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Abstract: The paper presented the methodology for the construction of a soft sensor used for activated
sludge bulking identification. Devising such solutions fits within the current trends and development
of a smart system and infrastructure within smart cities. In order to optimize the selection of the
data-mining method depending on the data collected within a wastewater treatment plant (WWTP),
a number of methods were considered, including: artificial neural networks, support vector machines,
random forests, boosted trees, and logistic regression. The analysis conducted sought the combinations
of independent variables for which the devised soft sensor is characterized with high accuracy and at
a relatively low cost of determination. With the measurement results pertaining to the quantity and
quality of wastewater as well as the temperature in the activated sludge chambers, a good fit can
be achieved with the boosted trees method. In order to simplify the selection of an optimal method
for the identification of activated sludge bulking depending on the model requirements and the
data collected within the WWTP, an original system of weight estimation was proposed, enabling a
reduction in the number of independent variables in a model—quantity and quality of wastewater,
operational parameters, and the cost of conducting measurements.

Keywords: soft sensor; smart systems and infrastructure; data mining; classification model;
wastewater treatment plant; activated sludge bulking

1. Introduction

The processes occurring in the environment, including urban areas, are very difficult to describe.
These changes are dynamic in nature and are governed by a number of external factors, that are random
(weather conditions), anthropogenic (traffic volume, amount of water supplied to the network) and local.
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Taking into account that many of them affect the operational costs of infrastructure, urban development,
and the comfort of city residents, it is necessary to predict, control and optimize these factors [1,2].
This approach results in the development of the so-called smart system and infrastructure within
smart cities [3–5]. Due to the complex process mechanisms and the influence of numerous factors,
great quantities of data have to be collected using sensors. This enables us to identify their dynamics
and create so-called soft sensors based on the devised the mathematical models [6–8]. In numerous
cases, this solution enables us to reduce the amount of collected data as well as identify the phenomena,
the time course of which is difficult to measure and, for example, generates high operational costs of the
measurement system. The approach involving the creation of soft sensors supporting infrastructure is
increasingly popular, especially in large cities which require their on-line control and optimization [9],
as well as in such technological objects as wastewater treatment plants (WWTPs). The concept and
implementation of soft sensors at WWTPs is well established, because they are employed for simulating
the complex processes occurring in bioreactors [10]. Soft sensors were used for predicting total nitrogen
at the WWTP outlet on the basis of the influent wastewater quality and operational parameters;
this enables on-line process control [11]. Another soft sensor concept was also devised for this purpose,
where the content of nitrogen compounds was modeled at the outlet based on the primary settling
tank operation, internal recirculation, and wastewater temperature parameters [8]. A much more
complex soft sensor concept was presented by Canete et al. [12], who predicted the chemical oxygen
demand (COD), total suspended solids (TSS), and total nitrogen (TN) values at the WWTP outlet
using artificial neural networks. The results of calculations and the settings were verified through
the simulations conducted by means of a mechanistic calibrated WWTP model. Luccarni et al. [13]
presented the concept of a soft sensor used for N-NH4 prediction in bioreactor chambers based on
pH, oxidation-reduction potential (ORP), and dissolved oxygen concentration in the bioreactor (DO),
which obtained satisfactory calculation results. Hernández-del-Olm et al. [14], taking into account
the high cost of calculating important quality markers at the plant inlet (COD, ammonium nitrogen
(N–NH4)) proposed a soft sensor for predicting their value for dry-weather and wet-weather as well as
intense rainfall events. The concept of soft sensor for BOD prediction at the WWTP outlet was presented
by Yu et al. [15], who employed the learning machine model for its creation, in which the values of
the weights obtained were optimized by means of the cuckoo search algorithm. When assessing the
processes conducted in treatment plant devices and the quality of treated wastewater, soft sensors
are used to analyze multidimensional data sets obtained with gas sensor arrays [16–19]. At present,
attention is also increasingly drawn to the energy aspects at the stage of optimization and control of
technological processes, which is reflected in numerous papers on this topic [20–22].

Activated sludge sedimentation is one of the essential processes affecting the operation of biological
reactors, specifically their efficiency. In WWTPs, it is assessed in terms of the sludge volumetric
index (SVI). The parameter enables control and optimization of a bioreactor operation, thus affecting
the management of the facility. In the WWTPs with integrated removal of carbon, nitrogen and
phosphorus compounds, the recommended maximum SVI is 150 cm3/g [23]. If the value is exceeded,
problems may occur with sludge dewatering and with the deteriorated quality of the discharged water.
In order to keep the value of SVI within the optimal range, a mathematical model which enables the
dynamic control of the SVI by proper selection of settings and a balanced management of the WWTP,
must be constructed. On the one hand, the mathematical model must accurately reflect the course
of a phenomenon, and on the other, its implementation should not be very complicated. Moreover,
the number of the exogenous variables should be as small as possible.

The literature survey [24–26] indicates that a predominant majority of the models used for the
SVI simulations are those predicting continuous values. These are usually data-mining methods,
specifically artificial neural network methods and their complex modifications. Building complex
model structures improves predictive power in the presently-known models and reduces the number
of independent variables in models [26–28], but it also may lead to management problems. In models
based on conventional methods, the number of independent variables is usually higher than that in
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complex models. The literature review [29–38] indicates that the classification models are built using a
number of statistical methods, ranging from analytical (logistic regression) through more modified
models employing the concept of regression trees (BT—boosted trees, RF—random forests), to neural
networks. In the case of classification models, the basis for the identification of the bulking process
involves the limit SVI values indicating problems with sedimentation.

At the stage of model creation, it is necessary to find a balance between the model complexity
and its accuracy. The conducted analyses [39–48] showed that in numerous cases, modification of the
RF and BT method leads to an improvement in the prediction capability of the regression tree model.
This confirms the essential effect of implementing the boosting method in BT and substituting a single
tree with a forest in the RF method. In the case of unsatisfactory simulation results, more complex
methods than BT and RF can be employed, i.e., artificial neural networks. The model structure is many
times more complex than in the methods mentioned above.

According to [12,49–53] the multi-layer perceptron (MLP) is one of the most frequently used
methods. It comprises three layers: the input, the hidden, and the output layers. In this method,
the so-called learning step identifies the values of what is called “weight”, which connect the neurons
in the consecutive layers. In that method, the initial weight factor values have an essential effect on
the course of the learning process. This may affect the predictive power of a model, and the results
obtained using RF and BT may even be better than those provided by MLP. The shortcomings of
MLP were eliminated in the support vector achine (SVM) method [54,55]. In the case of a non-linear
relationship between the model output (y) and explanatory variables (x1, x2, . . . , xn) transformation
of n-dimensional space to K-dimensional (linear) space of variable features is performed using the
kernel function. Vapnik [55] has developed a special learning algorithm in the support vector method.
Vapnik identified the scale values by solving the problem of square programming, which guarantees
the existence of a single minimum. Consequently, at the operating and management levels (intended
to obtain the optimum SVI by selecting the correct settings to limit problems with the continuity of
processes), using that model for the monitoring and correcting sludge sedimentation is a source of
technical problems. Constructing the models with a significant number of independent variables
requires a constant monitoring of the values of operating parameters and numerous indicators of
the wastewater quality; at the operating level, this creates problems with the process control and
management. Obtaining large amounts of data with high resolution under working conditions is
difficult for a number of reasons. In order to provide reliable input data for a model, the analyzing
equipment must be calibrated on an ongoing basis. Moreover, the hardware sensors are prone to
failure or sustaining mechanical damage under real conditions. Although it is still feasible to eliminate
such damage or to calibrate the equipment as frequently as necessary, these tasks may be quite
expensive and the costs of their implementation under operating and management conditions in
a real facility may be disproportionately high. In the facilities operated with no hardware sensors,
the indicators of quality and the bioreactor operating parameters are measured with analytical methods.
From the technical point of view, obtaining data in a continuous system in that case is rather difficult.
Therefore, the implementation of a calculation model in a WWTP may be limited, thus complicating
the management of the facility. Despite the many problems with data acquisition, with their reliability
and with the costs of measurements, researchers [56,57] still strive to improve the predictive power of
models. The approach calls for some criticism, not being fully consistent with the latest trends, as these
tend to focus on cost minimization [58–61]. On the other hand, systems that enable an on-line process
control, taking into account the potential failures of measurement schemes, are required. In order to
solve this problem, researchers will create new standards for the construction of mathematical models
for controlling technological processes in wastewater treatment plants.

