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Abstract. Uromodulin (UMOD) is a glycoprotein that is selec‑
tively expressed on the epithelial cells of the thick ascending 
limb of Henle's loop and the early distal renal tubule. The 
present study aimed to investigate whether UMOD was associ‑
ated with complement activation in patients with renal diseases. 
In addition, its biological function was examined in vitro. The 
expression levels of UMOD and complement components, 
including C1q, C3, C4 and C3a, and membrane attack complex 
(MAC) in the plasma of patients with IgA nephropathy (IgAN; 
n=58) and lupus nephritis (LN; n=36) were detected using 
ELISA, which was used to determine the association between 
UMOD expression and complement components. In addition, 
a simulated hypoxia‑reoxygenation (H/R) model was used 
to stimulate UMOD expression in mouse inner medullary 
collecting duct cells. Additionally, the association between 
UMOD expression and complement components C1q and C3d 
at the cellular level was identified using western blotting and 
immunofluorescence, respectively. It was revealed that the 
plasma UMOD concentration was significantly decreased in 
patients with IgAN and LN compared with in healthy controls, 
and the levels of C3a and MAC were significantly increased 
in the plasma of patients with IgAN and LN. Furthermore, 
the plasma levels of C1q, C3 and C4 in patients with LN, 
but not in patients with IgAN, were significantly decreased 
compared with in healthy controls. The plasma levels of 
UMOD were negatively correlated with the plasma C3a and 
MAC concentrations. However, the plasma levels of UMOD 
were significantly and positively correlated with the plasma 
C1q concentration, but not with that of C3 and C4. It was 
identified that UMOD expression started to increase after 1 h 
of simulated H/R, and continued to increase at 6 and 12 h. In 

addition, cells with lower UMOD expression had higher C3d 
expression in vitro. Collectively, the present results suggested 
that UMOD was associated with severe complement activation 
and may be involved in complement‑mediated immune protec‑
tion by inhibiting complement activation in renal disease.

Introduction

Chronic kidney disease is ubiquitous and associated with 
significant morbidity and mortality, and is caused by hyper‑
tension, infection, diabetes and the excess of complement 
activation (1). Complement activation accelerates progressive 
kidney diseases by stimulating the synthesis and release of 
pro‑inflammatory cytokines, including TNFα and interleu‑
kins, and reactive oxygen species, as well as increasing the 
synthesis of matrix proteins (2).

Uromodulin (UMOD) is the most abundant protein in 
normal human urine and is selectively expressed by epithelial 
cells of the thick ascending limb of Henle's loop and the early 
distal renal tubule (3,4). Previous studies have revealed that 
UMOD serves an important role in patients with acute and 
chronic kidney diseases (5,6). The levels of UMOD in urine and 
blood are closely associated with the estimated glomerular filtra‑
tion rate (eGFR) in patients with chronic kidney disease (7‑9). 
Our previous studies have suggested that the levels of UMOD 
were decreased in urine and were associated with interstitial 
fibrosis, tubular atrophy and low eGFR in patients with IgA 
nephropathy (IgAN) (10‑12). Furthermore, UMOD‑knockout 
mice exhibit more serious injury compared with wild‑type mice 
after ischemia‑reperfusion injury (13,14); however, the potential 
underlying mechanism requires to be elucidated.

Complement is an important component of the innate 
immune system that consists of >30 types of proteins that 
widely exist in the circulation, tissues and cell membrane 
surface (15‑17). Abnormal complement activation exists in a 
variety of kidney diseases, including lupus nephritis (LN) (18), 
IgAN (19) and membranoproliferative glomerulonephritis (20). 
Previous studies have reported that numerous types of kidney 
cells present a variety of complement components and comple‑
ment receptors, such as C2, C3, C4, factor B, factor H, CR1, 
CR3 and C3aR (21,22). Moreover, Schiano et al (23) revealed 
that mice with complement factor H gene‑knockout exhibited 
renal tubulointerstitial damage due to excessive complement 
activation. However, the exact mechanism remains unknown.
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The present study aimed to investigate the potential clinical 
significance of UMOD, and its association with complement 
activation and histopathological characteristics in patients 
with kidney disease.

