictions [38, 39] or the imposition of quarantine
spanning parts of the population [40], which may induce abrupt dynamical features
onto the structure of the contact networks. In other cases, social media can play
a determinant role in defining the contact network, providing crucial information
on the dynamical patterns of disease spreading [41]. Furthermore, the knowledge
an individual has (based on local and/or social media information) about the
health status of acquaintances, partners, relatives, etc., combined with individual
preventive strategies [42–50] (such as condoms, vaccination, the use of face masks
or prophylactic drugs, avoidance of visiting specific web-pages, staying away from
public places, etc.), also leads to changes in the structure and shape of the contact
networks that naturally acquire a temporal dimension that one should not overlook.

Naturally, the temporal dimension and multitude of contact networks involved
in the process of disease spreading render this problem intractable from an analytic
standpoint. Recently, sophisticated computational platforms have been developed to
deal with disease prevention and forecast [5, 10, 11, 18, 27, 29–36, 51–55]. The
computational complexity of these models reflects the intrinsic complexity of the
problem at stake, and their success relies on careful calibration and validation proce-
dures requiring biological and socio-geographic knowledge of the process at stake.



13 Disease Spreading in Time-Evolving Networked Communities 293

Our goal here, instead, will be to answer the following question: What is the
impact of a temporal contact network structure in the overall dynamics of disease
progression? Does one expect that it will lead to a rigid shift of the critical
parameters driving disease evolution, as one witnesses whenever one includes
spatial transmission patterns? Or even to an evanescence of their values whenever
one models the contact network as a (static and infinite) scale-free network, such that
the variance of the network degree distribution becomes arbitrarily large? Or will the
temporal nature of the contact network lead to new dynamical features? And, if so,
which features will emerge from the inclusion of this temporal dimension?

To answer this question computationally constitutes, in general, a formidable
challenge. We shall attempt to address the problem analytically, and to this end some
simplifications will be required. However, the simplifications we shall introduce
become plausible taking into consideration recent results (i) in the evolutionary
dynamics of social dilemmas of cooperation, (ii) in the dynamics of peer-influence,
and even (iii) in the investigation of how individual behavior determines and is
determined by the global, population wide behavior. All these recent studies point
out to the fact that the impact of temporal networks in the population dynamics
stems mostly from the temporal part itself, and not so much from the detailed shape
and structure of the network [56–63]. Indeed, we now know that (i) different models
of adaptive network dynamics lead to similar qualitative features regarding their
impact in what concerns the evolution of cooperation [56–63], (ii) the degree of
peer-influence is robust to the structural patterns associated with the underlying
social networks [62], and (iii) the impact of temporal networks in connecting
individual to collective behavior in the evolution of cooperation is very robust and
related to a problem of N-body coordination [61, 63]. Altogether, these features
justify that we model the temporal nature of the contact network in terms of a simple,
adaptive network, the dynamics of which can be approximately described in terms
a coupled system of ODEs. This “adaptive-linking” dynamics, as it was coined [28,
57–59], leads to network snapshot structures that do not replicate what one observes
in real-life, in the same sense that the small-world model of Watts and Strogatz does
not lead to the heterogeneous and diverse patterns observed in data snapshots of
social networks. Notwithstanding, the active-linking dynamics allows us to include,
analytically, the temporal dimension into the problem of disease dynamics. The
results [28], as we elaborate in Sects. 3 and 4, prove rewarding, showing that the
temporal dimension of a contact network leads to a shift of the critical parameters
(defined below) which is no longer rigid but, instead, becomes dependent on the
frequency of infected individuals in the population. This, we believe, constitutes a
very strong message with a profound impact whenever one tries to incorporate the
temporal dimension into computational models of disease forecast.

This chapter is organized as follows. In the following Sect. 2, we introduce the
standard disease models we shall employ, as well as the details of the temporal
contact network model. Section 3 is devoted to present and discuss the results, and
Sect. 4 contains a summary of the main conclusions of this work.
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13.2 Models and Methods

In this section, we introduce the disease models we shall employ which, although
well-known and widely studied already, are here introduced in the context of
stochastic dynamics in finite populations, a formulation that has received less
attention than the standard continuous model formulation in terms of coupled
Ordinary Differential Equations (ODEs). Furthermore, we introduce and discuss
in detail the temporal contact network model.

13.2.1 Disease Spreading Models in Finite Populations

Here we introduce three standard models of disease transmission that we shall
employ throughout the manuscript, using this section at profit to introduce also
the appropriate notation associated with stochastic dynamics of finite populations
and the Markov chain techniques that we shall also employ in the remainder of
this chapter. We shall start by discussing the models in the context of well-mixed
populations, which will serve as a reference scenario for the disease dynamics,
leaving for the next section the coupling of these disease models with the temporal
network model described below. We investigate the popular Susceptible-Infected-
Susceptible (SIS) model [2, 4], the Susceptible-Infected (SI) model [2] used to
study, e.g., AIDS [2, 64], and the Susceptible-Infected-Recovered (SIR) model
[2, 65], more appropriate to model, for instance, single season flu outbreaks [2]
or computer virus spreading [7]. It is also worth pointing out that variations of
these models have been used to successfully model virus dynamics and the interplay
between virus dynamics and the response of the immune system [66].