Considering the aforementioned observations, the different conditions and data acquisition
standards applicable to WWTPs, it seems desirable to seek systems enabling process simulation
with high accuracy, taking into account the real-time differences in the operation of WWTP facilities.
Therefore, it seems reasonable to aim at such solutions for the simulation of the wastewater treatment
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processes that enable the processes to be controlled and operation of the facility to be managed
regardless of the measured data (including the wastewater quality, operating parameters and their
combinations). On the other hand, a process engineer working in a WWTP will be interested in
selecting such independent variables that make the model accurate, even though the number of
variables included in the model is limited: less measured data will generate lower operating costs but
will still enable control of the wastewater treatment process. These assumptions can be implemented
under operating conditions and the choice of the simulation method is of major importance. On the
one hand, the calculation model must provide a compromise between complexity and accuracy. On the
other hand, the question arises whether a model must be created to simulate continuous values.
By introducing binary input/output variables, in many cases it is possible to obtain the models in
the form of analytical dependencies, which can be applied without the need to implement complex
computational algorithms.

As part of the analyses, the concept of a soft sensor system expert system has been proposed which
can be applied in selecting a method for the analysis of activated sludge bulking and which takes into
account the economic aspects of the wastewater treatment technology. These include the measured
indicators of the wastewater quality, the operating parameters of the bioreactor, the duration of the
test period, the influence of measurement errors of several independent variables on the results of a
simulation, and the complexity of the method used in building the model for soft sensor construction.

2. Materials and Methods

2.1. Experimental Data

Experimental data were obtained from the test facility the WWTP in Sitkówka-Nowiny, located near
the city of Kielce in the south of Poland. The daily load of the test facility is Qn = 42,000 m3/d (equivalent
to 2,750,000 PE) of municipal wastewater from Kielce and the adjacent area. The wastewater is first
handled mechanically on bar screens, in a preliminary sedimentation tank basin and a sand trap. It is
then sent downstream for biological treatment in a bioreactor, operated in a modified BARDENPHO
system with a pre-denitrification chamber. The treated wastewater is separated from the activated
sludge in the secondary sedimentation tank and is then discharged to the receiving body—the
Silnica river.

Monitoring in the WWTP includes measurements of the quantity and quality of the influent
wastewater and the bioreactor operating parameters. During the research period, a qualitative analysis
of both the influent and effluent wastewater was performed once a week to determine its BOD, COD,
TSS, TN, TP, N–NH4, and sedimentation parameters of activated sludge (SVI). The organic compounds
were determined as COD in accordance with PN–ISO 6060: 2006 and as BOD with the method using the
OXITOP, in accordance with PN–EN 1899–1:2002. TSS were determined by means of glass fiber filters
with the methods set out in PN–EN 872: 2007. TP was determined in accordance with PN–EN ISO
6878: 2006. TN and nitrogen as N–NH4 were determined in accordance with PN–C–04576–14: 1973
and PN–ISO 5664: 2002, respectively. SVI was determined by means of the method set out in PN–EN
14702–1: 2008. Moreover, the quantity of the influent wastewater and the operating parameters of the
reactor were measured, whereas the data were recorded at hourly intervals using SCADA. In this way,
250 datasets representing all the above mentioned variables were obtained. The monitored parameters
included MLSS—mixed liquor suspended solids concentration of activated sludge, T—temperature
in the bioreactor, DO—oxygen level, mPIX—dosage of PIX chemical coagulant, WAS—excess sludge,
RAS—degree of recirculation [return activated sludge], and MLSSR—concentration of return sludge.
The results of measurements in the various seasons of the years 2013–2015 are shown in Table 1.
These data show that both the bioreactor operating parameters as well as the amount and quality of
wastewater varied considerably in the different seasons of the study period, affecting the activated
sludge sedimentation to a large extent. In the winter season, the average values of SVI were higher
than those from the spring to fall. The relation obtained is confirmed by analysis of variance (ANOVA)
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test results. For the assumed value of p = 0.05, p-test value equal to p = 0.000024 and F = 42.257 were
obtained. The SVI lability depending on temperature may indicate that the activated sludge bulking
occurred in the period of interest due to a temperature drop, as confirmed in the analyses reported
by Bayo et al. [62]. Other reasons could include a drop in the concentration of organic compounds in
the influent wastewater as well as the changes in the oxygen concentration in the activated sludge
chambers, as suggested by Comas et al. [29].

Table 1. Results of measurements of the volume and quality of wastewater and the reactor operating
parameters in the Sitkówka-Nowiny wastewater treatment plant (WWTP).

Indicators Units Winter Spring-Fall

Min Mean Max Standard Deviation Min Mean Max Standard Deviation

Q m3/d 29,952 39,364 88,986 6563 30,125 41,842 94,772 8559

BOD mgO2/l 151 290 489 81.83 132 340 557 81.2

COD mg O2/l 384 782 1183 161.4 342 820 1703 178.2

TSS mg/l 136 315 474 62.76 110 350 572 89.4

N-NH4 mg/l 28 48.9 62 5.68 22 54.52 66.9 7.13

TN mg/l 56.2 82.01 95.16 8.42 39.9 95.15 124.1 11.58

TP mg/l 3.1 7.22 12.1 1.44 3.5 7.83 12.6 1.65

T ◦C 10 11.9 13.5 0.8 11.3 17.8 23 3.1

DO mg/l 1.8 2.85 3.25 0.8 1.51 2.2 3.25 0.65

MLSS mg/l 2.85 4.95 6.54 0.84 2.15 4.11 5.28 0.95

MLSSR mg/l 6.62 8.7 14.92 0.72 5.03 7.81 11.86 0.1

WAS t.s.m/d 12.69 15.35 18.35 3.51 10.02 12.35 17.25 3.77

RAS % 85.2 102.9 152 16.25 75.2 83.06 120.5 24.4

SVI cm3/g 154 198 291 35 90 138 200 37

mPIX m3/d 0 0.81 1.75 0.27 0 0.84 1.82 0.28

where: Q—inflow to wastewater treatment plant, BOD, COD—biochemical/chemical oxygen demand, TSS—total
suspended solids, N–NH4—ammonium nitrogen, TN—total nitrogen, TP—total phosphorus, T—temperature in
the activated sludge chambers, DO—oxygen concentration in the bioreactor, MLSS—concentration of activated
sludge, MLSSR—concentration of return sludge, WAS—excess amount of sludge, RAS—degree of recirculation,
mPIX—dosage of PIX, SVI—sludge volumetric index.

These results and the wide range of SVI indicates the requirement to build a mathematical model
enabling the construction of soft sensor to control of the process of activated sludge sedimentation.

The literature [23–26] shows that the sludge bulking is a complex phenomenon. Its course and
dynamics are influenced by temperature and pH, because they determine the growth of microorganisms.
An increase in temperature raises the number of the floc-forming bacteria. The pH value should
range between 7–7.5, since a drop below 6.0 results in the growth of fungi, which leads to sludge
bulking. The MLSS and TSS values are the factors describing the amount of activated sludge in a
bioreactor. The wastewater quality markers (BOD, COD, TN, TP, N-NH4) are a source of nutrients
for microorganisms. Insufficient TN and TP lead to the creation of particles with high floc content
and loss of sedimentation ability. The amount of coagulant usually leads to an improvement in the
sedimentation of the activated sludge. Oxygen is used during obtaining energy for the biochemical
processes conducted by microorganisms in the bioreactor.

2.2. Model Concept

This paper presents a concept of soft sensor for selecting the data-mining method for simulating
the activated sludge bulking (or absence of bulking) which takes into account the following aspects:
complexity of the data-mining method, time of analysis of independent variables in these simulations,
different accessibilities of the recorded measurement data within the test facility, reliability of the
measured data, usefulness of the model in process control and optimization (Figure 1). The approach
presented below also indicates the possibility of extending the soft sensor system, to select the
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calculation method for various volumes and qualities of the influent wastewater and for various
weather conditions.
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Figure 1. A schematic of the soft sensor system for selecting a data mining method for simulating
sludge bulking.

In the approach presented, the model for assessing the activated sludge sedimentation was built
based on the technological data recorded within the test facility. The various categories of technological
data were determined by the type of the measurement system used by the test facility and were
limited to the following: quantity and quality of the influent wastewater, the bioreactor operating
parameters or their combinations (Step A, Figure 1). The recorded results enabled the construction of a
classification model for simulating the activated sludge sedimentation based on the sludge volumetric
index, SVI. The binary system was selected, which indicates whether sludge bulking does (0) or does
not occur (1).

Sedimentation is a complex phenomenon and the amount of data recorded at the test
facility was limited; therefore, the variables which have a statistically significant impact on the
investigated phenomenon were identified before the model for soft sensor could be constructed.
The Fischer–Snedecor test was used for that purpose (Step B, Figure 1). The variables with numerical
values of test probability over p = 0.05 were omitted from the model.

