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Maren Julia Pröll1, Christiane Neuhoff1*, Karl Schellander1, Muhammad Jasim Uddin2,

Mehmet Ulas Cinar3, Sudeep Sahadevan4, Xueqi Qu5, Md. Aminul Islam1, Mikhael Poirier1,

Marcel A. Müller6, Christian Drosten6, Dawit Tesfaye1, Ernst Tholen1, Christine Große-

Brinkhaus1

1 Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn,

Germany, 2 School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, Australia,

3 Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkey, 4 BRIC -

Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark, 5 Laboratory for

Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced

Technology, Chinese Academy of Sciences, Shenzhen, China, 6 Institute of Virology, Helmut-Ruska-Haus,
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Abstract

The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that

leads to high financial and production losses in the global swine industry. The pathogenesis

of this disease is dependent on a multitude of factors, and its control remains problematic.

The immune system generally defends against infectious diseases, especially dendritic

cells (DCs), which play a crucial role in the activation of the immune response after viral

infections. However, the understanding of the immune response and the genetic impact on

the immune response to PRRS virus (PRRSV) remains incomplete. In light of this, we inves-

tigated the regulation of the host immune response to PRRSV in porcine lung DCs using

RNA-sequencing (RNA-Seq). Lung DCs from two different pig breeds (Pietrain and Duroc)

were collected before (0 hours) and during various periods of infection (3, 6, 9, 12, and 24

hours post infection (hpi)). RNA-Seq analysis revealed a total of 20,396 predicted porcine

genes, which included breed-specific differentially expressed immune genes. Pietrain and

Duroc infected lung DCs showed opposite gene expression courses during the first time

points post infection. Duroc lung DCs reacted more strongly and distinctly than Pietrain lung

DCs during these periods (3, 6, 9, 12 hpi). Additionally, cluster analysis revealed time-

dependent co-expressed groups of genes that were involved in immune-relevant pathways.

Key clusters and pathways were identified, which help to explain the biological and func-

tional background of lung DCs post PRRSV infection and suggest IL-1β1 as an important

candidate gene. RNA-Seq was also used to characterize the viral replication of PRRSV for

each breed. PRRSV was able to infect and to replicate differently in lung DCs between the

two mentioned breeds. These results could be useful in investigations on immunity traits in

pig breeding and enhancing the health of pigs.
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Introduction

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically

important viral pig diseases worldwide [1]. The PRRS virus (PRRSV) is a single-stranded 15 kb

positive-sense RNA virus [2,3]. In the late 1980s, the first clinical outbreak was observed in the

United States, and in 1991, the virus was isolated and named PRRSV Lelystad strain (LV) in

the Netherlands [4,5]. PRRS is characterized by reproductive failure in sows and respiratory

disease patterns in pigs of all ages [4,6]. PRRS leads to high financial and production losses in

the global swine industry [7–9]. The control of PRRS within a pig population remains prob-

lematic due to its etiopathology, which relies on multiple factors, such as infectious agents, the

host, environmental and management considerations as well as genetic factors of host and

virus [10,11]. Moreover, due to the limited availability of immunologically effective vaccines,

the control of PRRSV still remains problematic [12–14].

In several studies, the mechanisms by which PRRSV modulates the innate immune

response by altering cytokine patterns have been discussed [15–17]. PRRSV has developed var-

ious strategies to evade the host’s immune response in innate cells, such as macrophages,

monocytes and dendritic cells (DCs) [5,15,16,18–22]. The innate immune response is the first

line of defense and activates adaptive host defense mechanisms [23]. DCs are the important

antigen-presenting cells that are responsible for the activation of adaptive immune cells and

the production of cytokines and chemokines as well as playing a role as intercellular messen-

gers [2,6,24]. These DCs are described as “gatekeepers” of the adaptive immune system (bridge

between innate and adaptive immune response) [25]. Furthermore, variations in the host’s

susceptibility and resistance could be explained by genetic components involved in the

response to the PRRSV infection [26,27]. The understanding of the genetic elements, their

functions, and the reasons for their resulting ineffective immune response to PRRSV infection

still remains unclear. Therefore, the objectives of this study were to investigate the transcrip-

tome profile of lung DCs of two genetically different pig breeds (sire lines) after PRRSV infec-

tion in vitro and to examine the temporal changes in transcriptional profiles using the

RNA-Seq technology. The transcriptome profiles were obtained by applying a Gene Set

Enrichment Analysis (GSEA) to characterize the functional background of lung DCs post

PRRSV infection and to improve the understanding of the hosts’ innate immune responses.

The results will help to improve the health of pigs based on the knowledge gained about the

breed-dependent differences in response to PRRSV.

Materials and methods

Ethics statements

The research proposal was approved by the Veterinary and Food Inspection Office, Siegburg,

Germany (ref. 39600305-547/15). The piglets were exposed to the same unique environmental

conditions and humanely euthanized with ketamine and T61 (Pharmazeutische Handelge-

sellschaft mbH, Garbsen—Berenbostel, Germany). Data recording and sample collection were

conducted strictly in line with German animal welfare law.

Animals and tissues

Three Duroc and three Pietrain female piglets (30 days old) were selected at the teaching and

research station in Frankenforst, University of Bonn, Germany. The piglets had been weaned

and were free from all major pig diseases (PRRSV, porcine circovirus type 2, porcine parvovi-

rus). The animals were kept and fed according to the institutional guidelines and animal
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husbandry regulations of Germany (ZDS) [28]. Upon euthanasia, the lungs and trachea were

carefully removed and transported on ice to the lab.