Materials and methods

Patients and samples. The present study was approved by the 
Ethical Committee of Qi Lu Hospital of Shandong University 
(Jinan, China). Written informed consent was obtained from 
all patients and healthy controls involved in the study. The 
study population included 58 patients with IgAN composed of 
38 men and 20 women with a median age of 33 years (range, 
27‑48 years) and 36 patients with LN composed of 7 men and 
29 women with a median age of 34 years (range, 28‑46 years) 
between January 2014 and December 2018 at Qi Lu Hospital 
of Shandong University. Patients were included in the study 
according to the following requirements: i) Age of ≥18 years; 
and ii) biopsy‑confirmed primary IgAN or LN. Additionally, 
30 healthy volunteers (median age, 41 years; range, 25‑61 years) 
were enrolled as controls, including 15 males and 15 females. 
Plasma samples (0.5 ml) were collected on the day of renal 
biopsy and stored at ‑80˚C until assay. Clinical pathological 
parameters were also collected. eGFR was calculated using 
the Chronic Kidney Disease Epidemiology Collaboration 
equation (24).

UMOD, C3a, membrane attack complex (MAC), C1q, C3 and 
C4 measurements. The plasma UMOD levels were measured 
using a commercial human uromodulin ELISA kit (cat. no. 
RD191163200R; BioVendor R&D) according to the manufac‑
turer's protocol as described previously (25). Based on median 
expression levels of plasma UMOD in the IgAN (217 ng/ml) 
and LN (169 ng/ml) groups, patients were classified into low 
and high expression subgroups. The plasma concentrations of 
C3a and MAC were determined using by ELISA (cat. no. A031 
and A020, respectively; Quidel Corporation) according to the 
manufacturer's instructions. The plasma concentrations of C1q, 
C3 and C4 were measured using immunoturbidimetric assays 
(Shanghai BeiJi Biochemical reagent Co., Ltd.) according to 
the manufacturer's instructions.

Renal biopsy. All renal perforation specimens were collected 
and fixed in 4% paraformaldehyde at room temperature for 
24 h. Following fixation, the samples were embedded in 
paraffin and cut into 4‑µm‑thick sections, which were then 
dewaxed in xylene (80‑90˚C), rehydrated using a descending 
ethanol series (100, 85 and 75% ethanol) and washed in water. 
Following antigen retrieval, the spontaneous fluorescence 
quencher (Wuhan Servicebio Technology Co., Ltd; cat. 
no. G1221) was added for 5 min at room temperature, and 
the samples were rinsed with water for 10 min. The sections 
were subsequently blocked using bovine serum albumin 
(Wuhan Servicebio Technology Co., Ltd.) for 30 min at room 
temperature and stained for IgA, IgG, IgM, C3, fibrinogen 
and C1q for immunofluorescence analysis (data not shown). 
Fluorescence results were determined using a semi‑quanti‑
tative scale of 0‑3: 0, No staining (‑); 1, weakly positive (+); 
2, positive (++); and 3, strongly positive (+++). Specimens 
from patients with IgAN were evaluated according to the 

following Oxford classification (26): Mesangial hypercellu‑
larity ≤0.5 (M0) or >0.5 (M1); segmental glomerulosclerosis 
absent (S0) or present (S1); endocapillary hypercellularity 
absent (E0) or present (E1); and tubular atrophy and interstitial 
fibrosis ≤25% (T0), 26‑50% (T1) or >50% (T2). Specimens 
from patients with LN were analyzed using light microscopy 
according to the World Health Organization classification (27), 
and were then assessed for NIH activity index (AI) and chro‑
nicity index (CI).