In Step C (Figure 1) the combinations of independent variables (xi) which are considered a basis
for the construction of classification models, were created. In these analyses, the combinations of the
influent wastewater quality and the bioreactor operating parameters were adopted. This issue is of
importance to the feasibility of the control and monitoring of the processes taking place in a complex
facility such as a WWTP, considering the numerous technical problems in its operation. Moreover,
a lot depends on the function that it is supposed to satisfy. Importantly, the number of independent
variables included in the model should not entail high-cost determinations of the wastewater quality
indicators or the operating parameters of a reactor. Instead, it should be optimal for the applicable
requirements and enable management of the facility.
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In the next step of the analyses (Step D, Figure 1), the selected combinations of the independent
variables of interest were assigned numerical values in the range 0–3, the sum of which within the
respective variables (quality of wastewater and operating parameters) is standardized. The values of
the adopted weight factors and the proposed standardizing functions describe the following:

• the number of independent variables xi relating to the wastewater quality, duration of their
determinations, and the bioreactor operating parameters: δ, λ;

• the cost of measurements of the wastewater quality indicators, bioreactor operating parameters
(the value 0 relates to the lowest cost and 3 to the highest cost): f (δ), f (λ);

• the duration of measurement of the wastewater quality indicators (0 relates to those measurements
in which the duration was lesser than one day, and 1 pertains to those lasting for more than one
day): f (t);

• the possibility of using the selected model for the management, control or optimization of the
WWTP functioning (the weight factor of 1 indicates that the model is applicable in the control,
optimization, and the weight factor of 0 means that the model cannot be used for improving the
efficiency of the WWTP): F(S).

In the next step (Step E, Figure 1), the combination of independent variables is used for creating
classification models using different data mining methods. In the present analyses, before selecting a
method the authors considered its complexity, the number of estimated coefficients within its structure,
and the possibility of interpreting the results obtained. On the basis of results of such calculations,
it is determined how they fit to those of the measurements—SPEC (determines the correctness of
data classification in the set of data, including events when a activated sludge bulking occurred),
SENS (determines the correctness of data classification in the set of data constituting cases when
no activated sludge bulking occurred) [63–65].Using these results, the model class is found and,
depending on the weight factor value, the calculation method is selected.

The established standardized weight values expressing the number of the independent variables
that describe such parameters as the wastewater quality δ = f(z1, z2, . . . , zq), bioreactor operating
parameters λ = f(f1, f2, . . . , fg), bacterial flora (e1, e2, . . . , et), cost of analyses f(δ) and f(λ), duration of
analyses f(t), and usefulness of the model for control and management of the bioreactor operation
F(S), were used in determining the multi-dimensional weight factor vectors [δ f(δ) λ f(λ) f(t) F(S)].
They enabled the matrices to be found facilitating a fast and simple choice of the suitable data-mining
method for identification of the activated sludge bulking (Step F, Figure 1).

When selecting a model, the proposed solution offers the possibility to introduce economic criteria
to vary the independent variables that are included in the model (Step G, Figure 1). These independent
variables relate to the number of data to be measured (volume and quality of the wastewater, and the
reactor operating parameters) as well as to the possibility of using a specific model for the control,
management and optimization of the WWTP operation.

The resulting soft sensor system for selecting the optimal data-mining method for the analysis
of the activated sludge sedimentation can be applied in the daily operation of the WWTP and in
its management, based on a variety of calculation methods, taking the wastewater volume and the
bioreactor operating parameters into account.

2.3. Methods of Data Mining, Choice of Independent Variables and ConstructionCriteria for Soft Sensor

Taking into the account the issues with optimal selection of a method for the simulation of
wastewater treatment plant processes, which was discussed in the introduction, the classification
models were adopted for the analysis of the phenomenon considered. In order to determine the
optimum between the accuracy and complexity of a model, as well as the number of independent



Sensors 2020, 20, 1941 8 of 25

variables, an analytical model—logical regression (LR)—was considered in the analyses. The model
had the following form:

p =
exp

(∑k
j=1 β j·x j + β0

)
1 + exp

(∑k
j=1 β j·x j + β0

) (1)

in which the established βj coefficients enable determining the impact of the input data (xj) on the
probability of the occurrence of the phenomenon (p)—activated sludge bulking in this case.

Simultaneously, the application of models with increasing complexity was tested, starting from
relatively simple ones (RF, BT) and finishing with a neural network methods like MLP and its
subsequent modification, i.e., SVM. The mentioned methods, which were applied in this research work
in creating the models for soft sensor predicting the activated sludge bulking, are highly efficient,
as confirmed by a number of research works [32,49,62]. Taking into account the above, these models
have been implemented in such statistical packages as R, STATISTICA, XLSTAT, SPSS, and can be used
for building the models for predicting activated sludge bulking by many groups of users, including
those responsible for the management of a WWTP.

In this elaboration, the statistical models were indicated by means of STATISTICA 12 software
package. In order to devise models, the measurement data were divided into two sets: a learning
set (75%) and a test set (25%). In the case of the logit model, based on the appropriate combinations
of independent variables and on the assumed confidence interval of 0.05, the empirical coefficients
were determined using formula (1). In the RF and BT model, assuming the number of trees up to 300,
the structure of models was determined. In the MLP models, the number of neurons in the hidden
layer was analyzed in the range (j–2·j + 1) (where: j—number of independent variables). In order to
optimize the structure and weight values for the assumed number of neurons, different activation
functions were analyzed, including: linear, exponential, sigmoidal, sinus, tangent—hyperbolic. For a
complex number of neurons in the hidden layer and consecutively assumed activation functions,
the fitting of calculation results to the measurements was determined. When the calculated values
of SENS and SPEC for the assumed independent variables and the number of neurons as well as the
activation function were minimal, the structure obtained was considered optimal. In the SVM method,
Gaussian kernel was assumed, while the optimum values of C and γwere sought with the iteration
method, substituting the values of above-mentioned parameters until the minimal SENS and SPEC
values were achieved.

Given the fact that sludge bulking depends on the wastewater volume, its quality, operating
parameters and the technology, the following general relationship can be formulated [11,62,65–67]:

SVI = f
(
Q, z1, z2, z3, . . . zq, f1, f2, f3, . . . fg, e1, e2, e3, . . . , et

)
SVI ≤ SVIlim activated sludge does not bulk

SVI > SVIlim activated sludge bulks
(2)

where: z1,2,3,q—independent variables describing the quality of wastewater, f1,2,3,g—independent
variables describing the bioreactor operating parameters, e1,2,3,t—independent variables describing the
bacterial communities present in the activated sludge, and the technological solution of the bioreactor,
q—the number of wastewater quality indicators, included in the mathematical model, g—the number
of operating parameters of the reactor, included in the model, t—the number of independent variables,
which describes the bacterial communities and has been included in the model.

Taking into account the complexity of the sedimentation process and the differences in the
accessibility of the measured data within a WWTP, this paper provides detailed analyses to find the
specific combination of data including the values of z1,2,3,q and f1,2,3,g for which the sludge bulking
process can be identified. In the analyses, the variables e1,2,3,t (Formula 2) were omitted. The influence
of micaceous organisms, including filamentous bacteria, on the results of calculations of volumetric
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index of activated sludge was analyzed by Bezak-Mazur et al. [68]. Consequently, the following models
were developed for the analyses:

SVIq,g = f
(

Q, z1, z2, z3, . . . zq, f1, f2, f3, . . . fg
)

(3)

SVIq = f
(

Q, z1, z2, z3, . . . zq
)

(4)

SVIg = f
(

f1, f2, f3, . . . fg
)

(5)

The model described by the relationship (4) includes the volume and indicators of the quality of
the influent wastewater. Within the respective models, described by Equations (3)–(5), the authors
sought such combinations of independent variables, including for instance the wastewater quality,
of which the number is as small as possible and the results of simulation are consistent with the
measured data: {

1, 2, 3, . . . q, 1, 2, 3, . . . g
}
→ min and SPEC(SENS)→ max (6){

1, 2, 3, . . . q
}
→ min and SPEC(SENS)→ maxSVIq = f

(
Q, z1, z2, z3, . . . zq

)
(7){

1, 2, 3, . . . g
}
→ min and SPEC(SENS)→ max (8)

On the basis of the work [69] it was shown that for the Siktówka-Nowiny WWTP there is a
general relationship:

SVI(t) = f ( Q(t− 1), BOD(t− 1), TN(t− 1), TP(t− 1), MLSS(t− 1), DO(t− 1), mPIX(t− 1), T(t− 1))
SVI ≤ 150 activated sludge does not bulk

SVI > 150 activated sludge bulks
(9)

where: (t)—values of independent variables measured at moment t; (t–1)—values of independent
variables measured at moment (t–1).

