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ABSTRACT

The knowledge about classes of non-coding RNAs
(ncRNAs) is growing very fast and it is mainly the
structure which is the common characteristic prop-
erty shared by members of the same class. For
correct characterization of such classes it is there-
fore of great importance to analyse the structural
features in great detail. In this manuscript I present
RNAlishapes which combines various secondary
structure analysis methods, such as suboptimal
folding and shape abstraction, with a comparative
approach known as RNA alignment folding.
RNAlishapes makes use of an extended thermodyn-
amic model and covariance scoring, which allows to
reward covariation of paired bases. Applying the
algorithm to a set of bacterial trp-operon leaders
using shape abstraction it was able to identify the
two alternating conformations of this attenuator.
Besides providing in-depth analysis methods for
aligned RNAs, the tool also shows a fairly well
prediction accuracy. Therefore, RNAlishapes pro-
vides the community with a powerful tool for
structural analysis of classes of RNAs and is also
a reasonable method for consensus structure
prediction based on sequence alignments.
RNAlishapes is available for online use and down-
load at http://rna.cyanolab.de.

INTRODUCTION

The interest in structural features of RNA has grown dramati-
cally throughout the last decade. The major reason for this
was the discovery of a new layer of regulation which is car-
ried out by RNA molecules (1–3). Various classes of such
RNA have been found. Among these are small-interfering
RNAs (siRNAs) (4), microRNAs (miRNA) (5), smallRNAs
(sRNA) (6–8), prokaryotic siRNAs (psiRNA) (9) and repeat-
associated siRNAs (rasiRNA) (10–12). Together with the
already known classes of RNA molecules, such as transfer
RNA (tRNA) and ribosomal RNA (rRNA) they are today
summarized as functional or non-coding RNA (fRNA and
ncRNA, respectively).

A common feature of most classes of ncRNA is that their
homology is only weakly defined by sequence similarity and
more prominent by structural similarity. The best known
examples are tRNAs which are characterized by the clover-
leaf shape of their secondary structure. Hence, for the charac-
terization of new ncRNAs it is essential to define a reasonable
structure model which is common for all members. This can
be achieved by either experimental structure determination
or by bioinformatics analyses. Experimental procedures
give reliable results but are laborious, while bioinformatics
analyses are rather fast but less reliable. Hence, great efforts
have been spend to improve bioinformatics in this area.

For single sequences, various tools have been developed
which allows prediction of the structure having minimum
free energy (13), suboptimal structures (14,15), kinetically
favoured structures (16,17), base pair probabilities (18) and
others. If multiple, functionally similar sequences (a class of
ncRNAs) are known, the consensus structure which is com-
mon to all can be predicted. This can be achieved in different
ways: First, by aligning the sequences and subsequently pre-
dicting the structure based on the alignment; Second, by
predicting the structure for each individual sequence and
performing an alignment of the structures (19–21); Third,
by folding and aligning them simultaneously (22–25). All
these approaches have their specific problems: Structure pre-
diction based on sequence alignments requires good quality
alignments, which are not always available; aligning second-
ary structures suffers from erroneous structure predictions;
and simultaneously folding and aligning of RNAs is very
computer intensive and thus makes use of heuristics or is
restricted to pairwise analyses. For a review of available
methods and their accuracy see (26).

In (27) the approach of abstract shapes of RNA was intro-
duced. It allows a researcher to get an overview of possible
shapes (classes of similar structures) and shreps (shape repre-
sentative structure) an RNA can attain. Furthermore, with
this method it is possible to rule out shreps of minor interest
and to focus on the interesting ones. Later, this approach
was extended to compute probabilities of shapes (28), in
order to give some kind of measure for the impact of the
corresponding shrep.

These methods have been used for the design of RNAcast
(29), which predicts an abstract shape common to multiple
sequences. Additionally, their incorporation into the process
of consensus structure determination by aligning predicted
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secondary structures led to significant improvements (21).
This encouraged me to further evaluate how the other ways
of consensus structure prediction might be improved.
Simultaneous folding and alignment is mainly restricted by
its computational complexity. For this reason I focused on
the remaining method, namely structure prediction based on
sequence alignments.