Preparation of porcine dendritic cells

Porcine lung DCs were isolated under sterile conditions as described previously [17] with

some additional protocol modifications. First, the lungs were washed with sterile calcium-

magnesium free GIBCO1 Dulbecco’s Phosphate buffer saline (DPBS) (Thermo Scientific™,

Cat #14190094). Pulmonary alveolar macrophages (PAMs) were removed by lung lavage to

minimize cell contamination [29]. Cleaned lung parts were minced into small pieces in ice-

cold DPBS. Afterwards, the lung pieces were poured in 50 ml tubes with DPBS supplemented

with 2.5 mg of Liberase™ TL Research Grade (Roche, Cat #5401119001) and 20 μl of DNase I

(Qiagen GmbH, Cat #79254). Incubation was carried out for 2 hours (h) in a 37˚C shaking

water-bath. The enzyme activity was stopped by adding lung DCs culture medium, which con-

sisted of Roswell Park Memorial Institute (RPMI) 1640 medium (Thermo Scientific™, Cat

#21875091) supplemented with 10% Fetal Bovine Serum (FBS) (Thermo Scientific™, Cat

#10270106), 1% Gentamicine (10 mg/ml) (Thermo Scientific™, Cat #15710049), 1% Penicillin-

Streptomycin 100x concentrate (Penicillin 10.000 U/ml, Streptomycin 10.000 μg/ml) (Thermo

Scientific™, Cat #15140122), 1% Fungizone1 Antimycotic (2.5 μg/ml) (Thermo Scientific™, Cat

#15290026), and 1% sodium pyruvate 100 mM (Thermo Scientific™, Cat #11360070). The

composite was filtered through a 70 μm BD cell strainer (BD Biosciences, Cat #352350). Before

the cell viability and the cell count were determined, Red Blood Cell (RBC) contamination was

removed using RBC lysis buffer. Lung DCs characterization was done with flow cytometry

analyses (S1 File).

PRRSV propagation

European prototype PRRSV strain LV and mycoplasma-free cell line MARC-145 cells were

donated by Prof. Dr. Nauwynck from the Department of Virology, Parasitology and Immunol-

ogy, Ghent University, Belgium [3,30]. MARC-145 cells were used for the PRRSV propagation

at about 1–2 days after seeding into a culture flask using Dulbecco’s Modified Eagle Medium

(Thermo Scientific™, Cat #41966052), which contained 10% FBS, 1% Penicillin-Streptomycin

100x concentrate, and 1% Gentamicine in a humidified 5% CO2 atmosphere at 37˚C. The

cytopathic effect was performed after 5–6 days post infection (dpi), and the culture superna-

tants were collected for use in the plaque assay.

PRRSV-infected lung DCs

Pietrain and Duroc lung DCs were infected individually for each animal. Lung DCs were

seeded in 24-well plates and incubated until the monolayer was confluent. At that moment,

the lung DCs were infected with PRRSV LV at a multiplicity of infection of 0.01. PRRSV inoc-

ulum in 200 μl of Optipro serum-free medium (OptiPRO™ SMF) (Life Technologies GmbH,

Cat #12309019) was added to each well. Furthermore, 200 μl of OptiPRO™ SMF without

PRRSV was placed in the non-infected wells as control (0 h) (S1 Fig). After 1 h of incubation at

37˚C in 5% CO2, all medium from wells was aspirated, and the cells were washed with DPBS.

Subsequently, 500 μl of lung DCs culture medium was added to each well. Lung DCs and the

cell culture supernatant were harvested at six different experimental time-points (before (0 h)

and 3, 6, 9, 12, and 24 hours post infection (hpi)).

Transcriptome profile of lung dendritic cells after PRRSV infection
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mRNA isolation for global transcriptome profile

Total cellular mRNA from non-infected (0 h) and infected (3, 6, 9, 12 and 24 hpi) lung DCs

within the pooled Pietrain (pool n = 3) and pooled Duroc (pool n = 3) groups was extracted

with the AllPrep1 DNA/RNA/Protein Mini Kit (Qiagen GmbH, Cat #80004) http://www.

qiagen.com/products/rnastabilizationpurification/allprepdnarnaproteinminikit.aspx accord-

ing to the manufacturer’s recommendations with slight modifications of the chemical vol-

umes. The mRNA quantity and quality were measured with a Nanodrop 8000

spectrophotometer (Thermo Scientific) and an Agilent 2100 Bioanalyzer (Agilent Technolo-

gies), respectively. In total, 12 lung DCs samples were sent for global transcriptome profiling

done by RNA-Seq to GATC Biotech AG (Konstanz, Germany). A TruSeq RNA Sample Prepa-

ration Kit (Illumina) was used to prepare 12 RNA samples at GATC Biotech AG. The RNA--

Seq library consisted of two pools, each of which included six lung DCs RNA samples. Before

starting the Illumina TruSeq RNA Sample Preparation Kit, 10 μl of Rnase and DNase-free

water were added to the lung DCs RNA to a total volume of 15 μl. The quality of the libraries

was assessed using an Agilent 2100 Bioanalyzer (GATC Biotech AG) based on the RNA integ-

rity number (RIN). RIN between 9.30 and 10 were reported for the lung DCs RNA libraries.

Briefly, the RNA-Seq processing was done with the Low-Throughput (LT) Protocol selected

from the TruSeq™ RNA Sample Preparation Guide. An Illumina Truseq PE Cluster Kit V3 and

Illumina TruSeq SBS V3 Kit were used for sequencing. The deep sequencing was performed

on an Illumina HiSeq2000 machine with 100 bases in single-read mode. Initial read processing

of reads from the Illumina HiSeq2000 were processed using Illumina CASAVA Pipeline Ver-

sion 1.8.0 software.