On the basis of the relationship (9), it can be stated that the load of organics, nitrogen and
phosphorus in the influent wastewater has a statistically significant effect on the sludge sedimentation
in the test facility. The operating parameters of the reactor, such as the concentration of activated sludge,
oxygen level, dosage of PIX, as well as temperature in the sludge chambers strongly correlate with the
seasons of the year [33,62,69]–are important as well. After substituting the obtained relationships in
Equations (3)–(5), the following was obtained:

SVI(t) = f (Q(t− 1), BOD(t− 1), TN(t− 1), TP(t− 1), MLSS(t− 1), DO(t− 1), mPIX(t− 1), T(t− 1)) (10)

SVI(t) = f (Q(t− 1), BOD(t− 1), TN(t− 1), TP(t− 1), T(t− 1)) (11)

SVI(t) = f ( MLSS(t− 1), DO(t− 1), mPIX(t− 1), T(t− 1)) (12)

In the case of interest, for the Sitkówka-Nowiny WWTP, operated as an integrated system for the
removal of carbon, nitrogen and phosphorus compounds, it was assumed that SVIlim = 150 cm3/g, as
reported in the literature [23].

2.4. Determining the Values of Weight Factors and Matrices of a Method Selection for Identification of
Sludge Bulking

For a quantitative assessment of the differentiation of the adopted combinations of independent
variables in predicting activated sludge sedimentation, as described above, the authors proposed an
original system for determination of weight factors. The total effect of the aforementioned factors is
expressed using the cumulative weight factor (Wtot) the minimum value of which, taking into account
the model-building criteria (mentioned below), can be calculated from the formula:

Wtot,min = min
{
min

{
δ, f (δ), f (t)

}
+ min

{
λ, f (λ)

}
+ F(S)

}
(13)
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The general relationship (14) takes the following form:

Wtot =
{
δ, f (δ), f (t)

}
+

{
λ, f (λ)

}
+ F(S) (14)

where: δ, f(δ), f(t), λ, F(λ), F(S)–according to the notation in the subsequent sections.
In practice, numerous variants of independent variables in models are encountered in the operation

of a WWTP. This depends on the data obtained in measurements in the facility and on the requirements
that a given model is expected to meet.

In Equation (13), the boundary conditions (π) facilitating the choice of independent variables for
predicting SVI values were defined in parallel and in series:

• the condition determining the costs of determination and the number of indicators of the
wastewater quality which are included in the model and reducibility of their value:

π1 : min
{
δ, f (δ), f (t)

}
(15)

• the condition determining the cost and number of measurements of the operating parameters
which are included in the model and their reducibility:

π2 : min
{
λ, f (λ)

}
(16)

• the condition enabling minimization of the number and costs of measurements pertaining to the
values of wastewater quality indicators and the reactor operating parameters:

π3 : min
{
δ, f (δ), f (t)

}
+ min

{
λ, f (λ)

}
(17)

• the condition minimizing the number and cost of measurements of the wastewater quality
indicators and the reactor operating parameters so that the obtained model can be used in
controlling the reactor operation:

π4 : min
{
min

{
δ, f (δ), f (t)

}
+ min

{
λ, f (λ)

}
+ F(S)

}
(18)

In spite of the defined boundary conditions, the choice of the suitable data-mining method for
the identification of activated sludge bulking and for the management of the WWTP operation is
possible if the operating parameters of the bioreactor are included; this corresponds to the following
relationships (16), (17), (18).

The data-mining method for simulating the volumetric index of activated sludge is selected after
establishing independent variables in the model, according to the aforementioned calculation algorithm.

The function δ in Formula (14) describes the number of the quality indicators which were adopted
in simulating the values of SVI. It takes the following form:

δ =

∑q
i=1[zi]∑q

i=1[zi]max
(19)

where: zi = 1, 2, . . . , q–number of the wastewater quality indicators included in the model; if the
indicator is included in the model, then [zi] = 1, otherwise [zi] = 0, [zi]max—maximum weight of 1
indicating that the i-th indicator is included in the calculation model, in the case below q = Σ[zi]max = 3.

The symbol f(δ) is the function of costs showing the impact of the cost of determining the quality
indicators; it is described by the equation:

f (δ) =

∑q
i=1[K(zi)]∑q

i=1[K(zi)]max
(20)
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where: K(zi)—weight of cost of measurement of the i-th indicator of the wastewater quality, included in
the model; in this case, the number of indicators q = 3, and they are as follows: BOD, TN and TP. A
literature survey [70,71] showed that the following relationship is true: K(TN) > K(TP) > K(BOD),
where the value of TN is found by calculation Kim et al. [72]; therefore, the weight factors of K(TN) =

3 and K(TP) = 2 and K(BOD) = 1 were adopted in the calculations. For instance, if BOD and TP are
included in the model, then the value of the function f(δ) = 1 + 2 + 0/(1 + 2 + 3) = 3/6. The proposed
method takes into account the fact that the adopted weight factor values may be uncertain. In that case,
it is acceptable to assume that the values K(zi) are stochastic and may be predicted with the Monte
Carlo method.

The function f(t) in Formula (15) takes into account the duration of determination of the i-th
indicator of the wastewater quality for simulating the values of SVI. It takes the values f(t,zi) = 1 for the
time of determination longer than 24 h, otherwise, it is 0. In the model of interest, it was assumed that
the values of the wastewater quality indicators in Equations (10), (11) may be modeled using statistical
models [69,73–75]—for these cases, f(t) = 0.

The function λ describes the number of the bioreactor operating parameters adopted in calculating
SVI. The function takes the following form:

λ =

∑g
k=1[zk]∑g

k=1[zk]max
(21)

where: zk = 1, 2, . . . , g–number of the bioreactor operating parameters included in the model, if a
parameter is included in the model, then [zk] = 1, otherwise, [zk] = 0, [zk]max—the maximum weight
factor value of 1 indicates that the k-th operating parameter is included in the calculation model; in the
case below, it is q = Σ[zk]max = 3 (namely, DO, MLSS, T).

The symbol f(λ) is the function of costs, describing the impact of the cost of determining the
quality indicators. It can be described by the following equation:

f (λ) =

∑g
k=1[K(zk)]∑g

k=1[K(zk)]max
(22)

where: K(zk)—the weight factor of the measurement of the k-th bioreactor operating parameter,
included in the model; in this case, the number of the indicators included is g = 3, and these are:
DO, MLSS and T. Literature [61,70] has shown that the following relationship is true: K(MLSS) >

K(DO) > K(T). Therefore, the following weight factors were adopted in the calculations: K(MLSS) = 3,
and K(DO) = 2, and K(T) = 1. For instance, when the values MLSS and T are included in the model,
then the value of the function is f(λ) = 1 + 3 + 0/(1 + 2 + 3) = 4/6.

Under operating conditions, the measured values from several hardware sensors are exposed
to error, potentially affecting all the devices. Therefore, in sensitivity analyses, the recommended
approach is to analyze the impact of several factors on the results of calculation. This can be described
by the following equation:

S
(
x1, x2, . . . , xj

)
=

∆p

p0
(
x1, x2, . . . , x j

) =
p
(
x1 + p·∆x1, x2 + p1·∆x2, . . . , x j + p j·∆x j

)
p0

(
x1, x2, . . . , x j

) (23)

Therefore, the function F(S) takes into account the fact that the selected independent variables in
a model enable the control and adjustment of the SVI values. This can be described as follows:

F(S) = f (λ, δ) (24)

If the variables adopted in the calculations enable the control of the SVI values, then the function
F(S) = 0, otherwise, F(S) = 1.



Sensors 2020, 20, 1941 12 of 25

If the essential criteria for the model creation, encompassing the measured values showing the
wastewater volume and quality and the bioreactor operating parameters are adopted, then a matrix
of cases can be written (Figure 2) and the weight factor values W can be found from Equation (13).
For the established combinations of independent variables in the matrix above and for the weight
factor values Wtot, the mathematical models for the identification of the activated sludge bulking are
found using the selected data mining methods.

Sensors 2020, 20, x 11 of 24 

 

factor value of 1 indicates that the k-th operating parameter is included in the calculation model; in 
the case below, it is q = Σ[zk]max = 3 (namely, DO, MLSS, T). 

The symbol f(λ) is the function of costs, describing the impact of the cost of determining the 
quality indicators. It can be described by the following equation: 𝑓(𝜆) = ∑ [𝐾(𝑧 )]∑ [𝐾(𝑧 )]  (22) 

where: K(zk)—the weight factor of the measurement of the k-th bioreactor operating parameter, 
included in the model; in this case, the number of the indicators included is g = 3, and these are: DO, 
MLSS and T. Literature [61,70] has shown that the following relationship is true: K(MLSS) > K(DO) > 
K(T). Therefore, the following weight factors were adopted in the calculations: K(MLSS) = 3, and 
K(DO) = 2, and K(T) = 1. For instance, when the values MLSS and T are included in the model, then 
the value of the function is f(λ) = 1 + 3 + 0/(1 + 2 + 3) = 4/6. 