Cell culture and simulated hypoxia‑reoxygenation (H/R) isch‑
emia model. Mouse inner medullary collecting duct (mIMCD3) 
cells were provided by Professor Chen Yuqing (Department of 
Nephrology of Peking University; Beijing, China). The cells 
were cultured in DMEM/F12 medium (HyClone; Cytiva) with 
10% FBS (Gibco; Thermo Fisher Scientific, Inc.) in a humidi‑
fied chamber with 5% CO2 at 37˚C. According to a previously 
described method (28), cells were seeded into 60‑mm culture 
dishes. After reaching ~60% confluency, the sugar‑free and 
serum‑free DMEM/F12 medium was changed and cells 
were cultured for 24 h. Subsequently, an appropriate amount 
of sterilized mineral oil (Sigma‑Aldrich; Merck KGaA; cat. 
no. M5310) was added to the culture dishes, cells were blocked 
with sterilized mineral oil for 1, 6 and 12 h to simulate hypoxia 
at 37˚C. After hypoxia, the mineral oil was aspirated, the plates 
were washed five times with sterilized PBS, and DMEM/F12 
culture medium containing 10% FBS was added. The cells 
were then cultured in a 5% CO2 incubator at 37˚C for 24 h for 
reoxygenation. Cells without any treatment were used as the 
control group.

Western blotting. Total proteins from 106 cells were 
extracted using RIPA cell lysis buffer (Beijing Solarbio 
Science & Technology Co., Ltd.) with phosphatase inhibitor 
and proteinase inhibitor (dilution, 100:10:1) and quantified 
using the Bradford method. The samples (20 µg/lane) were 
separated via 8% SDS‑PAGE and transferred to PVDF 
membranes. The membranes were blocked with 5% skim milk 
for 1 h at 4˚C, and then incubated with primary antibodies 
overnight at 4˚C, followed by incubation with horseradish 
peroxidase‑labelled secondary antibodies (1:500; cat. 
no. ZF‑0316; OriGene Technologies, Inc.) at room tempera‑
ture for 1 h. The primary antibodies used in the present study 
were as follows: Anti‑β‑actin (used as reference; 1:1,000; cat. 
no. TA‑09; OriGene Technologies, Inc.), anti‑UMOD (1:500; 
cat. no. 8595‑0054; Bio‑Rad Laboratories, Inc.) and anti‑C1qA 
(1:500; cat. no. 11602‑1‑AP; ProteinTech Group, Inc.). The 
membrane was visualized using BeyoECL Plus (Shanghai 
Biyuntian Biotechnology Co., Ltd.), according to the manu‑
facturer's protocol, and routine procedures using a gel imaging 
analyzer (Chemidoc XRS+; Bio‑Rad Laboratories, Inc.). 
Relative signal intensity of protein expression was normal‑
ized to β‑actin and quantified using ImageJ software (V1.8.0; 
National Institutes of Health).

Immunofluorescence assays. The cells in each group were 
seeded on a coverslip and cultured as aforementioned. 
Subsequently, cells were fixed with 4% paraformaldehyde for 
30 min at room temperature, treated with 0.1% Triton X‑100 for 
15 min (at room temperature) and blocked with 5% fetal bovine 
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serum (Gibco; Thermo Fisher Scientific, Inc.) for 30 min at 
room temperature. The cells were incubated with anti‑C3d 
primary antibody (1:50; cat. no. AF2655‑SP; R&D Systems, 
Inc.) overnight at 4˚C. After washing, cells were incubated with 
secondary antibodies (1:200; cat. no. 34312ES60; Shanghai 
Yeasen Biotechnology Co., Ltd.) at room temperature for 1 h 
and DAPI was added dropwise to completely cover the cells for 
nuclei staining. The coverslip with cells was inversely placed 
and mounted on a slide with anti‑fluorescence quenching agent 
(Beijing Solarbio Science & Technology Co., Ltd.). Sections 
were evaluated under fluorescence microscopy (magnifica‑
tion, x200).