13.2.1.1 The SIS Model

In the SIS model individuals can be in one of two epidemiological states: Infected
(I) or Susceptible (S). Each disease is characterized by a recovery rate (•) and an
infection rate (œ). In an infinite, well-mixed population, the fraction of infected
individuals (x) changes in time according to the following differential equation

Px D � hki xy � ıx;

where y D 1 � x is the fraction of susceptible individuals and hki the average number
of contacts of each individual [4]. There are two possible equilibria (Px D 0): x D 0
and x D 1 � R�1

0 , where R0 D �hki/ı denotes the basic reproductive ratio. The value
of R0 determines the stability of these two equilibria: x D 1 � R�1

0 is stable when
R0 > 1 and unstable when R0 < 1.
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Fig. 13.1 Schematic representation of the Markov Chain associated with the stochastic SIS
dynamics

Let us now move to finite populations, and consider the well-mixed case where
the population size is fixed and equal to N. We define a discrete stochastic Markov
process describing the disease dynamics associated with the SIS model. Each con-
figuration of the population, which is defined by the number of infected individuals i,
corresponds to one state of the Markov chain. Time evolves in discrete steps and two
types of events may occur which change the composition of the population: infection
events and recovery events. This means that, similar to computer simulations of the
SIS model on networked populations, at most one infection or recovery event will
take place in each (discrete) time step. Thus, the dynamics can be represented as a
Markov chain M with NC1 states [67, 68] — as many as the number of possible
configurations — illustrated in the following Fig. 13.1.

In a finite, well-mixed population, the number i of infected will decrease at a rate
given by

T� .i; r/ D 1

�0

i

N
ı; (13.1)

where �0 denotes the recovery time scale, i
N the probability that a randomly selected

individual is infected and ı the probability that this individual recovers. Adopting
�0 as a reference, we assume that the higher the average number of contacts hki, the
smaller the time scale � INF at which infection update events occur (� INF D �0/hki)
[4]. Consequently, the number of infected will also increase at a rate given by

TC .i; r/ D hki
�0

N � i

N

i

N � 1
�: (13.2)

Equations (13.1) and (13.2) define the transitions between different states. This
way, we obtain the following transition matrix for M:

P D

2
666664

1 0 0 : : : 0 0 0

T�
1 1 � TC

1 � T�
1 TC

1 : : : 0 0 0
:::

:::
:::

: : :
:::

:::
:::

0 0 0 : : : T�
N�1 1 � TC

N�1 � T�
N�1 TC

N�1

0 0 0 : : : 0 T�
N 1 � T�

N

3
777775

; (13.3)
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where each element pkj of P represents the probability of moving from state k to
state j during one time step. The state without any infected individual (iD0) is an
absorbing state of M. In other words, the disease always dies out and will never
re-appear, once this happens.

Average Times to Absorption

At this level of approximation, it is possible to derive an analytical expression for the
average time ti it takes to reach the single absorbing state of the SIS Markov chain
(i.e., the average time to absorption) starting from a configuration in which there are
i infected individuals. Denoting by Pi(t) the probability that the disease disappears
at time t when starting with i infected individuals at time 0, we may write [69]

ti �
1X

tD0

tPi.t/: (13.4)

Using the properties of Pi(t) we obtain the following recurrence relation for ti

ti D �
1 � TC

i

�
ti C TC

i tiC1 C 1; (13.5)

whereas for tN we may write

tN D T�
N tN�1 C �

1 � T�
N

�
tN C 1: (13.6)

Defining the auxiliary variables �i D T�

i

TC

i

and qi D
iQ

lD1

�l, a little algebra allows us

to write, for t1

t1 D 1

qN�1T�
N

C
N�1X
kD1

1

TC
k qk

q; (13.7)

such that ti can be written as a function of t1 as follows

ti D
iX

kD1

sk D t1

i�1X
kD0

qk �
i�1X
kD0

qk

i�1X
kD0

1

TC
j qj

: (13.8)

The intrinsic stochasticity of the model, resulting from the finiteness of the
population, makes the disease disappear from the population after a certain amount
of time. As such, the population size plays an important role in the average time to
absorption associated with a certain disease, a feature we shall return to below.
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Quasi-Stationary Distributions in Finite Populations

Equations (13.1) and (13.2) define the Markov chain M just characterized. The
fraction of time the population spends in each state is given by the stationary
distribution of M, which is defined as the eigenvector associated with eigenvalue
1 of the transition matrix of M [67, 68]. The fact that in the SIS model the state
without infected (iD0) is an absorbing state of the Markov chain, implies that the
standard stationary distribution will be completely dominated by this absorbing
state, which precludes one to gather information on the relative importance of other
configurations. This makes the so-called quasi-stationary distribution of M [70]
the quantity of interest. This quantity allows us to estimate the relative prevalence
of the population in configurations other than the absorbing state, by computing
the stationary distribution of the Markov chain obtained from M by excluding
the absorbing state iD0 [70]. It provides information on the fraction of time the
population spends in each state, assuming the disease does not go extinct.

The Infinite, Well-Mixed Populations as a Limiting Case

The Markov process M defined before provides a finite population analogue of the
well-known mean-field equations written at the beginning of Sect. 2.1.1. Indeed, in
the limit of large populations, �0G.i/ D TC.i/ � T�.i/ provides the rate of change
of infected individuals. For large N, replacing i

N by x and N�i
N by y, the gradients of

infection which characterize the rate at which the number of infected are changing
in the population, are given by

�0G.i/ D hki N � i

N

i

N � 1
� � i

N
ı

N!1����! hki �xy � ıx:

Again, we obtain two roots: �0G(i) D 0 for i D 0 and i�r0
D N � .N�1/ ı

hki� . Moreover,
i�r0

becomes the finite population equivalent of an interior equilibrium for R0 �
�
ı

hki N
N�1

> 1 (note that, for large N we have that N
N�1

� 1). The disease will most
likely expand whenever i < i�r0

, the opposite happening otherwise.