Under operating conditions, the measured values from several hardware sensors are exposed to 
error, potentially affecting all the devices. Therefore, in sensitivity analyses, the recommended 
approach is to analyze the impact of several factors on the results of calculation. This can be described 
by the following equation: 𝑆(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒋) = ∆𝑝𝑝 (𝑥 , 𝑥 , … , 𝑥 ) = 𝑝(𝑥 + 𝑝 ∙ ∆𝑥 , 𝑥 + 𝑝 ∙ ∆𝑥 , … , 𝑥 + 𝑝 ∙ ∆𝑥 )𝑝 (𝑥 , 𝑥 , … , 𝑥 )  (23) 

Therefore, the function F(S) takes into account the fact that the selected independent variables in a 
model enable the control and adjustment of the SVI values. This can be described as follows: 𝐹(𝑆) = 𝑓(𝜆, 𝛿) (24) 

If the variables adopted in the calculations enable the control of the SVI values, then the function  
F(S) = 0, otherwise, F(S) = 1. 

If the essential criteria for the model creation, encompassing the measured values showing the 
wastewater volume and quality and the bioreactor operating parameters are adopted, then a matrix 
of cases can be written (Figure 2) and the weight factor values 𝑊 can be found from Equation (13). 
For the established combinations of independent variables in the matrix above and for the weight 
factor values Wtot, the mathematical models for the identification of the activated sludge bulking are 
found using the selected data mining methods. 

 

Figure 2. Matrix of the cases of interest and the weight factor values 𝑊 .  

where the following relationships are satisfied: λ = f(f1, f2, f3 …, fg) = f(λ), δ = f(z1, z2, z3 …, zq) = f(δ). 
The obtained results of simulation are expressed in the form of a matrix for the selection of methods 
(Figure 3). Such a matrix includes the models with the optimum fitting between the results of 
calculation and the measured results among all the methods considered. 

 

Figure 2. Matrix of the cases of interest and the weight factor values Wgq. where the following
relationships are satisfied: λ = f(f1, f2, f3 . . . , fg) = f(λ), δ = f(z1, z2, z3 . . . , zq) = f(δ).

The obtained results of simulation are expressed in the form of a matrix for the selection of
methods (Figure 3). Such a matrix includes the models with the optimum fitting between the results of
calculation and the measured results among all the methods considered.

Sensors 2020, 20, x 11 of 24 

 

factor value of 1 indicates that the k-th operating parameter is included in the calculation model; in 
the case below, it is q = Σ[zk]max = 3 (namely, DO, MLSS, T). 

The symbol f(λ) is the function of costs, describing the impact of the cost of determining the 
quality indicators. It can be described by the following equation: 𝑓(𝜆) = ∑ [𝐾(𝑧 )]∑ [𝐾(𝑧 )]  (22) 

where: K(zk)—the weight factor of the measurement of the k-th bioreactor operating parameter, 
included in the model; in this case, the number of the indicators included is g = 3, and these are: DO, 
MLSS and T. Literature [61,70] has shown that the following relationship is true: K(MLSS) > K(DO) > 
K(T). Therefore, the following weight factors were adopted in the calculations: K(MLSS) = 3, and 
K(DO) = 2, and K(T) = 1. For instance, when the values MLSS and T are included in the model, then 
the value of the function is f(λ) = 1 + 3 + 0/(1 + 2 + 3) = 4/6. 

Under operating conditions, the measured values from several hardware sensors are exposed to 
error, potentially affecting all the devices. Therefore, in sensitivity analyses, the recommended 
approach is to analyze the impact of several factors on the results of calculation. This can be described 
by the following equation: 𝑆(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒋) = ∆𝑝𝑝 (𝑥 , 𝑥 , … , 𝑥 ) = 𝑝(𝑥 + 𝑝 ∙ ∆𝑥 , 𝑥 + 𝑝 ∙ ∆𝑥 , … , 𝑥 + 𝑝 ∙ ∆𝑥 )𝑝 (𝑥 , 𝑥 , … , 𝑥 )  (23) 

Therefore, the function F(S) takes into account the fact that the selected independent variables in a 
model enable the control and adjustment of the SVI values. This can be described as follows: 𝐹(𝑆) = 𝑓(𝜆, 𝛿) (24) 

If the variables adopted in the calculations enable the control of the SVI values, then the function  
F(S) = 0, otherwise, F(S) = 1. 

If the essential criteria for the model creation, encompassing the measured values showing the 
wastewater volume and quality and the bioreactor operating parameters are adopted, then a matrix 
of cases can be written (Figure 2) and the weight factor values 𝑊 can be found from Equation (13). 
For the established combinations of independent variables in the matrix above and for the weight 
factor values Wtot, the mathematical models for the identification of the activated sludge bulking are 
found using the selected data mining methods. 

 

Figure 2. Matrix of the cases of interest and the weight factor values 𝑊 .  

where the following relationships are satisfied: λ = f(f1, f2, f3 …, fg) = f(λ), δ = f(z1, z2, z3 …, zq) = f(δ). 
The obtained results of simulation are expressed in the form of a matrix for the selection of methods 
(Figure 3). Such a matrix includes the models with the optimum fitting between the results of 
calculation and the measured results among all the methods considered. 

 
Figure 3. Matrices for the selection of methods for identification of sludge bulking.

In order to supplement the aforementioned methods and the matrices, additional criteria
can be included which govern the developed model (controllability—MΘ,F(S), duration of
determination—MΘ,f(t)). A representative matrix for the selection of a method for the simulation of
sludge bulking is shown in Figure 3. For MΘ = 0, the selected method cannot be applied for assessing
the capacity of sedimentation because independent variables were included in the model or due to
the duration of determination of the wastewater quality indicators, which are included in the model.
For instance, for MΘ = MΘ,F(S) = MΘ,f(t) , 0, the selected data-mining method can be used for predicting
activated sludge bulking.

3. Results and Discussion

3.1. The Sludge Bulking Identification Method and the Choice of Independent Variables

On the basis of the results of measurements in the Sitkówka-Nowiny WWTP, the classification
models for predicting SVI using the boosted tree (BT), random forest (RF), multilayer perceptron
(MLP), support vector machines (SVM) and logistic regression (LR) methods were determined using
the relationships (3)–(8), (11), (12), and (13). The variables A–G, which were statistically significant
to the phenomenon of interest, were used in various combinations. Table 2 presents the values of
measures of fit between the calculated and the measured results (SENS and SPEC).
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Table 2. List of values of the measures of fit between the calculated and the measured results (testing
data) (SENS– sensitivity, SPEC–specifity) for SVI, obtained with various methods for a combination of
independent variables (quantity and quality of wastewater, bioreactor operating parameters).

Independent
BT LR MLP SVM RF

SP SE N.T. SP SE SP SE N:H:E SP SE C, γ SP SE N.T.

A 0.65 0.81 19 0.27 0.88 0.42 0.87 5:exp,lin 0.38 0.92 900,0.35 0.46 0.88 170

B 0.88 0.81 88 0.35 0.94 0.31 0.96 4: sin,lin 0.31 0.98 100,0.40 0.35 0.88 60

C 0.62 0.83 19 0.27 0.92 0.46 0.88 3: lin,lin 0.50 0.85 1000,0.25 0.46 0.88 20

A,B 0.85 0.83 19 0.38 0.90 0.48 0.92 8:exp,tanh 0.42 0.98 800; 0.35 0.00 1.00 25

A/B 0.77 0.73 11 0.27 0.85 0.35 0.94 3: tanh, lin 0.54 0.85 800;0.25 0.58 0.81 40

A/C 0.73 0.75 38 0.35 0.85 0.35 0.92 3:sin,lin 0.50 0.90 800;0.35 0.69 0.79 40

A,C 0.65 0.75 11 0.27 0.85 0.31 0.94 3:tanh,lin 0.54 0.87 800;0.80 0.58 0.79 40

D 0.81 0.88 183 0.65 0.87 0.73 0.85 3:exp, sin 0.62 0.88 900;0.33 0.88 0.77 30

D,A/B 0.88 0.77 10 0.68 0.87 0.65 0.87 4:lin,exp 0.73 0.85 800;0.35 0.88 0.81 40

D,A/C 0.88 0.88 155 0.68 0.88 0.69 0.85 3:lin,lin 0.73 0.87 800;0.33 0.88 0.80 30

D,B 0.88 0.77 10 0.62 0.88 0.65 0.90 7:tanh,lin 0.73 0.87 900;0.33 0.88 0.82 10

D,B,C 0.88 0.80 24 0.62 0.88 0.68 0.90 6:tanh,lin 0.76 0.88 800;0.25 0.88 0.86 30

D,A,B,C 0.92 0.83 14 0.65 0.92 0.69 0.94 9:lin,sin 0.77 0.90 1000;0.25 0.85 0.87 30