Statistical analysis. Data were analyzed using SPSS 23.0 
software (IBM Corp.). Data are presented as the mean ± SD of 
at least three experiments, median and interquartile range for 
continuous variables or numbers (proportions) for categorical 
variables. Kruskal‑Wallis test was used for comparisons 
of UMOD and complement components levels in plasma of 
patients, and Dunn‑Bonferroni test was used as the post‑hoc 
test. The correlation between plasma UMOD levels and 
complement components levels or clinicopathological features 
were examined using Spearman's correlation analysis or χ2 test 
and Fisher's exact test, respectively. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Clinical characteristics of patients. Demographic and clini‑
copathological characteristics of the patients are presented 
in Table I. The median age of the patients with IgAN (33 years) 
and patients with LN (34 years) was not markedly different 
compared with that of healthy controls (41 years). Sex distri‑
bution was markedly different among the three groups. The 

immunofluorescence staining results of IgA, IgG, C1q, C3, 
IgM and Fibrinogen are presented in Table II.; IgA expres‑
sion (+++) occurred more frequently in IgAN than in LN. 
IgG (+++) and C1q (+++) were expressed in LN, but not in 
IgAN. The histopathological features of patients with IgAN 
and patients with LN are listed in Tables III and IV.

Levels of plasma UMOD and complement components in 
healthy controls, patients with IgAN and patients with LN. 
To investigate the potential association between UMOD and 
complement components, the levels of plasma UMOD, C3a, 
MAC, C1q, C3 and C4 in patients with IgAN or LN and healthy 
controls were analyzed in plasma samples using ELISA. It was 
revealed that the plasma UMOD concentration was signifi‑
cantly decreased in patients with IgAN or LN compared with 
in healthy controls (P<0.0001; Fig. 1A). The plasma levels of 
C3a and MAC in the three groups are shown in Fig. 1B and C. 
Compared with in the control group, C3a and MAC levels 
were significantly higher in the IgAN and LN groups (P<0.05; 
Fig. 1B and C). Furthermore, the levels of C1q, C3 and C4 in 
plasma were significantly decreased in the LN group compared 
with in the control groups (P<0.05 and P<0.0001, respectively; 
Fig. 1D‑F). However, there was no significant difference in the 
plasma levels of C1q, C3 and C4 between the IgAN and healthy 
control groups (P>0.05; Fig. 1D‑F).

Correlation between UMOD levels and complement compo‑
nents. To further assess whether the levels of plasma UMOD 
were correlated with complement components, the Spearman 
correlation coefficients of all patients were calculated. The 
results indicated that the plasma levels of UMOD were signifi‑
cantly negatively correlated with the plasma concentration of 
C3a and MAC (r=‑0.410 and P<0.001; r=‑0.301 and P=0.003, 
respectively; Fig. 2A and B).

Figure 1. Plasma levels of uromodulin and complement components in healthy controls, patients with IgAN and patients with LN. Plasma levels of (A) uro‑
modulin, (B) C3a, (C) MAC, (D) C1q, (E) C3 and (F) C4 in healthy control (n=30), IgAN (n=58) and LN (n=36) groups were analyzed using ELISA. Data are 
presented as the median and interquartile range. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. ns, not significant; MAC, membrane attack complex; LN, lupus 
nephritis; IgAN, IgA nephropathy.
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Subsequently, the correlation of plasma levels of C1q, C3 
and C4 with plasma UMOD was investigated in all patients. 
It was demonstrated that the plasma levels of UMOD were 
significantly positively correlated with the plasma concentra‑
tion of C1q (r=0.283; P=0.006; Fig. 2C), However, plasma 
UMOD levels were not significantly correlated with C3 

(r=0.147; P=0.157; Fig. 2D) and C4 (r=0.195; P=0.06; Fig. 2E). 
In addition, the simulated H/R model was used to assess these 
correlation coefficients in mIMCD3 cells. Compared with the 
control group, the protein expression levels of complement 
C1qA decreased at 1 h after H/R and began to increase at 6 h 
after H/R, but no significant change was observed a12 h after 

Table I. Demographic, clinical and laboratory characteristics of patients with IgAN (n=58), LN (n=36) and healthy volunteers(n=30).