13.2.1.2 The SI Model

The SI model is mathematically equivalent to the SIS model with ı D 0, and has
been employed to study for instance the dynamics of AIDS. The Markov Chain
representing the disease dynamics is therefore defined by transition matrix Eq.
(13.3), with T�

i D 0 for all i. The remaining transition probabilities TC
i (0 < i < N)

are exactly the same as for the SIS model. Since all T�
i equal zero, the Markov

Chain has two absorbing states: the canonical one without any infected (iD0) and
the one without any susceptible (iDN). The disease will expand monotonically as
soon as one individual in the population gets infected, ultimately leading to a fully
infected population. The average amount of time after which this happens, which
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we refer to as the average infection time, constitutes the main quantity of interest.
This quantity can be calculated analytically [28]: The average number of time steps
needed to reach 100% infection, starting from i infected individuals is given by

ti D
N�1X
jDi

1

TC
j

: (13.9)

13.2.1.3 The SIR Model

With SIR one models diseases in which individuals acquire immunity after recov-
ering from infection. We distinguish three epidemiological states to model the
dynamics of such diseases: susceptible (S), infected (I) and recovered (R), indicating
those who have become immune to further infection.

The SIR model in infinite, well-mixed populations is defined by a recovery rate
ı and an infection rate �. The fraction of infected individuals x changes in time
according to the following differential equation

Px D hki �xy � ıx; (13.10)

where y denotes the fraction of susceptible individuals, which in turn changes
according to

Py D � hki �xy: (13.11)

Finally, the fraction of individuals z in the recovered class changes according to

Pz D ı x: (13.12)

To address the SIR model in finite, well-mixed populations, we proceed in a
way similar to what we have done so far with SIS and SI models. The Markov
Chain describing the disease dynamics becomes slightly more complicated and
has states (i, r), where i is the number of infected individuals in the population
and r the number of recovered (and immune) individuals (i C r � N). A schematic
representation of the Markov Chain is given in Fig. 13.2.

Note that the states (0, r), with 0 � r � N, are absorbing states. Each of these
states corresponds to the number of individuals that are (or have become) immune
at the time the disease goes extinct.

Consider a population of size N with average degree hki. The number of infected
will increase with a rate

TC .i; r/ D hki
�0

N � i � r

N

i

N � 1
� (13.13)
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Fig. 13.2 Schematic representation of the Markov Chain associated with the stochastic SIR
dynamics

and decrease with a rate

T� .i; r/ D 1

�0

i

N
ı; (13.14)

where �0 denotes the recovery time scale. As before, the gradient of infection G(i),
such that �0G.i/ D TC.i/ � T�.i/, measures the likelihood for the disease to either
expand or shrink in a given state, and is given by

�0G .i; r/ D hki N � i � r

N

i

N � 1
� � i

N
ı

N!1����! hki �xy � ıx: (13.15)

Note that we recover Eq. (13.10) in the limit N ! 1. For a fixed number of
recovered individuals r0, we have that �0G(i, r0) D 0 for i D 0 and for i�r0

D N �
.N�1/ı

hki� � r0. For Rr0

0 D hki �
ı

N�r0

N�1
> 1, i�r0

becomes the finite population analogue
of an interior equilibrium. Furthermore, one can show that the partial derivative
@G.i;r/

@i has at most one single root in (0, 1), possibly located at ir0 D i�r0
2

� i�r0
.

Hence, G(i, r0) reaches a local maximum at ir0(given that at that point @2G.i;r/
@i2

ˇ̌
ˇ
ir0

D
� 2hki�

N.N�1/
< 0). The number of infected will therefore most likely increase for i < i�r0

(assuming r0 immune individuals), and most likely decrease otherwise.
The gradient of infection also determines the probability to end up in each

of the different absorbing states of the Markov chain. These probabilities can be
calculated analytically [28]. To this end, let us use ya

i;r to denote the probability that
the population ends up in the absorbing state with a recovered individuals, starting
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from a state with i infected and r recovered. We obtain the following recurrence
relationship for ya

i;r

ya
i;r D T� .i; r/ ya

i�1;rC1 C TC .i; r/ ya
iC1;r C �

1 � T� .i; r/ � TC .i; r/
�

ya
i;r;

(13.16)

which reduces to

ya
i;r D

�
T� .i; r/ C TC�

i; r
���1 �

T� .i; r/ ya
i�1;rC1 C TC�

i; r
�

ya
iC1;r

�
: (13.17)

The following boundary conditions

yr
0;r D 1;

ya
0;r D 0 if r ¤ a;

ya
i;r D 0 if r > a;

(13.18)

allow us to compute ya
i;r for every a, i and r.

13.2.2 Network Model

Our network model explicitly considers a finite and constant population of N
individuals. Its temporal contact structure allows, however, for a variable number
of overall links between individuals, which in turn will depend on the incidence of
disease in the population. This way, infection proceeds along the links of a contact
network whose structure may change based on each individual’s health status and
the availability of information regarding the health status of others. We shall assume
the existence of some form of local information about the health status of social
contacts. Information is local, in the sense that individual behavior will rely on the
nature of their links in the contact network. Moreover, this will influence the way
in which individuals may be more or less effective in avoiding contact with those
infected while remaining in touch with the healthy.