Data analyses

Data processing, quality check, and sequence alignment. The quality of the sequenced

reads was tested with the FastQC tool [31,32]. The analysis included basic statistics, such as the

sequence quality per base, sequence quality scores, base sequence content, base GC content,

sequence GC content, base N content, sequence length distribution, sequence duplication lev-

els, overrepresented sequences, and Kmer Content. In the next step, all overrepresented

sequences and adapter sequences were trimmed using cutadapt software [32,33] with an error

rate fixed at 5%, and overlapping rate fixed at 80%. Based on the first quality control, the first

15 bp from the raw sequence data were removed with the seqtk tool [34]. The cutadapt soft-

ware removed sequence pieces that were lower than 50 bp and trimmed the sequence part with

pHRED score lower than 20 (-q20). FastQC was finally used to control the filter steps and the

conclusive data quality.

The alignment of the reference genome sequence set Sus scrofa 10.2 [35] was performed

with TopHat [36], which is an efficient read-mapping algorithm designed to align reads and

makes substantial use of the tool Bowtie 2 [37,38]. The SAMStat program [39] was used to dis-

play all statistics for mapped and unmapped reads. The toolset bedtools [40] and gene infor-

mation from Entrez Gene ID [41] were used to display an expression table of all 12 samples

after RNA-Seq.

Furthermore, the virus sequence alignment was performed with the complete LV strain

genome (GenBank: M96262). This sequence mapping permits the identification of virus

absence or presence in all 12 lung DCs samples and to determine virus growth during PRRSV

infection. In the following step, the mapped and unmapped reads of the alignment of the refer-

ence genome were used for the viral strain alignment using the mapping tool Bowtie 2.

Normalization and differentially expressed gene analysis. The read count dataset was

normalized using the DESeq Bioconductor package [42] in R Project, this calculation based on
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a DESeq estimated size factor and the size factor function [43]. Genes were excluded from fur-

ther analysis if they showed a read value of 0 for both breeds at non-infected (0 h) and infected

time points (3, 6, 9, 12, and 24 hpi). After that, differentially expressed genes were further

determined with the DESeq Bioconductor package. Differentially expressed genes were

detected by an expression pairwise contrast between PRRSV infected (3, 6, 9, 12, and 24 hpi)

and non-infected cells (0 h). The statistical criteria were defined by a log2 fold change� 1 or

� -1, p� 0.05, and False Discovery Rate (FDR) of 10%.

Analyses of clusters, pathway enrichment, and gene ontology. All genes were selected

for the cluster and network analyses using the D-NetWeaver Software [44]. Using this soft-

ware, clusters of individual genes were grouped if their expression pattern was similar during

the whole experiment (before 0 h, and 3, 6, 9, 12, as well as 24 hpi). The gene expression data

modeling was done with mclust algorithms provided in R. This process started with the modu-

lation of ‘mean curves’ for each cluster of genes with a smoothing spline. The Bayesian Infor-

mation Criterion (BIC) represented the final number of clusters.

Functional annotation analysis of all clusters was performed using a hyper geometric gene

set enrichment test in R. The Bioconductor packages biomaRt [45], org.Ss.eg.db: Genome

wide annotation for Pig [46], GSEABase [47], and GOstats [48] were used for the pathway

enrichment and Gene Ontology (GO) analyses. In this process, overrepresented gene sets were

defined by the Kyoto Encyclopedia of Genes and Genomes database (KEGG) [49] or by the

GO database and were tested using Fisher’s exact test. The GO terms biological processes (BP),

cellular components (CC) and molecular functions (MF) which reached statistical significance

(p� 0.05) were selected for the following investigations. Additionally, multiple testing correc-

tions were preformed using FDR estimation of Benjamini-Hochberg and the Bonferroni cor-

rection (Bon. Adjusted p-values). Finally, the differently expressed genes detected for both

breeds were grouped in the identified clusters.

Results and discussion

Transcriptome profile analysis post PRRSV infection

In the present study, the RNA-Seq technique was used for the first time to characterize tran-

scriptional changes after PRRSV infection in Pietrain and Duroc lung DCs. The RNA-Seq

analysis obtained a total number of reads between 20.9 and 30.2 million for each library and

between 12.9 to 29.5 million reads after all filtration steps. In total, 74.8% to 81.3% of the read

counts mapped with the reference Sus scrofa genome, while 18.7% to 25.2% were identified as

unmapped read counts.

Previous studies used the RNA-Seq technology to investigate PAMs and lung tissue post

PRRSV infection [15,50], but no analysis had been performed with lung DCs from two differ-

ent pig breeds!

PRRSV has multiple strategies to evade and modulate the host immune response. Immuno-

modulation post PRRSV infection resulted in inhibited cell-mediated immune reactions

[16,19,20,29]. Lunney et al. [51] postulated that dysregulated expression of immune genes post

PRRSV infection leads to a weakened adaptive immune response. DCs play the role of “gate-

keepers” of the adaptive immune system [25]. The antigen processing and presentation of DCs

and their crucial role in the secretion of inflammatory cytokines ultimately induce the immune

response [52]. Rodriguez-Gomez et al. [53] revealed that an interaction between PRRSV infec-

tion and antigen-presenting cells (APCs) lead to an inaccurate or a non-effective immune

response.

In the present study, a total of 20,396 porcine predicted genes were determined, and were

involved in different signaling cascades affected by PRRSV infection. The temporal (3, 6, 9, 12,

Transcriptome profile of lung dendritic cells after PRRSV infection
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and 24 hpi) transcriptome profiles of PRRSV infected lung DCs of the two different breeds

could be defined. These predicted genes and their differential expression post PRRSV infection

were identified and interpreted.