Characteristics Total IgAN LN Healthy volunteers

Males, n (%) 45 (47.9) 38 (65.5) 7 (19.4) 15 (50)
Females, n (%) 49 (52.1) 20 (34.5) 29 (80.6) 15 (50)
Age, years (range) 33 (28‑46) 33 (27‑48) 34 (28‑46) 41 (25‑61)
Height, cm (range) cm 167.5 (150‑192) 170 (162‑175) 163 (160‑167) 164.6 (150‑180)
Weight, kg (range) 69 (60‑75) 71 (64‑78) 65 (59‑70) 64 (46.5‑92)
SBP (range), mmHg 137 (128‑154) 137 (128‑153) 137 (129‑153) 134.5 (107‑184)
DBP ± SD, mmHg 87.89±14.79 87 (77‑95) 90 (78‑98) 85.56 (69‑114)
RBC ± SD, x1012/l 4.21±0.81 4.49±0.66 3.78±0.84
HGB ± SD, g/l 121±25.8  132±22.8  105±21.8 118±28
ESR (range), mm/h 19 (11‑32) 17 (10‑23) 26 (13‑48) 34 (18‑55)
Total protein (range), g/l 58.7 (47.9‑66.3)   61.2 (52.47‑66.8)   50.2 (37.28‑64.57)   59.6 (48.7‑76.8)
Albumin (range), g/l 33.25 (25.2‑39.93) 35.55 (30.7‑42.03) 27.95 (18.83‑33.25) 32.62 (15.7‑41.4)
ALT (range), U/l 15 (11‑19) 15 (11‑18) 15 (11‑22) 19.7 (5‑35)
AST (range), U/l 18 (15‑22) 18 (16‑22) 19 (15‑26) 20.2 (11‑26)
Total cholesterol (range),  5.64 (4.47‑6.63) 5.48 (4.63‑6.59) 5.73 (3.77‑7.19) 5.16 (3.13‑9.19)
mmol/l
HDL cholesterol ± SD,  1.32±0.34 1.32±0.30 1.31±0.40 1.32±0.39
mmol/l
LDL cholesterol (range),  3.35 (2.41‑4.13) 3.30 (2.60‑4.09) 3.56 (2.20‑4.23) 3.15 (2.09‑4.88)
mmol/l
Triglycerides (range),  2.02 (1.33‑2.83) 1.93 (1.22‑2.72) 2.17 (1.45‑3.16) 1.87 (0.97‑3.17)
mmol/l
Creatinine (range), mg/dl 95 (73.75‑134.25) 107 (79‑139.5) 91 (68.25‑131.25) 126.4 (77‑287)
BUN (range), μmol/l 6.57 (5.1‑11.23) 5.78 (4.79‑7.83) 9.38 (6‑16.15) 7.81 (5.1‑13.21)
Cystatin C (range), mg/l 1.43 (1.03‑1.86) 1.16 (0.94‑1.67) 1.67 (1.16‑2.43) 1.58 (0.74‑2.42)
Uric acid (range), μmol/l 393 (311‑523) 373 (294‑470) 430 (344‑572) 359.3 (239‑420)
eGFR (range),  92 (72‑110) 97 (82‑110) 86 (66‑107) 90 (64‑112)
ml/min/1.73 m2

GLU ± SD, mmol/l 4.56±0.69 4.56±0.58 4.56±0.84 4.44±0.75
UACR (range), mg/g 2.65 (1.28‑3.82) 2.16 (1.08‑3.43) 2.95 (1.73‑7.45) 2.49 (0.99‑4.49)
C3a (range), ng/l 157.6 (92.4‑240.4) 144.8 (79.2‑233.9) 175 (112.5‑310.6) 147 (60.9‑277.1)
MAC (range), ng/l 190.8 (135.5‑364.9) 150.7 (117.4‑222.2) 354.4 (179.8‑491) 281 (118.76‑435.7)
C1q ± SD, mg/l 157±41.4 165±42.1 143±36.5 169±43.4
C3 (range), g/l 0.98 (0.5‑1.18) 1.14 (0.96‑1.29) 0.4 (0.31‑0.69) 0.9 (0.26‑1.57)
C4 (range), g/l 0.22 (0.07‑0.30) 0.26 (0.14‑0.32) 0.14 (0.07‑0.23) 0.25 (0.067‑0.533)
UMOD (range) ng/l 149.88 (96.53‑245.04) 147.12 (96.53‑230.44) 156.79 (95.42‑250.25) 189.91 (80.27‑231.23)
K ± SD, mmol/l 4.19±0.56 4.16±0.50 4.23±0.71 8.58±0.24
Na (range), mmol/l 141 (139‑143) 142 (141‑143) 140 (138‑142) 138.3 (123‑143)
Cl ± SD, mmol/l 106±3.6 106±2.6 106±4.9 102±1.9