Suppose all individuals seek to establish links at the same rate c. For simplicity,
we assume that new links are established and removed randomly, a feature which
usually does not always apply in real cases, where the limited social horizon of
individuals or the nature of their social ties may constrain part of their neighborhood
structure (see below). Let us further assume that links may be broken off at different
rates, based on the nature of the links and the information available about the
individuals they connect: Let us denote these rates by bpq for links of type pq
(p , q 2 fS, I, Rg. We assume that links are bidirectional, which means that we have
links of pq types SI, SR, and IR. Let Lpq denote the number of links of type pq
and LM

pq the maximum possible number of links of that type, given the number of
individuals of type S, I and R in the population. This allows us to write down (at a
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mean-field level) a system of ODEs [57, 58] for the time evolution of the number of
links of pq-type (Lpq) [57, 58]

PLpq D c
�
LM

pq � Lpq
� � bpqLpq

which depends on the number of individuals in states p and q (LM
pp D p .p � 1/ =2

and LM
pq D pq for p ¤ q) and thereby couples the network dynamics to the disease

dynamics. In the steady state of the linking dynamics ( PLpq D 0), the number of
links of each type is given by L�

pq D 'pqLM
pq, with 'pq D c/(c C bpq) the fractions

of active pq-links, compared to the maximum possible number of links LM
pq, for

a given number of S, I and R. In the absence of disease only SS links exist, and
hence �SS determines the average connectivity of the network under disease free
conditions, which one can use to characterize the type of the population under
study. In the presence of I individuals, to the extent that S individuals manage
to avoid contact with I, they succeed in escaping infection. Thus, to the extent
that individuals are capable of reshaping the contact network based on available
information of the health status of other individuals, disease progression will be
inhibited. In the extreme limit of perfect information and individual capacity to
immediately break up contacts with infected, we are isolating all infected, and as
such containing disease progression. Our goal here, however, is to understand how
and in which way local information, leading to a temporal reshaping of the network
structure, affects overall disease dynamics.

13.2.3 Computer Simulations

We investigate the validity of the approximations made to derive analytical results
as well as their robustness by means of computer simulations. All individual-based
simulations start from a complete network of size ND100. Disease spreading and
network evolution proceed together under asynchronous updating. Disease update
events take place with probability (1 C � )�1, where � D �NET /�DIS. We define �DIS

as the time-scale of disease progression, whereas �NET is the time scale of network
change. The parameter � D �NET /�DIS provides the relative time scale in terms of
which we may interpolate between the limits when network adaptation is much
slower than disease progression (� ! 0) and the opposite limit when network
adaptation is much faster than disease progression (� ! 1). Since � D �NET /�DISis
the only relevant parameter, we can make, without loss of generality, �DIS D 1.
For network update events, we randomly draw two nodes from the population. If
connected, then the link disappears with probability given by the respective bpq.
Otherwise, a new link appears with probability c. When a disease update event
occurs, a recovery event takes place with probability (1 C hki)�1, an infection event
otherwise. In both cases, an individual j is drawn randomly from the population. If j
is infected and a recovery event has been selected then j will become susceptible
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(or recovered, model dependent) with probability •. If j is susceptible and an
infection event occurs, then j will get infected with probability œ if a randomly
chosen neighbor of j is infected. The quasi-stationary distributions are computed (in
the case of the SIS model) as the fraction of time the population spends in each
configuration (i.e., number of infected individuals) during 109 disease event updates
(107 generations; under asynchronous updating, one generation corresponds to N
update events, where N is the population size; this means that in one generation,
every individual has one chance, on average, to update her epidemic state). The
average number of infected hIi and the mean average degree of the network hki�

observed during these 107 generations are kept for further plotting. We have checked
that the results reported are independent of the initial number of infected in the
network. Finally, for the SIR and SI models, the disease progression in time, shown
in the following sections, is calculated from 104 independent simulations, each
simulation starting with 1 infected individual. The reported results correspond to
the average amount of time at which i individuals become infected.

13.3 Results and Discussion

In this section we start by (i) showing that a quickly adapting community induces
profound changes in the dynamics of disease spreading, irrespective of the under-
lying epidemic model; then, (ii) we resort to computer simulations to study the
robustness of these results for intermediate time-scales of network adaptation;
finally, (iii) we profit from the framework introduced above to analyze the impact
of information on average time for absorption and disease progression in adaptive
networks.

13.3.1 Disease Spreading in a Quickly Adaptive Network
Structure

Empirically, it is well-known that often individuals prevent infection by avoiding
contact with infected once they know the state of their contacts or are aware of the
potential risks of such infection [31, 33, 42–50]: such is the case of many sexually
transmitted diseases [42, 71–73], for example, and, more recently, the voluntary use
of face masks and the associated campaigns adopted by local authorities in response
to the SARS outbreak [40, 43–45] or even the choice of contacting or not other
individuals based on information on their health status gathered from social media
[41, 74, 75]. In the present study, individual decision is based on available local
information about the health state of one’s contacts. Thus, we can study analytically
the limit in which the network dynamics — resulting from adaptation to the flow
of local information — is much faster than disease dynamics, as in this case, one
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may separate the time scales between network adaptation and contact (disease)
dynamics: The network has time to reach a steady state before the next contact takes
place. Consequently, the probability of having an infected neighbor is modified by
a neighborhood structure which will change in time depending on the impact of the
disease in the population and the overall rates of severing links with infected.