PRRSV infection and viral replication in lung DCs

The aim of the LV strain sequence alignment was to identify the presence or absence of

PRRSV in non-infected (0 h) and infected (3, 6, 9, 12, and 24 hpi) lung DCs (Fig 1). As

expected, none were found in non-infected cells (0 h). Moreover, it was remarkable that the

virus growth differed over all infection time points for lung DCs of Pietrain and Duroc piglets.

An exponential increase (greater than 17.8-fold) was found for Pietrain lung DCs beginning at

3 hpi and ending at 12 hpi. Interestingly, the virus read counts decreased considerably for Pie-

train lung DCs between 12 and 24 hpi. In contrast, the read counts for Duroc at 3, 6, and 9 hpi

remained constant. But at 12 hpi the read counts for Duroc lung DCs increased substantially

(greater than 21.5-fold) until 24 hpi (Fig 1).

The presence of PRRSV in infected lung DCs is a contradiction to the previous findings of

Loving et al. [17]. Loving et al. [17] described that PRRSV did not replicate in lung DCs and

concluded that PRRSV utilizes lung DCs without a viral replication. In the present study, the

complete genome alignment results of the LV strain indicated that PRRSV LV was able to

infect lung DCs and to replicate there. One reason for these different observations might be

differences in the virus strains used.

In the present study breed differences were detected in relation to the measured viral read

amounts with respect to important changes (Fig 1). Time course analysis of the viral replica-

tion also revealed that time point 12 hpi was very important for both breeds and only time

point 24 hpi was specific for Duroc. It can be supposed that crucial molecular changes in the

cells happened at these two different time points in such a way that the virus replication for

Pietrain decreased until 24 hpi and increased extremely for Duroc until 24 hpi (Fig 1). The rea-

sons for these different reactions may be that PRRSV modulated the host immune responses

and the virus grew intermittently due to an early apoptosis reaction of the lung DCs of

Pietrain.

It is well known that some viruses can repress apoptosis and induce host cell cycle arrest to

gain more time to exploit the cells for replication [15,54,55]. Further research is needed to clar-

ify these cell cycle related processes in PRRSV infected lung DCs. We hypothesize that these

breed differences might also be related to an early immunomodulation process of PRRSV.

Concerning the virus replication, Duroc lung DCs reacted more strongly and distinctly than

Pietrain lung DCs during these periods of infection (3, 6, 9, and 12 hpi).

Virus-host interaction

The pairwise comparisons between non-infected (0 h) and PRRSV infected lung DCs (3, 6, 9,

12 and 24 hpi) in two breeds were carried out to determine the effects of PRRSV infection on

the host transcriptome profile. The differently expressed genes (p� 0.05) between breeds were

presented with respect to the FDR in two categories: those with FDR� 10% and those with

FDR> 10%. The analyses obtained a total of 4472 differentially expressed genes (p� 0.05,

FDR> 10%) in PRRSV infected lung DCs. In total, 168 genes were differentially expressed

(p� 0.05, FDR� 10%) in Pietrain PRRSV infected lung DCs. Among them, 131 showed a

down-regulation (Fig 2), and 37 genes showed an up-regulated (Fig 3) gene expression profile.

For infected Duroc lung DCs, a total of 227 differentially expressed genes were identified

(p� 0.05, FDR� 10%). Among them, 40 genes exhibited a down-regulated gene expression

trend (Fig 2), and 187 showed an up-regulated trend (Fig 3). Pietrain and Duroc infected lung

Transcriptome profile of lung dendritic cells after PRRSV infection
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DCs showed opposite gene expression courses. At the early stage of infection (3 hpi), Pietrain

lung DCs showed a smaller number of down-regulated genes, followed by an extreme increase

until 24 hpi. In contrast, the Duroc lung DCs showed a high up-regulation at 3 hpi, followed

by an extreme reduction of the gene expression until 24 hpi. In detail, PRRSV induced a

Fig 1. Lelystad virus (LV) growth in lung DCs. Virus read counts in Pietrain (white bar) and Duroc (black bar) lung DCs before (0 h) and

post (3, 6, 9, 12, 24 hpi) PRRSV infection.

https://doi.org/10.1371/journal.pone.0187735.g001
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remarkable increase of down-regulated immune genes (CXCL2, IL-6, IL-1β1, TNF, CCL4, IL-
1α, SLA-DRA, CCL3L1, CCL23, CCL20) for infected Pietrain lung DCs from 9 to 24 hpi (Fig 2),

whereas a decline was observed within infected Duroc lung DCs. For infected Duroc lung DCs

a considerable decrease in up-regulated immune genes (CCL4, CXCL2, IL-1β1, CXCL10, and

CCL8) was detected from 3 to 24 hpi (Fig 3) and the number of up-regulated genes remained

constant for infected Pietrain lung DCs (Fig 3).

In Figs 2 and 3 it is clear that there were strong breed-specific gene expression differences

at early time points post PRRSV infection. An early host transcriptional variation occurred

during the PRRSV infection between 3 and 24 hpi. These early changes differed between

Fig 2. Number of down-regulated genes during the course of PRRSV infection. Pietrain (white bar) and

Duroc (black bar) lung DCs at 3, 6, 9, 12, 24 hpi (p� 0.05 and FDR� 10%).

https://doi.org/10.1371/journal.pone.0187735.g002

Fig 3. Number of up-regulated genes during the course of PRRSV infection. Pietrain (white bar) and

Duroc (black bar) lung DCs at 3, 6, 9, 12, 24 hpi (p� 0.05 and FDR� 10%).