SBP, systolic blood pressure; DBP, diastolic blood pressure; RBC, Red blood cell; HGB, Hemoglobin; ESR, erythrocyte sedimentation rate; 
ALT, alanine transaminase; AST, Aspartate aminotransferase; HDL, High‑density lipoprotein; LDL, Low‑density lipoprotein; BUN, blood 
urea nitrogen; GLU, Glucose; UACR, urine albumin/creatinine ratio; IgAN, IgA nephropathy; LN, lupus nephritis; MAC, membrane attack 
complex; UMOD, uromodulin; eGFR, estimated glomerular filtration rate. Age is presented as the median value for all the variables.
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H/R compared with 6 h after H/R (Fig. 3A). On the other hand, 
the protein expression levels of UMOD started to increase at 
1 h after H/R treatment, and continued to increase at 6 and 
12 h after H/R (Fig. 3A and B). In addition, the expression 
levels of the complement activation product C3d on the surface 
of the cell membrane was measured via immunofluorescence 
staining, revealing that C3d expression was increased at 1 h 
and began to decrease at 6 h after H/R (Fig. 3C). No significant 
change was observed at 12 h compared with 6 h post H/R (data 
not shown).

Association between plasma UMOD levels and clinico‑
pathological variables. To determine whether plasma UMOD 
expression was associated with clinicopathological param‑
eters, kidney function parameters and histopathological 
stage were analyzed in all patients. As shown in Fig. 4A‑D, 
plasma UMOD concentration was closely correlated with 
the following kidney function biomarkers: eGFR (r=0.255; 
P=0.013; Fig. 4A), creatinine (r=‑0.307; P=0.003; Fig. 4B), 
BUN (r=‑0.359; P<0.001; Fig. 4C) and cystatin C (r=‑0.294; 
P=0.004; Fig. 4D). Based on the median expression levels 
of plasma UMOD in the IgAN groups, patients were clas‑
sified into two subgroups: Low and high expression group. 
In patients with IgAN, the plasma levels of UMOD were 
significantly associated with tubular atrophy and interstitial 
fibrosis (P=0.0219; Table III). In addition, it was revealed that 
in patients with LN plasma UMOD expression was signifi‑
cantly associated with AI (P=0.0354; Table IV). No other 
clinicopathological feature was identified to be associated 
with plasma UMOD expression.

Discussion

In present study, it was demonstrated that UMOD was 
negatively and significantly correlated with complement acti‑
vation product C3a and MAC in patients with IgAN and LN. 
Moreover, UMOD was positively correlated with complement 
components C1q in the IgAN group. This correlation was 
further assessed using a simulated H/R model in vitro.

Figure 2. Correlation between plasma uromodulin and complement components. Correlation between plasma uromodulin and plasma (A) C3a, (B) MAC, 
(C) C1q, (D) C3 and (E) C4. MAC, membrane attack complex.

Table Ⅱ. Histological characteristics of patients with IgAN 
(n=58) and LN (n=36).