This approach is implemented in various fashions in tools
such as ConStruct (30), iterated loop matching (ILM ) (31)
and Pfold (32), but the only existing algorithm which uses
the complete thermodynamic model is implemented in the
tool RNAalifold (33). It is capable of predicting the ‘best’
structure which is common to all sequences of an alignment.
The scoring is based on free energy contributions as well as
on covariance contributions, which are rewarded, especially
when base pairs are exchanged. The tool has recently proven
its power, as it is a major part of RNAz (34), which was
successfully used to predict ncRNAs in mammals (35).

An important feature that is lacking in the above algorithm
is the possibility to also predict suboptimal consensus struc-
tures. In fact, they are in part accessible via the matrix of
base pairing probabilities, but this does not allow exhaustive
studies of all or near-optimal consensus structures. The pre-
diction of suboptimal consensus structures is of importance
for two reasons: First, the multiple sequence alignment is
not perfect in the sense of secondary structure and might
therefore lead to artefacts which alter the structure prediction;
Second, as in the case of single sequences, structure pre-
diction based on free energy minimization is erroneous, and
including suboptimal solutions might overcome this problem.
Furthermore, RNA molecules needing different structures for
their function, such as ribozymes and riboswitches, bear the
necessity of predicting multiple consensus structures being
compatible with the sequence alignment.

Here I present the extension of the approach of abstract
shapes of RNA to multiple sequence alignments, which is
implemented in the tool RNAlishapes. This new method
joins the power of shape abstraction and comparative struc-
ture prediction.

MATERIALS AND METHODS

RNA abstract shapes

The concept of shape abstraction for RNA secondary struc-
tures was introduced in (27). Abstract shapes are defined by
means of abstraction functions preserving varying amounts of
structural detail. Up to now, the common feature of these
functions is that they abstract from the length of helical and
unpaired regions. This means that shape abstraction retains
only the nesting and adjacency pattern of helical and unpaired
regions. The most widely used and also most abstract
function [described as level-5 in (27)] totally abstracts from
unpaired regions and retains only the nesting pattern of
multiloops and hairpins. An abstract shape is defined by the
shape in shape notation and the energetically most favourable
structure attaining this shape, the shape representative (shrep).
The shape notation can be seen as a derivative of the dot-
bracket-notation for RNA secondary structures. It makes
use of the underscore character ‘_’ representing unpaired
bases and pairs of square brackets ‘[’ ‘]’ representing helical

regions. For example, the shape for the tRNA-cloverleaf
using level-5 abstraction, which does not retain unpaired
regions, is ‘[[][][]]’. This representation shows that this struc-
ture encompasses three hairpins (the three ‘[]’s) which are
enclosed by a multiloop (the two outermost square brackets).
Retaining information on unpaired bases (level-4 abstraction)
would result in the shape ‘[_[_]_[_]_[_]]_’ for the structure
shown in Figure 1A.

Central to the approach of abstract shapes is the idea
that the shape can be used to classify structures into shape-
identical classes. These can be computed efficiently and
give an overview of what is there in the folding space. Addi-
tionally, this classification allows more elaborate analysis,
such as computing shape probabilities (28).

Structure prediction

The RNAlishapes algorithm is implemented in the ADP-
framework (36–38) which makes use of a grammar describ-
ing the search space, e.g. the folding space of RNA, and
algebras which are used for scoring (and optimization), or
derivation of structure representations, such as the dot-
bracket-notation for RNA secondary structure.

The grammar used in RNAlishapes is identical to the
one presented in (28). It describes RNA secondary structures
without isolated base pairs and handles dangling bases in a
unique way. In (39) the non-ambiguity of this grammar was
proven, which enables statistical analyses of the complete
folding space, e.g. structure counting or probabilistic shape
analysis. It is possible to use this grammar, as in ADP the
grammar derivations only contain indexes of the input. Hence,
the grammar can handle nearly any kind of input as long as
it is somehow sequential. A single RNA is a sequence of
nucleotides and an alignment of RNAs is a sequence of
columns with nucleotides and gaps.