E 0.88 0.75 119 0.62 0.83 0.88 0.92 5:log,exp 0.85 0.88 900;0.40 0.50 0.98 119

E,D 0.95 0.96 98 0.88 0.96 0.92 1.00 5:exp,lin 1.00 0.98 900;0.25 0.88 0.92 30

E,F 0.96 0.87 98 0.65 0.90 0.88 0.96 5:lin,lin 0.88 0.96 900;0.20 0.46 1.00 200

F 0.92 0.81 195 0.00 1.00 0.46 0.90 4:tanh,tanh 0.58 0.85 900;0.50 0.92 0.71 30

D,F 0.88 0.77 15 0.62 0.88 0.73 0.85 7:log,lin 0.65 0.88 700;0.33 0.88 0.77 30

D,F,B 0.92 0.90 15 0.65 0.90 0.69 0.90 7:exp, lin 0.69 0.90 700;0.25 0.85 0.85 30

D,F,A/B 0.90 0.84 5 0.70 0.88 0.85 0.79 6:tanh,lin 0.81 0.87 900;0.33 0.88 0.77 30

D,F,B,C 0.88 0.81 10 0.65 0.90 0.69 0.92 8:tanh,tanh 0.81 0.88 800;0.25 0.88 0.85 30

F,B 0.85 0.88 114 0.35 0.92 0.50 0.87 3:tanh,tanh 0.46 0.96 700;0.20 0.88 0.77 140

F,B,C 0.92 0.92 186 0.31 0.94 0.55 0.96 5:sin,lin 0.54 0.85 500;0.35 0.54 0.85 20

F,C 0.85 0.73 15 0.23 0.90 0.50 0.88 3:lin,lin 0.54 0.87 600;0.40 0.50 0.75 30

D,F,E 1.00 0.93 162 0.88 0.96 0.96 0.98 7:exp,lin 0.96 0.98 600;0.25 0.08 1.00 30

A/C,F,E 1.00 0.88 119 0.69 0.90 0.88 0.94 7:lin,lin 0.88 0.94 600;0.35 0.85 1.00 30

A/C,F,E,D 1.00 0.96 195 0.92 0.96 0.91 0.95 7: lin,sin 0.93 1.00 600;0.20 0.46 1.00 60

A/C,A/B,F,E,D 1.00 0.97 100 0.94 0.96 0.92 1.00 3:tanh,exp 0.94 0.98 200;0.33 0.88 1.00 100

B,C,E,F,D 1.00 0.96 119 0.96 0.94 0.95 1.00 8:tanh,lin 0.88 0.98 100;0.17 0.81 1.00 70

B,C,E,F,D,G 1.00 0.98 195 0.96 0.98 0.99 1.00 4: lin,lin 0.92 0.98 100;0.25 0.88 0.96 70

B,C,E,F 0.96 0.88 195 0.85 0.94 0.93 0.99 4: lin,lin 0.69 0.96 200;0.35 0.66 0.91 70

B,E,F,D,G 1.00 0.96 195 0.85 0.94 0.95 1.00 6:lin,tanh 0.92 0.98 50;0.25 0.85 0.92 30

B,E,F,D 1.00 0.94 195 0.96 0.96 0.97 1.00 5: tanh,log 0.92 0.95 70;0.20 0.73 1.00 30

A/C,A/B,F,E,D,G 1.00 0.98 195 0.97 0.96 1.00 0.98 9:exp,lin 0.98 0.99 100;0.14 0.93 1.00 30

A/C,A/B,F,E,G 1.00 0.90 119 0.73 0.88 0.81 0.96 4:lin,lin 0.88 0.94 900;0.25 0.85 0.96 170

F,E,G 0.96 0.88 119 0.65 0.90 0.78 0.96 8:sin,exp 0.81 0.94 700;0.35 0.77 0.94 30

F,E,G,D 1.00 0.96 199 0.96 0.96 0.96 0.96 7:exp,lin 1.00 0.94 700;0.2 0.81 1.00 40

where: A—BOD, B—TN, C—TP, D—T, E—MLSS, F—DO, G—mPIX, SP—SPEC, SE—SENS.

The data in Table 2 indicate that the models found by means of the BT and RF methods are not
over-learned. This is confirmed by the number of trees (N.T.) for the consecutive calculation variants
(<300 trees). In the MLP method, the number of neurons is not greater than 2· j + 1 (where: j–number
of independent variables, included in the model). This seems to indicate that the obtained models are
not over-learned [24]. In the hidden and output layers, usually the following activation functions are
present: linear, exponential, tangent—hyperbolic, sinusoidal, and logistic.

The analysis of the data in Table 2 also indicates that the classification models for predicting SVI
are characterized by different predictive powers. This is largely due to the choice of the independent
variables which include the wastewater quality and the bioreactor operating parameters (or their
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combinations) as well as the selected methods (BT, RF, MLP, SVM, RL). The results of simulation
have confirmed a significant effect of the content of biogenic compounds on the activated sludge
sedimentation in the test facility. The parameter indicates that the phenomenon of activated sludge
sedimentation is taking place [29].

The predictive power was observed to improve in the classification models after the inclusion
of the various independent variables (BOD, TN, TP). Such a relationship can be perceived based on
the model formed with the RF, BT and SVM methods. However, the approach where the wastewater
quality indicators (A, B and C) and temperature in the activated sludge chambers were included,
enables the management of the facility and application of the model for a soft sensor in optimizing the
operation of the WWTP. These results were also confirmed in the studies of Pretorius and Rössle [76],
who formulated the empirical relationships for predicting SVI from MLSS, T obtaining the value
of R2 = 0.84. The above-mentioned relationship was also confirmed by the analyses of Szeląg and
coauthors [69], who indicated the instrumental influence of the independent variables on sludge
bulking by employing the logistic regression method. The possibility of employing logistic regression
for sludge bulking identification was also shown by Bayo et al. [62], who presented the seasonal
nature of the phenomenon, which confirms the influence of temperature on its course. An analysis of
the examples of calculations for various combinations of independent variables A–G, indicates that
the determination of a model with a high classification power does not require the inclusion of as
many factors as the regression models. Such complex calculation algorithms are not necessary, either.
Bagheri et al. [77] obtained a model of soft sensor characterized by a good fit with the measured data
after including COD, TN, T, MLSS, DO, pH, TSS and modifying the MLP method in which the weight
factors were corrected using a genetic algorithm. A similar approach to that of Bagheri et al. [77] was
described by other researchers [26,56,57,78], focusing on the modification of an artificial neural network
model in order to obtain better predictive power of their model. Interesting results of analyses were
presented by Boztoprak et al. [25], who obtained reliable calculation results through observations with
high-resolution cameras and the application of cellular neural networks (weights were optimized with
genetic algorithms). Han and Qiao [78], based on the measurement results of only COD, TN, BOD, pH,
DO and using modified MLP neural network models (hierarchical, hybrid– radial basis function (RBF)
networks with clustering model (Kohonen maps) etc.), indicated the possibility of bulking simulation
with a limited number of independent variables in comparison to the works of other authors [31,69,79].

Nonetheless, the use of such complex model structures may be problematic during the
implementation in a WWTP facility. A comparison of the simulation results described by the
aforementioned authors with the results of the studies indicates that there is no need to modify the
methods used in the research work. The results of simulation, obtained with those methods for
data relating only to the wastewater quality or only to the bioreactor operating parameters enable
identification of the sludge bulking with high accuracy. This is confirmed by the obtained values of
SPEC, SENS (Table 2). Looking at the obtained results in the aspect of reducibility of the number of
independent variables, depending on the adopted method [24,69], one can conclude that using the
classification model for the identification of sludge bulking and a rather limited number of independent
variables, it is possible to obtain a good fit between the calculated and the measured results. This effect
can be seen using non-modified methods (RF, BT, SVM, MLP, LR) and a considerable number of
input data, including both the volume and quality of the wastewater and the bioreactor operating
parameters. The aforementioned aspects were discussed in the work of Han and co-authors [26],
and Han and Qiao [78], who compared the results of SVI value simulations obtained using modified
models with those found by means of classic models (ARX, SVM, MLP), where the model structure
was not corrected. It is also worth noting that the resulting soft sensor models can be used for the
on-line control and adjustment of the activated sludge bulking. This allows improving the operation
of the test facility and enables its real-time management. On the other hand, a compromise between
the number of independent variables and accuracy of the soft sensor model is desirable. A large
number of independent variables, as presented in the paper by Luo and Zhao [24]—Q, BOD, COD,
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TN, N-NH4, TP, TSS, T, MLSS, pH—or a higher number of measurable indicators of the wastewater
quality, as described by Bagheri et al. [77], may lead to the problems with the continuity of independent
variables and applicability of the soft sensor model in the management of a WWTP.