Immuno‑
fluorescence Total, IgAN, LN,
staining n (%) n (%) n (%)

IgA
  ‑ 3 (3.2) 0 (0.0) 3 (8.3)
  + 13 (13.8) 5 (8.6) 8 (22.2)
  ++ 22 (23.4) 10 (17.2) 12 (33.3)
  +++ 56 (59.6) 43 (74.1) 13 (36.1)
IgG
  ‑ 51 (54.3) 48 (82.9) 3 (8.3)
  + 17 (18.1) 9 (15.5) 8 (22.2)
  ++ 13 (13.8) 1 (1.7) 12 (33.3)
  +++ 13 (13.8) 0 (0.0) 13 (36.1)
C3
  ‑ 21 (22.3) 19 (32.8) 2 (5.6)
  + 17 (18.1) 12 (20.7) 3 (13.9)
  ++ 21 (22.3) 11 (19.0) 10 (27.8)
  +++ 35 (37.2) 16 (27.6) 19 (52.8)
C1q
  ‑ 46 (48.9) 44 (75.9) 2 (5.6)
  + 18 (19.1) 11 (19.0) 7 (19.4)
  ++ 13 (13.8) 3 (5.2) 10 (27.8)
  +++ 17 (18.1) 0 (0.0) 17 (47.2)
IgM
  ‑ 32 (34) 27 (46.6) 5 (13.9)
  + 23 (24.5) 16 (27.6) 7 (19.4)
  ++ 28 (29.8) 11 (19.0) 17 (47.2)
  +++ 11 (11.7) 4 (6.9) 7 (19.4)
Fibrinogen
  ‑ 51 (54.3) 44 (75.9) 7 (19.4)
  + 10 (10.6) 2 (3.4) 8 (22.2)
  ++ 20 (21.3) 7 (12.1) 13 (36.1)
  +++ 13 (13.8) 5 (8.6) 8 (22.2)

IgAN, IgA nephropathy; LN, lupus nephritis.
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Previous studies have reported that UMOD expression 
is closely associated with kidney diseases (3‑9). It has been 
demonstrated that UMOD gene mutations result in familial 

juvenile hyperuricemic nephropathy, medullary cystic kidney 
disease type 2 and glomerulocystic kidney disease (8). 
Furthermore, UMOD‑deficient mice are more susceptible 

Table Ⅲ. Pathological characteristics of 58 patients with IgA nephropathy with high (n=29) and low (n=29) uromodulin expres‑
sion according to the Oxford classification.

 Uromodulin expression, n (%)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristics N High Low P‑value

Mesangial hypercellularity
  M0 34 18 (52.9) 16 (47.1) 0.7901
  M1 24 11 (45.8) 13 (54.2)
Endocapillary hypercellularity
  E0 26 15 (57.7) 11 (42.3) 0.4287
  E1 32 14 (43.8) 18 (56.2)
Segmental glomerulosclerosis
  S0   8 3 (37.5) 5 (62.5) 0.7057
  S1 50 26 (52.0) 24 (48.0)
Tubular atrophy/interstitial fibrosis
  T0 33 21 (63.6) 12 (36.4) 0.0219
  T1 21 8 (38.1) 13 (61.9)
  T2   4 0 (0.0) 4 (100.0)

Figure 3. H/R model stimulation of UMOD expression and its effect on complement C1qA and C3d expression in mouse inner medullary collecting duct cells. 
(A) Protein expression levels of complement C1qA and UMOD at different times after H/R exposure. (B) Relative signal intensity of UMOD protein expression 
was normalized to β‑actin and quantified using ImageJ software. Data are presented as the mean ± SD from three individual experiments. (C) Expression 
of complement activation product C3d on the cell surface was detected using immunofluorescence. Magnification, x200. *P<0.05; **P<0.01; ***P<0.001. 
H/R, hypoxia‑reoxygenation; UMOD, uromodulin.
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to nephrolithiasis (9). Serum UMOD is a promising poten‑
tial biomarker in the progression of renal disease (29). 
Mechanistically, the role of UMOD is associated with renal 
ion channel activity (9,30), urinary tract infections (31) and 
urinary cast formation (32). UMOD‑/‑ mice exhibit a decrease 
in renal outer medullary potassium channel (ROMK) immu‑
noreactivity in the plasma membrane‑enriched fractions and 
an increase of ROMK accumulation in intracellular vesicular 
compartments compared with wild‑type mice (33,34). 
Moreover, in a previous study, >100 µg/ml UMOD predomi‑
nantly prevented the adherence of Escherichia coli to 
transitional cells (35,36). Additionally, UMOD is involved in 
the gel and potential cast formation in acute tubular necrosis 

partially via oligosaccharide residues (37). Consistent with 
previous studies (10‑12), the present study identified the poten‑
tial association between UMOD and kidney diseases, and 
revealed that plasma UMOD levels were decreased in patients 
with IgAN and LN. This may be associated with interstitial 
fibrosis, renal tubular atrophy and decreased EGFR, which is 
consistent with previous reports on the decrease of urinary 
UMOD levels in patients with IgAN (10‑12).