https://doi.org/10.1371/journal.pone.0187735.g003
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Duroc and Pietrain PRRSV infected lung DCs and revealed differences in response to PRRSV

infection. Similarly, Genini et al. [16] and Ait-Ali et al. [56] reported that notable reactions

could be observed in pig cells (Rattlerow–Seghers genetic line, Landrace and Pietrain, respec-

tively) within 24 h post virus infection, particularly between 8 and 10 hpi. Ait-Ali et al. [56]

interpreted this time to be critical when PRRSV evaded the host responses and enhanced its

own chances for viral growth. Genini et al. [16] observed a consistent down-regulation of

genes after a few hours of PRRSV infection (3 and 6 hpi), followed by the start of innate

immune responses at 9 hpi. Other authors had also identified variations in the host’s suscepti-

bility and resistance, which might be explained by genetic components involved in the

response to PRRSV infection [26,27,57]. Concerning the up- and down-regulated expression

of Duroc and Pietrain immune genes, Duroc responded better in the first time points of infec-

tion (3, 6, 9, 12 hpi) than Pietrain.

In the present study, differentially expressed genes (for example IL-1β1, CCL4, CXCL2)

showed massive changes and contrary responses to PRRSV after a few hours of infection. Sev-

eral studies [15,16,18,58] reported that PRRSV has the ability to escape or modulate the host

immune system by inhibiting and inducing expression of regulatory cytokines and chemo-

kines. These cytokines and chemokines function as mediators of the immune system, and they

are known to interact with other immune cells as well as to induce inflammatory and adaptive

immune responses [23,59]. For instance, Interleukin 12 (IL-12) and IL-6 stimulate the JAK--

STAT signaling pathway by binding with their receptor. In turn, this pathway activates the

expression of IFN-stimulated genes (ISGs) [59–61]. Furthermore, IL-6 signaling activates the

Signal transducer and activator of transcription 3 (STAT3), and plays an anti-inflammatory

role [6,23,60]. Chemokines constitute a family of at least 50 chemoattractants that are involved

in the course of many inflammatory responses. They coordinate the migration of cells and

play an important role in the selective recruiting of monocytes, neutrophils, and lymphocytes

[6,60]. Chemokine (C-C motif) ligand 4 (CCL4) is an important chemoattractant that plays a

role in viral diseases [62–64]. Chemokine (C-X-C motif) ligand 2 (CXCL2) is a pro-inflamma-

tory chemokine and attracts neutrophils as well as T cells [63–65]. Interleukin 1, beta 1 (IL-
1β1) is a major mediator of the innate immune response and induces the expression of many

genes in different cells [66–68]. IL-1β is secreted by blood monocytes, tissue macrophages,

DCs, B lymphocytes, and natural killer (NK) cells [69].

In summary, the different genetic backgrounds of the two breeds might explain the increas-

ing number of down-regulated immune genes of infected Pietrain lung DCs from 9 to 24 hpi

and the decreasing number of up-regulated immune genes of Duroc lung DCs between 3 and

24 hpi. Additionally, essential processes occurred at 9 hpi with drastic changes in the host

expression trends of Duroc and Pietrain lung DCs. As mentioned above, it is well known that

a remarkable number of genes are involved in the early cell-mediated immune response post

PRRSV. Concerning the up- and down-regulated expression courses of Pietrain and Duroc

immune genes, Duroc lung DCs reacted more actively and distinctly compared to Pietrain

lung DCs at the first time points of virus infection. These observed down-regulated expression

trends and postulations by Rodriguez-Gomez et al. [53], Wang et al. [70], Park et al. [71] sug-

gest that Pietrain lung DCs were not able to activate the following gene cascades or to stimulate

other immune reactions. The result is a non-effective immune response to PRRSV infection.

Functional analyses of the clustered genes

In order to characterize the genetic background of the effects of PRRSV infection in both

breeds, the 20,396 genes were condensed via cluster analysis based on the similar expression

patterns during the experiment (before infection (0 h) and 3, 6, 9, 12, and 24 hpi). The
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clustering is solely based on the mean gene expression level for the identified genes for both

breeds. The cluster construction presented 37 different transcriptional reactions to PRRSV for

Pietrain lung DCs (37 cluster) and 35 different transcriptional responses to PRRSV for Duroc

lung DCs (35 cluster). A GSEA of these clusters was performed to investigate the possible viral

influences on the gene expression and to uncover the interaction between the virus with the

host immune response. Using pathway enrichment analysis, the biological response post

PRRSV infection can be characterized through the identified clusters and genes involved in

the pathways for each breed.

The pathway enrichment analysis was performed for all clusters of Pietrain and Duroc,

revealing a total of 171 pathways (p< 0.05) for both breeds, of which additional 47 pathways

(p< 0.05) were found to be specific for the Duroc breed. The pathways of particular interest

were those which reached the statistical significance (p� 0.05) and showed clusters with read

counts over 20. The second criterion for the selection of pathways was the frequency of occur-

rence for each breed. Tables 1 and 2 include the cross-classified information about the 10 most

important pathways and clusters that had a significant impact on these pathways. Each cluster

can be identified by a breed-specific cluster ID. In addition, the sum of genes within and across

the clusters and pathways are also presented. The sum of clusters for each pathway and the

cluster frequency are shown in Tables 1 and 2. Some clusters are only significant for pathways

that were not ranked in the top 10, so they were not included in these tables.

The results of the pathway analyses show multiple occurrences of specific clusters, such as

clusters 28, 32, 33, 34, and 35 for the Pietrain breed (Table 1). The results were similar for

some of the Duroc clusters, while some clusters (clusters 30, 31, 32 and 34) occurred more fre-

quently (Table 2). Especially, Pietrain cluster 34 (five occurrences) and Duroc cluster 32 (six

occurrences) had the highest pathway frequencies (Tables 1 and 2, S3–S6 Tables).