3.2. The Choice of a Sludge Bulking Identification Method for Various Independent Variables of Model

The data in Table 2 indicate that among the data-mining methods of interest in this paper, a high
measure of fit (SPEC > 0.8 and SENS > 0.7) between the calculated and the measured results for
SVI could be obtained based solely on the temperature in the activated sludge chambers, using a
model built according to the RF and BT methods in the simulation. The results of calculations
for the activated sludge simulation are improved by 10% after taking into account the values of
wastewater quality indicators such as BOD, TN and TP in the model. The analysis results obtained are
confirmed by the findings of Bagheri et al. [77] who indicated the influence of wastewater quality on
the improvement of the prediction capabilities of the model (MLP) for the sludge bulking simulation.
Similar dependences were also shown by Mirbagheri et al. [79], who investigated the influence of
independent variables (wastewater quality, operational parameters) on the results of COD and TP
simulations at the wastewater treatment plant discharge.

As an alternative to BT, the SVM algorithm can also be used for sludge bulking identification,
except that this is one of the most complex models of all those considered in this research work. It is
also worth noting that among all the employed methods, the BT method enables the prediction of SVI
from indicators of the amount and quality of the influent wastewater. This is possible knowing just
the value of total nitrogen. Inclusion of the other independent variables, such as TN, TP, one by one
enables conducting the simulation calculations for the activated sludge bulking with high accuracy
(SENS, SPEC > 0.80). Even though the sedimentation capacity of the sludge can be identified based
on the measured temperature, amount and concentration of contaminants in the influent wastewater,
these values cannot be used for adjusting the bioreactor operating parameters. In the aspect of operation
and reliability of a WWTP, these models are applicable when the influent conditions do not indicate
any possibility of activated sludge bulking. Similar dependences were obtained by Bayo et al. [62],
who indicated the possibility of the sludge bulking process identification based on the knowledge
of weather conditions, omitting the operational parameters of the bioreactor. Such a case and an
analysis of the condition of activated sludge in the aspect of its bulking are only possible for a linear
combination of independent variables, including the amount and quality of the wastewater, and weather
conditions [62]. However, for the aforementioned data, the possibility of optimal adjustment of the
bioreactor settings is limited, and this affects the operation of the facility.

From the simulation calculations performed, it can be observed that among the bioreactor
operating parameters of interest (MLSS, DO), which enable adjustment of the SVI values, the lowest
predicting errors are obtained for the model determined from MLSS. The aforementioned dependence
is confirmed by the analyses conducted by Comas et al. [29], who devised an expert system for the
assessment of the impact and investigating the interaction between the wastewater quality at the inlet
and outlet, operational parameters and activated sludge bulking. In that case, a satisfactory fit (SPEC =

0.96 and SENS = 0.87) between the calculated and the measured values is obtained by means of the BT
method. Lower values of error were obtained by MLP (SENS by 4% and SPEC by 22.67%) as well as
SVM (SENS by 3.12% and SPEC by 17.95%). Reduced measurement errors (SENS, SPEC values) were
obtained in the models, taking into account the sludge temperature. Therefore, for the variables MLSS,
T, satisfactory results of calculations were obtained by means of BT, RF, SVM, MLP and LR. Under the
operating conditions, the soft sensor model based on logistic regression is the simplest and easiest
to implement. In the case of landslide identification, a good fit between the results of calculations
obtained with a logit model was achieved, in relation to more complex statistical methods (SVM) [80].
Similar results were obtained through the analysis of methodical data, while comparing the results of
the analyses conducted with the ANN method [81]. The calculation of SVI from DO alone provided
satisfactory results with BT, RF, as confirmed by the values of SPEC >0.9 and SENS of at least 0.7. In the
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case of a combination of independent variables including DO and T, a good fit between the calculated
and the measured data was obtained with BT, RF as well as by means of MLP and SVM, which are
more complicated methods. A compilation of the aforementioned independent variables (which are
the controlling variables since they enable adjustment of SVI, namely MLSS, DO and T), enables the
activated sludge bulking identification using the methods based on neural networks (MLP, SVM),
developed from the regression tree concept, that is BT and RF, as well as using them for monitoring
and for the control of technological processes within a WWTP. The results obtained show that inclusion
of the values of wastewater quality indicators (BOD, TN,TP) in the calculation model SVI = f(DO, T)
or SVI = f(DO) provides lower errors since SENS, SPEC are higher. Among the methods considered,
the lowest values of errors were obtained for the RF and BT methods in most cases. Using the SVM
method, good measures of fit between the measured and the simulated data were obtained for the
variables including the values of DO, T, indicators of amount and quality—BOD, TN. Among the
classification models discussed in this paper (Table 2), the best predictive power was shown by those in
which the values of wastewater quality indicators as well as the bioreactor operating parameters were
included. For that combination of independent variables, the results of simulation are characterized by
a good fit with the measured values for those methods in which the soft sensor model structure is not
very complex, the number of calibrated parameters is small (RF, BT, LR) as well as in more complex
methods (SVM, MLP). Significant similarity of the results pertaining to the calculations of technological
wastewater treatment plant parameters (energy consumption, biogas production) obtained with the
RF and MLP methods was confirmed by the analyses performed by Kusiak et al. [58,82]. Among the
combinations considered in this paper, the best results of calculations were obtained for the combination
involving Q, TN, TP, MLSS, DO, T, mPIX. On the one hand, these data contribute the information on the
number of compounds that the microorganisms in the bioreactor are provided with and, on the other,
they describe the dynamics of the processes taking place in the activated sludge. In this approach,
the variables are supplemented with the coagulant dosage (it enables the adjustment of SVI and of
bulking so that the values of MLSS and DO can be kept within the optimal range). The proposed
approach offers the possibility of choosing the optimal settings in the operation of a WWTP and
improving the sedimentation capacity of the activated sludge, even though the values of MLSS, DO may
not guarantee SVI below 150 cm3/g.

Moreover, the data in Table 2 show that the activated sludge bulking can also be identified
for a slightly reduced range of independent variables as well as for other combinations, and the
results of calculations will also fit well to the measured values (BOD/TP, BOD/TN, DO, MLSS, T,
mPIX). For instance, the logit model for a combination of independent variables relating to the
amount and quality of wastewater and the bioreactor operating parameters is described by the
following relationship:

X = 28.24− 0.68·T − 2.66·MLSS− 1.82·DO− 0.56·mPIX + 0.0008·Q·TN + 0.0009·Q·TP + 0.0001·Q·TP (25)

where: LTN—total nitrogen in the incoming wastewater, LTP—total phosphorus in the influent
wastewater, LBOD—biochemical oxygen demand of the influent wastewater. The model above
comprises the following variables having a random effect on the sludge bulking:

ω = 0.0008·LTN + 0.0009·LTP + 0.0001·LBOD (26)

and the controlling variables:

τ = 28.24− 0.68·T − 2.66·MLSS− 1.82·DO− 0.56·mPIX (27)

where: τ,ω, LTP, LTN, LBOD, MLSS, DO, T, mPIX–independent variables, marked as above.
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3.3. Impact of Uncertainty of Measured Data on Activated Sludge Bulking Identification

In order to demonstrate that it is necessary to continually calibrate the hardware sensors installed
in the WWTP for measuring T, MLSS, DO and TN, the values of sensitivity coefficients (Sxj, %) were
determined. Those calculations included the measurement errors for a single hardware sensor and
for two and three hardware sensors. The measured values of the sensitivity coefficients, based on
the relationship (23) are shown in Figures 4–6. Moreover, the analyses included the determination of
variability of the sensitivity coefficient vs. measurement error for the values MLSS, DO, TN; (Figure 7).
The measurement errors for MLSS, DO were expressed as the coefficient τ, described by Equation (27).
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The plotted curves in the figures below indicate that the accuracy of the measurement of MLSS,
DO, TN has a significant effect on the values of the sensitivity coefficients—SMLSS,DO (Figure 4) as well
as ST,DO (Figure 5), SMLSS,TN (Figure 6) and Sτ,TN (Figure 7). The curves in Figures 4–7 indicate that
a significant impact on the uncertainty of identification and on the monitoring of the sedimentation
capacity of the activated sludge is particularly attributable to the errors resulting in the over-estimation
of real values (theoretical ones, not affected by the measurement errors). In particular, this is visible if
two or three hardware sensors fail at a time. It is also worth noting that the analyses described by
other authors in previous reports only related to the single hardware sensors. The curves obtained
(Figures 4–6) show that the proposed approach enables the analyses of a bioreactor operation in
a wider range than before, should the measured data be uncertain. Thus the results obtained are
confirmed in the analyses performed by Comas et al. [29], who indicated a diversified influence of
bioreactor operational parameters (MLSS, DO) and the quality of wastewater at the inlet (BOD, TN)



Sensors 2020, 20, 1941 18 of 25

on the activated sludge bulking by employing the fuzzy set method. The aforementioned relation is
also confirmed by the analyses of Bagheria et al. [77], who identified the influence of the analyzed
independent variables describing the wastewater quality (COD, TN, TSS) and operational parameters
(T, MLSS, DO, pH) on the activated sludge bulking.
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This is the condition of the optimal choice of settings for the bioreactor, to guarantee the desirable
sedimentation capacities (SVI <150 cm3/g) and high reliability of the operation within the entire
WWTP. These two factors are directly connected with the correct management of the WWTP operation,
resulting in unhindered sludge dewatering and providing the optimal values of quality indicators of
the effluent wastewater.