Let us start with the SIR model. The amount of information available translates
into differences mostly between the break-up rates of links that may involve a
potential risk for further infection (bSI , bIR, bII), and those that do not (bSS, bSR,
bRR). Therefore, we consider one particular rate bI for links involving infected
individuals (bI � bSI D bIR D bII), and another one, bH , for links connecting healthy
individuals (bH � bSS D bSR D bRR). In general, one expects bI to be maximal when
each individual has perfect information about the state of her neighbors and to
be (minimal and) equal to bH when no information is available, turning the ratio
between these two rates into a quantitative measure of the efficiency with which
links to infected are severed compared to other links. Note that we reduce the model
to two break-up rates in order to facilitate the discussion of the results. Numerical
simulations show that the general principles and conclusions remain valid when
all break-up rates are incorporated explicitly. It is worth noticing that three out of
these six rates are of particular importance for the overall disease dynamics: bSS,
bSR and bSI . These three rates, combined with the rate c of creating new links,
define the fraction of active SS, SR and SI links, and subsequent correlations between
individuals [76], and therefore determine the probability for a susceptible to become
infected (see Models and Methods). This probability will increase when considering
higher values of c (assuming bI > bH). In other words, when individuals create new
links more often, therefore increasing the likelihood of establishing connections to
infected individuals (when present), they need to be better informed about the health
state of their contacts in order to escape infection. In the fast linking limit, the other
three break-up rates (bII , bIR and bRR) will also influence disease progression since
they contribute to changing the average degree of the network.

When the time scale for network update (�NET ) is much smaller than the one for
disease spreading (�DIS), we can proceed analytically using at profit the separation of
times scales. In practice, this means that the network has time to reach a steady state
before the next disease event takes place. Consequently, the probability of having
an infected neighbor is modified by a neighborhood structure which will change
in time depending on the impact of the disease in the population and the overall
rates of severing links with infected individuals. For a given configuration (i,r) of
the population, the stationary state of the network is characterized by the parameters
'SS, 'SI and 'SR. Consequently, the number of infected increases at a rate [28]

TC .i; r/ D hki N � i � r

N

�SI i

�SS .N � i � r � 1/ C �SI i C �SRr
�; (13.19)

where we made �0 D 1. The effect of the network dynamics becomes apparent in
the third factor, which represents the probability that a randomly selected neighbor
of a susceptible is infected. In addition, Eq. (13.14) remains valid, as the linking
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dynamics does not affect the rate at which the number of infected decreases. It is
noteworthy that we can write Eq. (13.19) in the form

TC .i; r/ D hki N � i � r

N

i

N � 1
�A; (13.20)

which is formally equivalent to Eq. (13.13) and shows that disease spreading in a
temporal adaptive network is equivalent to that in a well-mixed population with (i)
a frequency dependent average degree hki and (ii) a transmission probability that is
rescaled compared to the original � according to �A D ��1�, where

� D �SS

�SI
C

�
1 � �SS

�SI

�
i

N � 1
C

�
�SR � �SS

�SI

�
r

N � 1
: (13.21)

Note that this expression remains valid for both SIR, SIS (r D 0) and SI (ı D 0,
r D 0) models. Since the lifetime of a link depends on its type, the average degree
hki of the network depends on the number of infected in the population, and hence
becomes frequency (and time) dependent, as hki depends on the number of infected
(through LM

pq) and changes in time. Note that � scales linearly with the frequency of
infected in the population, decreasing as the number of infected increases (assuming
�SS

ı
�SI > 1); moreover, it depends implicitly (via the ratio �SS

ı
�SI) on the amount

of information available.
It is important to stress the distinction between the description of the disease

dynamics at the local level (in the vicinity of an infected individual) and that
at the population wide level. Strictly speaking, a dynamical network does not
change the disease dynamics at the local level, meaning that infected individuals
pass the disease to their neighbors with probability intrinsic to the disease itself.
At the population level, on the other hand, disease progression proceeds as if
the infectiousness of the disease effectively changes, as a result of the network
dynamics. Consequently, analyzing a temporal network scenario at a population
level can be achieved via a renormalization of the transmission probability, keeping
the (mathematically more attractive) well-mixed scenario. In this sense, from a
well-mixed perspective, dynamical networks contribute to changing the effective
infectiousness of the disease, which becomes frequency and information dependent.
Note further that this information dependence is a consequence of using a single
temporal network for spreading the disease and information. Interestingly, adaptive
networks have been shown to have a similar impact in social dilemmas [63]. From
a global, population-wide perspective, it is as if the social dilemma at stake differs
from the one every individual actually plays.