In addition, the top 10 scored pathways for both breeds included phagosome (KEGG ID

4145), spliceosome (KEGG ID 3040), endocytosis (KEGG ID 4144), and JAK-STAT signaling

(KEGG ID 4630) pathways. These key pathways are involved in specific functional tasks that

are important for PRRSV infected DCs and for virus-host interaction (Tables 1 and 2). For

example, Nauwynck et al. [72] demonstrated that the receptor mediated endocytosis might be

a common entry route for arteriviruses, and De Baere et al. [73] mentioned the importance of

the phagocytosis pathway for the virus-host interplay. Findings of Nauwynck et al. [72] and De

Baere et al. [73] were confirmed by our results. Chen et al. [20] demonstrated that the viral

NSP1β inhibits the phosphorylation and activation of STAT1 in the JAK–STAT signaling path-

way, highlighting the importance of the JAK–STAT signaling pathway during virus-host inter-

play. According to Lunney et al. [51], understanding the signaling pathways and molecular

details could provide a valuable therapeutic opportunity and lead to clinical trials.

We also analyzed potential pathways (Tables 1 and 2) and their relevant genes (Fig 4). In

summary, the amount of genes varied between breeds, which can be explained by the different

numbers of clusters and cluster-specific genes (Fig 4). The phagosome pathway had the highest

occurrence of clusters with seven for Pietrain and six for Duroc (Tables 1 and 2), which con-

tain 61 and 53 genes, respectively (Fig 4). The pathway associated with protein processing in

endoplasmic reticulum showed the highest number of genes for Pietrain lung DCs and the oxi-

dative phosphorylation pathway for Duroc (Fig 4). The lowest number of genes occurred in

the homologous recombination pathway for Pietrain and the JAK-STAT signaling pathway for

Duroc (Fig 4).

In order to describe the genes related to the top 10 pathways and breeds, we comparatively

analyzed the genes’ frequency between Pietrain and Duroc (Tables 1 and 2, Fig 4). The genes

selected had to be within more than one of the top 10 pathways of both breeds. The results

showed that pathways of both breeds featured the genes ATP6V1G1, ATP6V1C1, and
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ATP6V1F, SEC61B as well as SEC61A1. Furthermore, SLA-7 and RAB5C were found in the

same pathways—endocytosis and phagosome—for Pietrain (cluster 34) and Duroc (cluster

32). The genes ATP6V1B2, ATP6V1F and ATP6V1E1 were also detected in the—phagosome

and oxidative phosphorylation—pathways for both breeds Pietrain (clusters 33 and 34) and

Duroc (cluster 32). The THBS2 thrombospondin 2 gene was also found for Duroc (cluster 33)

and Pietrain (cluster 36) in the—focal adhesion and phagosome—pathways. There was no uni-

form regulation of these genes due to the genes of one pathway originating in different clusters,

which have different expression trends post PRRSV infection.

As mentioned above, several genes of the v-ATPase complex were identified for both Duroc

and Pietrain breeds (ATP6V1G1, ATP6V1C1, ATP6V1B2, ATP6V1F, and ATP6V1E1). This

group of genes belongs to the ER-resident multimeric protein complex [74]. The genes of the

v-ATPase complex play roles in the entry of enveloped viruses and bacterial toxins, as well as

in proton transport and in the acidification of endosomes [75]. The ATP6V1B2 gene was previ-

ously detected in PAMs infected with HP-PRRSV WUH3 [61]. Furthermore, SEC61β and

SEC61A1 were found for both breeds in the present study, of which SEC61βwas previously

found to modulate the cytotoxicity of many chemotherapeutic agents and to be sensitive to the

cytotoxic effects of platinum-containing drugs [74]. Our results show that the SLA-7 gene also

was detected for both Duroc and Pietrain. Hu et al. [76] mentioned that SLA-7 is related to the

swine major histocompatibility complex, especially to the non classical MHC class Ib genes.

These genes seem to be suitable candidates for investigations of species-specific immunity-

Table 1. Top 10 scored pathways using KEGG and clustered RNA-Seq dataset post PRRSV infection, represented by the cluster ID of Pietrain

lung DCs.

Pathway Pietrain cluster IDs

9 10 12 14 15 16 17 18 21 22 24 25 27 28 29 30 31 32 33 34 35 36 37 Σ cluster

per

pathway

Σ genes per

pathway

Phagosome

(KEGG ID 4145)

6 5 17 12 8 11 2 7 61

Spliceosome

(KEGG ID 3040)

8 7 10 6 16 5 47

Protein processing in

endoplasmic reticulum

(KEGG ID 4141)

10 17 13 23 11 5 74

Focal adhesion

(KEGG ID 4510)

10 10 12 11 5 5 48

Endocytosis

(KEGG ID 4144)

10 7 21 3 38

Rheumatoid arthritis

(KEGG ID 5323)

5 6 6 5 4 22

Homologous

recombination

(KEGG ID 3440)

2 3 3 2 4 10

Cell cycle

(KEGG ID 4110)

8 6 6 5 4 25

Oxidative

phosphorylation

(KEGG ID 190)

6 19 25 15 4 65

Jak-STAT signaling

pathway

(KEGG ID 4630)

4 7 7 7 4 25

Σ cluster frequency 1 1 1 1 2 1 1 2 1 1 1 1 1 3 3 1 3 3 3 5 4 3 2

https://doi.org/10.1371/journal.pone.0187735.t001
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related roles [76]. These informations have to be linked to the postulation of Lunney et al. [51]

that findings like that could help to design effective vaccines and therapeutic strategies.

The genes mentioned thus far include important functional information and play impor-

tant roles in animal health issues associated with virus entry, drug performance, and species-

specific immunity, which could be candidate genes post PRRSV infection.