3.4. Matrices of the Choice of a Sludge Bulking Identification Method

From the weight factor values, established for the wastewater quality indicators (BOD—1, TN—3,
TP—2) and for the bioreactor operating parameters (MLSS—3, DO—2, T—1), respectively, the numerical
values for the functions f (λ) and f (δ) were determined. On this basis, the vectors [ f (λ) f (δ)] were
determined; then, it was established which of the considered methods should be used to make the soft
sensor model useful for the purposes of calculations and predicting the sludge bulking, without taking
into account any aspects concerning the process control and management (Tables 3 and 4). The models
for which the established values of the measures of fit for SPEC, SENS were the highest among all of
those considered in this paper were regarded as the dedicated soft sensor models. Table 3 shows those
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methods for which the obtained values of the measures of fit were the maximum. Table 4 shows the
applicability of the logistic regression LR (as the only one among the methods considered in which the
chosen model is in the form of an empirical equation) for the sludge bulking simulation for the value
[ f (λ) f (δ)]. The same table comprises the cases for which the established values of SENS, SPEC >0.8
(a very good model—VG) and SENS, SPEC >0.9 (an excellent model). In the other cases of calculations,
where one of the above-mentioned conditions was not met, the sludge bulking identification methods,
referred to in Table 3 were adopted.

Table 3. A matrix of cases showing relationships between the values of the functions f(δ), f(λ) and the
classification models for predicting activated sludge bulking.

δ/λ 0 1/3 1/3 1/3 (2/3) 2/3 2/3 3/3

f(δ)/f(λ) 0 1/6 2/6 3/6 4/6 5/6 6/6

0 0 X BT BT BT BT BT BT

1/3 1/6 RF BT RF RF RF RF BT

1/3 2/6 BT MLP BT BT BT BT BT

1/3(2/3) 3/6 BT BT MLP BT BT BT MLP

2/3 4/6 SVM BT MLP SVM BT MLP BT

2/3 5/6 SVM MLP MLP BT MLP MLP BT

3/3 6/6 SVM SVM MLP BT SVM BT BT

Table 4. A matrix of cases showing relationships between the values of the functions f(δ), f(λ) and the
classification models, with a particular focus on the logit for predicting activated sludge bulking.

δ/λ 0 1/3 1/3 1/3 (2/3) 2/3 2/3 3/3

f(δ)/f(λ) 0 1/6 2/6 3/6 4/6 5/6 6/6

0 0 X BT BT BT BT BT BT

1/3 1/6 RF BT RF RF RF RF BT

1/3 2/6 BT MLP BT BT BT BT BT

1/3(2/3) 3/6 LRVG LRVG LRVG LRVG LRVG LRVG LRVG

2/3 4/6 LRVG LREX LREX LREX LREX LREX LREX

2/3 5/6 SVM LRVG LRVG LRVG LRVG LRVG LREX

3/3 6/6 LRVG SVM MLP BT SVM LREX LREX

where: VG—the logit model, where SPEC, SENS >0.8, EX—the logit model, where SPEC, SENS >0.9.

On the basis of the matrices, determined in Table 3, it is possible to choose the suitable method
without having to perform the simulation calculations with various methods, taking into consideration
the measured data that are available from the WWTP and that include the following: quality indicators
(δ), their costs expressed as the function f(δ), the bioreactor operating parameters (λ) and their costs—f(λ).
Moreover, to simplify the method selection with regard to the number of independent variables in the
system: wastewater quality indicator–reactor operating parameters (1–1, 2–2, 3–3), the typical regions
for such combinations were determined, which also helps choosing the bulking simulation method.
Other variants (1–2, 2–1, 2–3, etc.) depend on the local conditions and data recorded within the specific
WWTP. The proposed approach enables diagnosing and supervising the activated sludge bulking in
the continuous system, which directly affects the input data (independent variables) included in the
model. Moreover, the results in Tables 3 and 4 indicate that—in many cases—logistic regression is an
alternative to complex calculation models. The model obtained is the empirical equation in which the
established coefficients can be used for determining the effect of selected independent variables on the
activated sludge sedimentation process.
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The other methods (BT, RF, MLP, SVM) require performing additional calculations. The matrices
obtained and described above (Table 3, Table 4) enable the methods to be matched to simulation
with respect to the number of the wastewater quality indicators, the bioreactor operating parameters,
and the costs of their determination. Nonetheless, taking into consideration the operation of the
wastewater treatment facilities, the soft sensor models which can be applied and which are potentially
useful in the monitoring and supervision of the wastewater treatment processes are of the greatest
importance. Therefore, using the developed algorithm and introducing a limit of the duration of
determination indicators—f(t), a matrix of cases was obtained and is shown in Table 5.

Table 5. A matrix of cases showing the relationships between the values of the functions f(δ), f(λ), f(t)
and the classification soft sensor models for predicting the activated sludge bulking.

f(t) 0 1 0 0 1 0 1

δ/λ 0 1/3 1/3 1/3 (2/3) 2/3 2/3 3/3

f(δ)/f(λ) 0 1/6 2/6 3/6 4/6 5/6 6/6

0 0 X X BT BT X BT X

1/3 1/6 RF X RF RF X RF X

1/3 2/6 BT X BT BT X BT X

1/3(2/3) 3/6 BT X MLP BT X BT X

2/3 4/6 SVM X MLP SVM X MLP X

2/3 5/6 SVM X MLP BT X MLP X

3/3 6/6 SVM X MLP BT X BT X

The resulting matrix is an extended version of the matrix shown in Table 3; however, the variants
included in it can be used for monitoring the operation of a WWTP, for its control, as well as for the
adjustment of the bioreactor settings. The number of feasible variants results from the fact that the BOD
determination is a time-consuming process, which affects the applicability of the model. However,
assuming that the value of the parameter or that of the other selected wastewater quality indicators
can be modeled by means of a statistical model (value of the function f(t) = 1), every case needs to be
analyzed individually. The cost estimation is made even more complex by the fact that the costs of
analysis pertaining to the wastewater quality indicators need to be assessed on a case-by-case basis.
The reason is that it is very difficult to establish independent variables describing the values of selected
wastewater quality indicators taking into account the local conditions.

4. Conclusions

The results of the analyses presented above show that the soft sensor model developed based
on the selection of a data-mining method for sludge bulking simulation takes into account both the
number of the wastewater quality indicators and the bioreactor operating parameters, as well as the
costs of their determination. The reliability of the input data for the soft sensor model is an important
criterion, as shown by a detailed analysis of sensitivity which enabled an assessment of the effect of
one, two or three independent variable(s) on the results of calculation of the activated sludge bulking.

The simulations indicate that the procedure of soft sensor development described in this paper
helps in choosing the calculation methods (RF, BT, SVM, MLP, LR) for the sludge bulking simulation,
while minimizing the costs of measurements of such parameters as: wastewater quality indicators,
the bioreactor operating parameters, duration of determinations, and the number of the independent
variables included in the soft sensor model. The calculations show that a suitably selected simulation
method enables the activated sludge bulking to be predicted with high accuracy from the load
of contaminants arriving in the WWTP with the influent wastewater or the bioreactor operating
parameters, and the combinations thereof.
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The simulations and the matrices of the cases obtained and described above seem to indicate that
the management of a WWTP in the aspects of its control, adjustment of settings and monitoring of
activated sludge bulking can be performed by means of complex calculation methods such as neural
networks and their modifications, having a simpler structure of mathematical algorithms such as
logistic regression. The proposed soft sensor model enables on-line diagnosis in the operation of
a WWTP because it includes various conditions potentially encountered in the course of a WWTP
operation (failure of the wastewater quality hardware sensors, lack of continuity of measurements,
errors in measuring the operating parameters, etc.).

The selection of the data-mining method depends on the user, although it is governed by the
availability, the commercial attractiveness of the available software for modeling the operation of
WWTP, and how the given software is operated. The soft sensor models for predicting the activated
sludge bulking by means of the methods proposed in this paper (RF, BT, SVM, MLP, LR) can be built
using the generally available statistical models, which are accessible to many groups of users.
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