As in Sect. 2, one can define a gradient of infection G, which measures the
tendency of the disease to either expand or shrink in a population with given
configuration (defined by the number of individuals in each of the states S, I and
R). To do so, we study the partial derivative @G.i;r/

@i at i D 0
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Fig. 13.3 Disease spreading under fast linking dynamics in the SIS model. The left panel shows
the gradient of infection G as a function of the fraction of infected for different values of the
rate b1 at which links with infected disappear (bI � bSI D bII): bI D 0.8 (dotted line), bI D 0.4
(dashed line) and bI D 0.2 (solid line). The right panel shows the corresponding quasi-stationary
distributions, obtained analytically (lines) and via individual-based computer simulations (circles
for bI D 0.8, squares for bI D 0.4 and crosses for bI D 0.2). We use bH � bSS D 0.2, c D 0.25,
N D 100, N� =ı D 4 and � D 10�2

@G .i; r/

@i

ˇ̌
ˇ̌
iD0

D � ı

N
CN � r

N2
��SI

�
2 .N�r/ C r .r�1/ �RR� .N�r/ .N�r�1/ �SS

r�SRC .N�r�1/ �SS

	
:

(13.22)

This quantity exceeds zero whenever

�SI
�

ı

N � r

N

�
2 .N � r/ C r .r � 1/ �RR � .N � r/ .N � r � 1/ �SS

r�SR C .N � r � 1/ �SS

	
> 1:

(13.23)

Note that taking r D 0 yields the basic reproductive ratio RA
0 for both SIR and SIS:

RA
0 � N�SI

�
ı

> 1. On the other hand, whenever RA
0 < 1, eradication of the disease is

favored in the SIS model (G(i)<0), irrespective of the fraction of infected, indicating
how the presence of information (bH < bI) changes the basic reproductive ratio.

In Fig. 13.3 we illustrate the role of information in the SIS model by plotting G
for different values of bI (assuming bH < bI) and a fixed transmission probability �.
The corresponding quasi-stationary distributions are shown in the right panel and
clearly reflect the sign of G. Whenever G(i) is positive (negative), the dynamics
will act to increase (decrease), on average, the number of infected. Figure 13.3
indicates how the availability of local information hinders disease progression: For
bI D 0.75 the interior root of G(i) disappears, making disease expansion unlikely in
any configuration of the population.

The analysis of the gradient of infection of the SIS model has the advantage of
showing the effect of adaptive networks in a one-dimensional simplex (the fraction
of infected). Yet, an analogous result holds for the SIR model. The gradient of
infection now also depends on the number of recovered (r) individuals in the
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Fig. 13.4 Gradient of infection in the SIR model in a network with information (solid black line,
bI D 0.8, bH D 0.2), and without information (dashed white line, bI D bH D 0.2). Each point in the
triangle (the so-called simplex) satisfies that population size is conserved, i.e., iCrCsDN. Vertices
of the simplex represent populations with only one class of individuals present. Lines in the interior
of the simplex indicate configurations in which G(i, r) D 0. For each case, disease expansion is
more likely than disease contraction in configurations above the line, and less likely otherwise,
showing that availability of information greatly reduces the regions of state space in which disease
may progress We use the following parameter values: (c D 0:25; N D 100; N� =ı D 10)

population and, once again, allows us to identify when disease expansion will be
favored or not. Figure 13.4 gives a complete picture of the gradient of infection,
using the appropriate simplex structure in which all points satisfy the relation
iCrCsDN. The dashed line indicates the boundary G(i, r) D 0 in case individuals
do not have any information about the health status of their contacts, i.e., links
that involve infected individuals disappear at the same rate as those that do not
(bI D bH). Disease expansion is more likely than disease contraction (G(i, r) > 0)
when the population is in a configuration above the line, and less likely otherwise.
Similarly, the solid line indicates the boundary G(i, r) D 0 when individuals share
information about their health status, and use it to avoid contact with infected.
Once again, the availability of information modifies the disease dynamics, inhibiting
disease progression for a broad range of configurations.



13 Disease Spreading in Time-Evolving Networked Communities 307

13.3.2 Analysis of Intermediate Time-Scales Through
Computer Simulations

Up to now we have assumed that the network dynamics proceeds much faster than
disease spreading (the limit � ! 0). This may not always be the case, and hence
it is important to assess the domain of validity of this limit. In the following,
we use computer simulations to verify to which extent these results, obtained
analytically via time scale separation, remain valid for intermediate values of the
relative timescale� for the linking dynamics. We start with a complete network
of size N, in which initially one individual is infected, the rest being susceptible.
As stated before, disease spreading and network evolution proceed simultaneously
under asynchronous updating. Network update events take place with probability
(1 C � )�1, whereas a disease model (SI, SIS or SIR) state update event occurs
otherwise. For each value of � , we run 104 simulations. For the SI model, the
quantity of interest to calculate is the average number of generations after which
the population becomes completely infected. These values are depicted in Fig. 13.5.

The lower dashed line indicates the analytical prediction of the infection time in
the limit � ! 1 (the limit when networks remain static), which we already recover
in the simulations for � > 102. When � is smaller than 102, the average infection
time significantly increases, and already reaches the analytical prediction for the
limit � ! 0 (indicated by the upper dashed line) when � < 1. Hence, the validity of
the time scale separation does again extend well beyond the limits one might expect.

For the SIR model, we let the simulations run until the disease goes extinct,
and computed the average final fraction of individuals that have been affected by

Fig. 13.5 Disease spreading in the SI model for variable time scales � of the linking dynamics.
Solid circles show the average number of generations to reach a fully infected population, starting
from one single infected individual, obtained in simulation. Dashed lines indicate the analytical
predictions for these values, either in the limit � ! 0 (upper dashed line), or in the limit � ! 1
(lower dashed line). We use the following parameter values: bI D 0.8, bH D 0.2, c D 0.25, N D 100
and � D 0.001
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Fig. 13.6 Disease spreading in the SIR model for variable time scales � of the linking dynamics.
Solid circles show the final fraction of recovered individuals as a function of � in populations with
initially one infected. The upper (lower) dashed line shows the corresponding analytical prediction
in the limit � ! 1 (� ! 0). We use the following parameter values: bI D 0.8, bH D 0.2, c D 0.25,
� D 0.01, ı D 0.15 and N D 100

the disease, which corresponds to the final fraction of individuals in the recovered
class. These results are depicted in Fig. 13.6.