Functional background post PRRSV infection in key cluster 32 and key

cluster 34

The biological significance of Duroc cluster 32 and Pietrain cluster 34 was extrapolated (Tables

1 and 2) and these clusters were determined as key clusters. The differentially expressed genes

detected in both breeds were grouped in the particular clusters after the GO analysis. As men-

tioned previously, 227 differentially expressed genes were identified for Duroc lung DCs, of

which cluster 32 included 17 of these genes (p� 0.05, FDR� 10%). Nine genes were up-regu-

lated and two were down-regulated, while six genes showed up- and down-regulated expres-

sion trends at different time points (3, 6, 9, 12, and 24 hpi) (S3 Table). Additionally, a total of

168 differentially expressed genes were identified in Pietrain lung DCs. Among them, Pietrain

cluster 34 included 14 differentially expressed genes (p� 0.05, FDR� 10%). Two genes were

up-regulated, and 12 were down-regulated (S4 Table). It is remarkable that Interleukin 1, beta
1 (IL-1β1) (Gene ID: 397122, Synonyms IL-1β) was differently expressed in these two key clus-

ters. IL-1β1 was down-regulated at different time points (9, 12, 24 hpi) in Pietrain lung DCs

(cluster 34) and up-regulated at three time points (3, 6, 9 hpi) in Duroc lung DCs (cluster 32).

This contrary IL-1β1 expression between breeds could explain why Duroc lung DCs reacted

more combatively during early PRRSV infection (3, 6, 9 hpi). IL-1β1 is a major mediator of

Table 2. Top 10 scored pathways using KEGG and clustered RNA-Seq dataset post PRRSV infection, represented by the cluster ID of Duroc lung

DCs.

Pathway Duroc cluster IDs

1 3 6 7 18 19 20 22 23 25 26 27 28 29 30 31 32 33 34 35 Σ cluster per

pathway

Σ genes per

pathway

Phagosome

(KEGG ID 4145)

7 6 10 12 9 9 6 53

Spliceosome

(KEGG ID 3040)

11 7 10 14 4 42

Protein processing in

endoplasmic reticulum

(KEGG ID 4141)

15 15 12 14 4 56

Focal adhesion

(KEGG ID 4510)

11 9 9 3 4 32

Endocytosis

(KEGG ID 4144)

5 8 8 9 14 5 44

Rheumatoid arthritis

(KEGG ID 5323)

5 6 7 5 4 23

Homologous recombination

(KEGG ID 3440)

4 3 4 3 4 14

Cell cycle

(KEGG ID 4110)

9 6 6 9 4 30

Oxidative phosphorylation

(KEGG ID 190)

14 8 20 15 4 57

Jak-STAT signaling pathway

(KEGG ID 4630)

6 4 2 10

Σ cluster frequency 2 1 2 1 2 2 1 2 1 3 1 1 2 2 3 3 6 2 3 1

https://doi.org/10.1371/journal.pone.0187735.t002
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innate immune response and induces the expression of many genes in different cells [66–68].

IL-1β is secreted by blood monocytes, tissue macrophages, DCs, B lymphocytes and NK cells

[69]. The gene IL-1β1 is located on Sus scrofa chromosom (SSC) 3 with a QTL for PRRSV sus-

ceptibility and a QTL for IL-10, Interferon gamma (IFNG), and Toll-like receptor 2 (TLR2)

[77]. Uddin et al. [78] identified two QTL regions for PRRSV on SSC3: one for IFNG_PRRSV

and one for IL-10_PRRSV. Additionally, in regard to the importance of IL-1β1 in Duroc clus-

ter 32 and Pietrain cluster 34, the value of this gene is enhanced based on its location on SSC3,

where a high density of QTL for immune response and PRRSV are located, but also for its

impact in breeding strategies.

Furthermore, a GO analysis was performed on Duroc cluster 32 and Pietrain cluster 34 post

PRRSV infection. The GO terms consist of biological processes (BP), cellular components

(CC), and molecular functions (MF) enrichment analyses for the sets of clustered RNA-Seq

genes. In total, Duroc cluster 32 was involved in 463 GO BP, 111 GO CC and 110 GO MF cate-

gories, while Pietrain cluster 34 had 533 GO BP, 113 GO CC, and 158 GO MF categories, by

applying the Benjamini-Hochberg procedure (FDR). The Bonferroni correction appears a bit

conservative, but we included the values in Tables 3 and 4. It is notable that the differently

expressed gene IL-1β1 was found in 49 GO BP, in 5 GO CC categories, and one GO MF cate-

gory of Duroc key cluster 32. IL-1β1 was found in 53 GO BP categories, 3 GO CC categories,

Fig 4. Number of genes per pathway. The numbers of genes are on the x-axis for the top 10 scored pathways of Pietrain (Pi) and Duroc

(Du) lung DCs. Common genes within the pathway for each breed are depicted as a white bar and different genes are shown as a checked

bar.

https://doi.org/10.1371/journal.pone.0187735.g004
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and in one GO MF category of Pietrain key cluster 34. IL-1β1 was present in about 10% of the

GO BP of each key cluster for each breed (10.58% of Duroc GO BP and 9.94% of Pietrain GO

BP), but it was inversely expressed between the breeds. Tables 3 and 4 present the list of BP

GOs for both breeds, and the additional S5 and S6 Tables represent 49 BP GOs for Duroc and

53 GO BPs for Pietrain. In total, 25 of the identified BP GOs of Duroc cluster 32 and Pietrain

cluster 34 were similar for both breeds, of which include cytokine-mediated signaling pathway

(GO:0019221), positive regulation of cell cycle process (GO:0090068), regulation of cell cycle

(GO:0051726), and response to drug (GO:0042493). Only Duroc cluster 32 included the BP

GOs of immune response (GO:0006955) and lymphocyte activation (GO:0046649) (Table 4).