ADP allows to apply predicates to productions in the gram-
mar. The most important one is basepairing which checks if
two positions i and j in the input can actually form a base
pair. For a single sequence x it is defined as

basepairingði‚ jÞ ¼ true‚ ðxi‚xjÞ 2 BP

false‚ otherwise
‚

�
1

where

BP ¼ fðA‚UÞ‚ðU‚AÞ‚ðG‚CÞ‚ðC‚GÞ‚ðG‚UÞ‚ðG‚UÞg 2

Extending this to an alignment A yields

basepairingði‚ jÞ ¼ true‚ ðki‚kjÞ 2 BP‚ 8 k 2 rowsA
false‚ otherwise

�
3

This would be a rather strong demand, as in all sequences of
the alignment positions i and j would have to be able to form
a base pair. Since sequence errors and misaligned positions
can occur, they should get penalized rather than ruled out,
and hence Equation 3 is changed to

basepairingði‚ jÞ ¼
(

true‚

P
k2A bpði‚ j‚ kÞ

M > f
false‚ otherwise

bpði‚ j‚kÞ ¼
�

1‚ if ðki‚kjÞ 2 BP

0‚ otherwise

4

5472 Nucleic Acids Research, 2006, Vol. 34, No. 19



where M is the number of sequences in the alignment and f
a user defined threshold giving the minimum fraction of
compatible sequences required.

The dissection into grammar and algebras in ADP makes it
possible to re-use already existing algebras. This can be done
for dot-bracket-notation, shape notation, and others, but not
for free energy calculation and Boltzmann-weighted energies.
Hence, these two have been modified in a way that the
individual functions (taken from the existing algebras for
single sequences) are applied separately to each sequence in
the alignment and averaged over all sequences. In case of

functions scoring base pairs, a covariance score (see below)
is added. Thus, mean free energies and Boltzmann-weighted
mean free energies with a supplemental covariance score can
be computed.

Enhanced thermodynamic model

In the algorithm non-standard base pairs are allowed and
also the gap character occurs, which is not the case for
single sequence folding. In order to handle this, the energy
model has to be adapted to these cases. The introduced

Figure 1. Analysis of aligned tRNAs. A ClustalW alignment of 10 arbitrarily chosen tRNAs from Rfam was analysed with RNAlishapes. (A) The consensus
structure predicted by RNAlishapes drawn as a squiggle plot using RNAplot from the Vienna RNA package (62). The sequence corresponds to the sequence of
the most frequent base at each position. Colours indicate different stems (see B). (B) The alignment produced by ClustalW. Additionally the consensus structure
is given on the last line together with the score in parentheses. The different stems are colour coded in the alignment as well as in the consensus structure. Note,
that helical regions do not need to have the same length in all sequences. (C) Output of RNAlishapes, when running in shape probabilistic mode. Four consensus
shapes with a probability >10�6 have been predicted. For each the free energy and the dot-bracket representation of the shrep (both on the first line), the
probability of the shape and the shape notation (both on the second line) are computed.
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modifications are similar to those presented in Ref. (33) with
a few additions for dangling bases and unpaired loop regions.
In the case of non-standard base pairs, including base pairs
with at least one gap-symbol, an energy contribution of
0.0 kcal/mol is used for computation. Non-standard base
pairs do not get penalized at this point because this is done
within the covariance score.

When evaluating the energy of a dangling base which
appears to be a gap in some of the sequences, for these
sequences the next non-gap element is taken to compute
the contribution. I am aware of the fact that this base might
participate in a base pairing and, hence, is not able to
dangle.