The upper dashed line indicates the expected fraction of recovered individuals in

a static network (� ! 1). This value is obtained by calculating
NP

iD0

iyi
1;0, where yi

1;0

is given by Eqs. (13.17) and (13.18). One observes that linking dynamics does not
affect disease dynamics for � > 10. Once � drops below ten, a significantly smaller
fraction of individuals is affected by the disease. This fraction reaches the analytical
prediction for � ! 0 as soon as � < 0.1. Hence, and again, results obtained via
separation of time scales remain valid for a wide range of intermediate time scales.

We finally investigate the role of intermediate time scales in the SIS model. We
performed computer simulations in the conditions discussed already, and computed
several quantities that we plot in Fig. 13.7.

Figure 13.7 shows the average hIi of the quasi-stationary distributions obtained
via computer simulations (circles) as a function of the relative time scale � of
network update. Whenever � ! 1, we can characterize the disease dynamics
analytically, assuming a well-mixed population (complete graph), whereas for
� ! 0 we recover the analytical results obtained in the fast linking limit. At
intermediate time scales, Fig. 13.7 shows that as long as � is smaller than ten,
network dynamics contributes to inhibit disease spreading by effectively increasing
the critical infection rate. Overall, the validity of the time scale separation extends
well beyond the limits one might anticipate based solely on the time separation
ansatz. As long as the time scale for network update is smaller than the one for
disease spreading (� < 1), the analytical prediction for the limit � ! 0, indicated
by the lower dashed line in Fig. 13.7, remains valid. The analytical result in the
extreme opposite limit (� ! 1), indicated by the upper dashed line in Fig. 13.7,
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Fig. 13.7 Disease spreading under linking dynamics in the SIS model. Circles show results of
individual-based simulations for the quasi-stationary average fraction of infected hIi as function
of � . The lower (upper) dashed line shows the analytical prediction of hIi for � ! 0 (� ! 1),
calculated as the average of the quasi-stationary distribution. The analytical prediction in the fast
linking limit (� ! 0) remains valid as long as � < 1, whereas the prediction in the limit of static
networks (� ! 1) remains valid as long as � > 105. The solid line depicts the analytical prediction
of hIi in static networks whose average degree equals the value obtained computationally for the
average connectivity of the network at each given� . Results show that for � > 102, the network
dynamics influences disease progression only by controlling hki� . We use bI D 0.8, bH D 0.2,
c D 0.25, N D 100 and N� =ı D 4

holds as long as � > 105. Moreover, it is noteworthy that the network dynamics
influences the disease dynamics both by reducing the frequency of interactions
between susceptible and infected, and by reducing the average degree of the
network. These complementary effects are disentangled in intermediate regimes,
in which the network dynamics is too slow to warrant sustained protection of
susceptible individuals from contacts with infected, despite managing to reduce
the average degree (not shown). In fact, for � > 10 the disease dynamics is mostly
controlled by the average degree, as shown by the solid lines in Fig. 13.7. Here,
the average stationary distribution was determined by replacing, in the analytic
expression for static networks, hki by the time-dependent average connectivity hki�

computed numerically. This, in turn, results from the frequency dependence of hki.
When bI > bH , the network will reshape into a configuration with smaller hki as
soon as the disease expansion occurs. For � < 1, hki� reflects the lifetime of SS
links, as there are hardly any infected in the population. For 100 < � < 103, the
network dynamics proceeds fast enough to reduce hki, but too slowly to reach its
full potential in hindering disease progression. Given the higher fraction of infected,
and the fact that SI and II links have a shorter lifetime than SS links, the average
degree drops when increasing � from 1 to 103. Any further increase in � leads to a
higher average degree, as the network approaches its static limit.
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Fig. 13.8 Impact of
information on times to
absorption. Average number
of generations required for
disease eradication in an
adaptive contact network for
different rates bI , using the
SIS model. The remaining
parameters are bH D 0.2,
c D 0.25 and N D 100. The
availability of information
drastically reduces the time
for disease eradication

13.3.3 Average Time to Absorption in Adaptive Networks

Contrary to the deterministic SIS model, the stochastic nature of disease spreading
in finite populations ensures that the disease disappears after some time. However,
this result is of little relevance given the times required to reach the absorbing state
(except, possibly, in very small communities). Indeed, the characteristic time scale
of the dynamics plays a determinant role in the overall epidemiological process and
constitutes a central issue in disease spreading.

Figure 13.8 shows the average time to absorption t1 in adaptive networks for
different levels of information, illustrating the spectacular effect brought about by
the network dynamics on t1. While on networks without information (bI D bH)
t1 rapidly increases with the rate of infection œ, adding information moves the
fraction of infected individuals rapidly to the absorbing state, and, therefore, to the
disappearance of the disease.

Moreover, the size of the population can have a profound effect on t1. With
increasing population size, the population spends most of the time in the vicinity
of the state associated with the interior root of G(i). For large populations, this acts
to reduce the intrinsic stochasticity of the dynamics, dictating a very slow extinction
of the disease, as shown in Fig. 13.9.