These GOs are strongly connected and act in important processes that influence the host

immune response and cellular processes, which were consistent with previous findings by

Islam et al. [79].

To the best of our knowledge, this is the first study to use GO analysis to characterize the

biological functions of the immune response post PRRSV infection in lung DCs. Based on our

findings, the Duroc key cluster 32 and the Pietrain key cluster 34 are immunologically very

important and should be studied further to unravel the molecular functions played by genes as

well as to explain breed-related differences in immune reactions.

Earlier studies demonstrated that various cytokines and interleukins play a central role in

the beginning of the innate immune response post PRRSV infection [16,80]. Flori et al. [81]

showed weak to moderate heritabilities for pro-inflammatory cytokines (IL-1β, IL-8, TNF and
IL-6). IL-1β is a critical mediator of inflammation and host response to infections [23]. Bi et al.

[82] mentioned that PRRSV infection results in IL-1β production and described the pathways

involved in the recognition of PRRSV and the production of IL-1β. The mRNA expression and

secretion of IL-1β were significantly increased. Zhang et al. [83] suggested that PRRSV protein

E is the main contributory factor for this PRRSV induced inflammasome activation. Further-

more, they also mentioned that the consequentially robust IL-1β production might be the

main reason for eliciting the strong inflammatory response. Ross et al. [84] and Seo et al. [85]

Table 3. Biological process GOs of Pietrain cluster 34 post PRRSV infection.

GO ID Biological process Gene Counts P-value Bon. Adjusted p-values FDR

GO:0042493 Response to drug 22 0.040 1 0.045

GO:0019221 Cytokine-mediated signaling pathway 22 0.022 1 0.038

GO:0090068 Positive regulation of cell cycle process 18 0.000 0.079 0.000

GO:0042345 Regulation of NF-kappaB import into nucleus 4 0.034 1 0.045

GO:0031663 Lipopolysaccharide-mediated signaling pathway 4 0.034 1 0.045

https://doi.org/10.1371/journal.pone.0187735.t003

Table 4. Biological process GOs of Duroc cluster 32 post PRRSV infection.

GO ID Biological process Gene Counts P-value Bon. Adjusted p-values FDR

GO:0006955 Immune response 38 0.040 1 0.044

GO:0042493 Response to drug 18 0.010 1 0.023

GO:0046649 Lymphocyte activation 18 0.032 1 0.037

GO:0019221 Cytokine-mediated signaling pathway 12 0.026 1 0.036

GO:0090068 Positive regulation of cell cycle process 13 0.000 0.295 0.003

GO:0032496 Response to lipopolysaccharide 10 0.036 1 0.040

GO:0034097 Response to cytokine stimulus 17 0.020 1 0.032

https://doi.org/10.1371/journal.pone.0187735.t004
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demonstrated that IL-1β plays an important role in the porcine conceptus elongation and the

establishment of pregnancy. This multifactorial influence of IL-1β1 in the beginning of the

innate immune response as well as the establishment of pregnancy makes it a big challenge to

understand the role of IL-1β1 post PRRSV infection.

In summary, IL-1β1 can be considered as an important candidate gene in the immune

response to PRRSV infection. It is particularly relevant that the IL-1β1 showed contrary

expression responses to PRRSV in Duroc and Pietrain lung DCs. The up-regulation of IL-1β1
is one explanation for the more efficient immune response of Duroc lung DCs to PRRSV

infection. The decreased expression level of IL-1β1 in Pietrain lung DCs in the present study is

in conflict with the results from Bi et al. [82], who showed significantly increased expression

and secretion of IL-1β. The results of the expression profile of IL-1β1 in Pietrain lung DCs are

also contrary to Zhang et al. [83], who postulated a consequentially robust IL-1β production

post PRRSV infection. We also identified potential genes for several pathways and GO terms

involved in the immune response to PRRSV infection and IL-1β1 was the most prominent dif-

ferently expressed gene.

Conclusion

This is the first study to use GO analysis to determine the biological functions of the immune

response post PRRSV infection and to identify possible reasons for the immune reaction in

lung DCs of different breeds. The transcriptome profile analysis did reveal breed-specific dif-

ferences in response to PRRSV infection. Duroc lung DCs responded better in the first time

points of infection (3, 6, 9, 12 hpi) than Pietrain lung DCs. Another main observation is the

capacity of PRRSV to infect Pietrain and Duroc lung DCs and its extremely breed-dependent

replication pattern. Additionally, it was possible to identify key clusters and pathways as well

as specific genes (e.g. SEC61β, SLA-7), that play important roles in animal health. These genes

can be considered for further investigation to test their role in the development of effective

and efficient vaccines for PRRSV. IL-1β1 showed opposite responses to PRRSV in Duroc and

Pietrain lung DCs, and is involved in Duroc key cluster 32 and Pietrain key cluster 34. The up-

regulation of IL-1β1 could explain the more efficient immune response of Duroc lung DCs to

PRRSV infection. IL-1β1 could be used as a potential candidate gene for selecting pigs that

respond efficiently to PRRSV.

In conclusion, the present study provides important findings of the role of genetics in the

response of animals to PRRSV, especially with respect to immune responses to PRRSV infec-

tion. These results should be taken into account for further investigations on immune traits in

pig breeding and for improving the health of pigs.
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Formal analysis: Maren Julia Pröll, Sudeep Sahadevan, Ernst Tholen, Christine Große-

Brinkhaus.

Funding acquisition: Karl Schellander.

Investigation: Maren Julia Pröll.
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