Complement is an important component of the immune 
system, and complement components are produced by 
kidney parenchymal tissues, as well as the liver. Moreover, 
the complement system is involved in various renal disease, 
such as LN (38), IgAN (39) and diabetic nephropathy (40). 

Table Ⅳ. Pathological characteristics of 36 patients with lupus nephritis with high (n=18) and low (n=18) uromodulin expression.

 Uromodulin expression, n (%)
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristics N High Low P‑value

Histological classification
  II+III   7 6 (85.7) 1 (14.3) 0.0877
  IV+V 29 12 (41.4) 17 (58.6)
Activity index
  <10 23 15 (65.2) 8 (34.8) 0.0354
  ≥10 13 3 (23.1) 10 (76.9)
Chronicity index
  <3 24 14 (58.3) 10 (41.6) 0.2890
  ≥3 12 4 (33.3) 8 (66.7)

Figure 4. Correlation between plasma uromodulin and kidney function parameters. Correlation between plasma uromodulin and (A) eGFR, (B) serum creati‑
nine, (C) blood urea nitrogen and (D) serum cystatin C. eGFR, estimated glomerular filtration rate.
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Individuals with homozygous hereditary deficiency of the 
classical pathway components, such as C1q, C1r, C1s, C4 and 
C2, are more susceptible to systemic lupus erythematosus (41). 
In addition, complement activation promotes the pathogen‑
esis of IgAN via alternative and lectin pathways, and likely 
occurs systemically on IgA‑containing circulating immune 
complexes, as well as locally in glomeruli (42). A clinical 
study has reported that the C1q, mannose‑binding lectin, Bb, 
C4d, C3a, C5a and sC5b‑9 levels in the plasma of patients 
with diabetic nephropathy are significantly higher than in the 
plasma of patients with diabetes without renal disease (43). 
Mechanically, activation of the lectin and alternative pathways 
of the three possible complement pathways is associated with 
renal damage (21). In accordance with the aforementioned 
findings, the present results indicated that C3a and MAC levels 
were increased in the plasma of patients with IgAN and LN.

UMOD is considered to be a component of the innate 
immune system (42,43), and it has been revealed that UMOD 
binds with immune proteins, such as IgG28, complement 
factors, such as C1q (34,35), cytokines and TNFα (36). In 
addition, our previous study has reported that UMOD signifi‑
cantly enhances the function of complement H factor cleavage 
of C3b and inhibits complement activation (44). Collectively, 
the aforementioned findings suggest that UMOD is closely 
associated with complement activation. However, the asso‑
ciation between UMOD and complement components remains 
unknown. In the present study, it was identified that UMOD 
participated in the progression of kidney disease, which was 
partially dependent on complement activation.

Although the clinical significance of UMOD and comple‑
ment activation in renal disease has been clarified, there are 
several limitations to the present study that warrant discus‑
sion. Firstly, the number of patients enrolled in the current 
study was small. Secondly, the underlying mechanism is still 
unclear. The study confirmed that UMOD was involved in 
the progression of renal disease, which partly depended on 
the activation of complement. Whether UMOD promoted the 
activation of complement by binding to complement factor 
C1q protein and then promote the progress of IgAN and LN 
in renal disease, needed further investigated in future studies. 
In addition, functional studies should be performed to identify 
the biological mechanisms of UMOD in renal disease.

In conclusion, the present results suggested that low UMOD 
plasma levels were associated with severe complement activation 
and may be involved in complement‑mediated immune protec‑
tion by inhibiting complement activation in in renal disease.
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