When recovery from the disease is impossible, a situation captured by the SI
model, the population will never become disease-free again once it acquires at least
one infected individual. The time to reach absorbing state in which all individuals
are infected, again depends on the presence of information. When information
prevails, susceptible individuals manage to resist infection for a long time, thereby
delaying the rapid progression of the disease, as shown in the inset of Fig. 13.10.
Naturally, the average number of generations needed to reach a fully infected
population increases with the availability of information, as illustrated in the main
panel of Fig. 13.10.
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Fig. 13.9 Impact of population size on the average times to absorption t1. (a) Average number of
generations required for disease eradication in the SIS model in static networks of different size N,
while keeping the average degree hki constant (hki D 49). (b) Quasi-stationary distribution of the
number of infected for the same values of N and hki. The disease parameters satisfy hki�/ı D 2

Fig. 13.10 Impact of information on infection times. The main plot shows the average number
of generations after which a disease infects the entire population in the SI model, using the same
parameters as in Fig. 13.8. The inset shows how, starting from one infected individual, the fraction
of infected changes in time for the same rates bI and � D 10�3. The results obtained via individual-
based computer simulations (circles, � D 10�1) fit perfectly with those calculated analytically
(lines)

13.4 Conclusions

Making use of three standard models of epidemics involving a finite population in
which infection takes place along the links of a temporal graph, the nodes of which
are occupied by individuals, we have shown analytically that the bias introduced
into the graph dynamics resulting from the availability of information about the
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health status of others in the population induces fundamental changes in the overall
dynamics of disease progression.

The network dynamics employed here differs from those used in most other
studies [29, 32–36, 51–55]. We argue, however, that the differences obtained stem
mostly from the temporal aspect of the network, and not so much from the detailed
dynamics that is implemented. Importantly, temporal network dynamics leads to
additional changes in R0 compared to those already obtained when moving from
the well-mixed assumption to static networks [77]. An important ingredient of our
model, however, is that the average degree of the network results from the self-
organization of the network structure, and co-evolves with the disease dynamics. A
population suffering from high disease prevalence where individuals avoid contact
in order to escape infection will therefore exhibit a lower average degree than
a population with hardly any infected individuals. Such a frequency-dependent
average degree further prevents that containment of infected individuals would
result in the formation of cliques of susceptible individuals, which are extremely
vulnerable to future infection, as reported before [36, 51, 54].

The description of disease spreading as a stochastic contact process embedded
in a Markov chain constitutes a second important ingredient of the present model.
This approach allows for a direct comparison between analytical predictions and
individual-based computer simulations, and for a detailed analysis of finite-size
effects and convergence times, whose exponential growth will signal possible
bistable disease scenarios. In such a framework, we were able to show that temporal
adaptive networks in which individuals may be informed about the health status
of others lead to a disease whose effective infectiousness depends on the overall
number of infected in the population. In other words, disease propagation on
temporal adaptive networks can be seen as mathematically equivalent to disease
spreading on a well-mixed population, but with a rescaled effective infectiousness.
In accord with the intuition advanced in the introduction, as long as individuals
react promptly and consistently to accurate available information on whether their
acquaintances are infected or not, network dynamics effectively weakens the disease
burden the population suffers. Last but not least, if recovery from the disease is
possible, the time for disease eradication drastically reduces whenever individuals
have access to accurate information about the health state of their acquaintances and
use it to avoid contact with those infected. If recovery or immunity is impossible,
the average time needed for a disease to spread increases significantly when such
information is being used. In both cases, our model clearly shows how availability of
information hinders disease progression (by means of quick action on infected, e.g.,
their containment via link removal), which constitutes a crucial factor to control the
development of global pandemics.

Finally, it is also worth mentioning that knowledge about the health state of
others may not always be accurate or available in time. This is for instance the
case for diseases where recently infected individuals remain asymptomatic for a
substantial period. The longer the incubation period associated with the disease,
the less successful individuals will be in escaping infection, which in our model
translates into a lower effective rate of breaking SI links, with the above mentioned
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consequences. Moreover, different (social) networks through which awareness of
the health status of others proceeds may lead to different rates of information
spread. One may take these features into account by modeling explicitly the
spread of information through a coupled dynamics between disease expansion and
individuals’ awareness of the disease [31, 33].

Creation and destruction of links may for instance not always occur randomly,
as we assumed here, but in a way that is biased by a variety of factors such as
social and genetic distance, geographical proximity, family ties, etc. The resulting
contact network may therefore become organized in a specific way, promoting the
formation of particular structures, such as networks characterized by long-tailed
degree distributions or with strong topological correlations among nodes [3, 78–
80] which, in turn, may influence the disease dynamics. The impact of combining
such effects, resulting from specific disease scenarios, with those reported here
will depend on the prevalence of such additional effects when compared to link-
rewiring dynamics. A small fraction of non-random links, or of ties which cannot
be broken, will likely induce small modifications on the average connectivity of
the contact network, which can be incorporated in our analytic expressions without
compromising their validity regarding population wide dynamics. On the other
hand, when the contact network is highly heterogeneous (e.g., exhibiting pervasive
long-tail degree distributions), non-random events may have very distinct effects,
from being almost irrelevant (and hence can be ignored) to inducing hierarchical
cascades of infection [81], in which case our results will not apply.
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