Special care is taken of unpaired regions in multiple,
internal, bulge and hairpin loops. The free energy of these
loop types is negatively affected by the length of their
unpaired regions. In functional RNA, the selective pressure
is often less strong on unpaired regions, which allows more
mutational events to take place. These, especially when
long inserts occurred, lead to gap-rich regions in alignments,
which artificially elongate the length of the region. In order to
account for this, the algorithm recalculates the length of
unpaired regions for each individual sequence by subtracting
the number of gaps from the actual subword length. In order
to reduce computation time the number of gaps for each
possible subword i, j of each sequence x in the alignment is
precomputed and stored in an array of size N2·M, where N is
the alignment length and M the number of sequences in the
alignment.

For a sequence whose unpaired region is solely composed
of gaps the recalculation of the length leads to an empty
region. In such a case also the loop type for evaluating the
energy is adapted. For example, if the alignment would
suggest that most sequences have a left bulge at the current
position, but some sequences show only gaps in the unpaired
region the latter sequences are evaluated as if they have a
stacked pair.

Covariance scoring

It is commonly accepted that the occurrence of different base
pairs at the same position of a consensus structure gives
additional evidence that this base pair is present in the native
structure. Some algorithms, such as infernal (40), make use of
this for homology detection. The basic assumption in this
model is that these different base pairs occurred by a series
of mutational events. The first mutation alters one base of
the pair, which might result in a non-standard base pair.
This can be compensated by a mutation in the second base,
restoring the possibility of base pairing. Besides these com-
pensatory mutations, base mutations may also be consistent
with base pairing, e.g. G-C to G-U.

Positions showing such compensatory or consistent base
exchanges are therefore good markers for structural impor-
tance and should get rewarded. For this purpose the covari-
ance scoring introduced in (33) is used, which rewards
compensatory and consistent mutations of paired positions.
This scoring also adds a penalty for sequences with
inconsistent bases (bases that cannot form a base pair).
Next a quick recapitulation of this scoring is given: The
covariance score cv for positions i and j in the alignment A

is defined as

cvij ¼�Cij þ Iij

Cij ¼
X

a‚b‚a0‚b02fA‚C‚G‚Ug
f ijða‚bÞ · Dða‚b‚a0‚b0Þ · f ijða0‚b0Þ

Dða‚b; a0; b0Þ

¼

0‚ notðbasepairingða‚bÞ j basepairingða0‚b0ÞÞ j
ða‚bÞ ¼ ða0‚b0Þ

1‚ a ¼ a0 xor b ¼ b0

2‚ otherwise

8>><
>>:

Iij ¼
1

M

X
x2A

�
0‚ xi ¼ xj ¼ gap j basepairingðxi‚xjÞ
1‚ otherwise

‚

5

where M is the number of sequences in the alignment. This
term shows that the score is negative for co-varying base
pairs, which is desired as stabilizing free energies are nega-
tive as well and, thus, this allows to still use minimization
as the objective function.

Performance, implementation, availability

The asymptotical complexity for probabilistic analysis of an
alignment of length N holding M sequences is O(pN·N3·M)
in memory and O(pN·N2·M) in space where p depends on
the shape abstraction chosen [see (27) for details]. For all
other analysis modes they are O(N3·M) and O(N2·M), respec-
tively. As M is in general much smaller than N, it is also
reasonable to abstract from M, which results in O(pN·N3),
O(pN·N2) and O(N3), O(N2), respectively.

These numbers are affirmed by empirical measurements
of runtime and memory consumption. The dependence on
sequence length is shown in Supplementary Figure S1 and
on the number of aligned sequences in Supplementary Figure
S2. These measurements were performed on an AMD
Opteron 250 (2.4 GHz) machine with 16 GB RAM running
under SuSE Linux 10.0 (64-Bit).

The tool RNAlishapes is implemented in the functional
programming language Haskell and available as source code,
as well as pre-compiled binaries for various platforms (Linux:
i386, x86_64; Windows: i386) at http://rna.cyanolab.de.
Note, that you need the Glasgow Haskell Compiler 6.4
(GHC 6.4) when compiling from source code. It is available
at http://www.haskell.org/ghc.

RESULTS

Algorithm for structure analysis based on alignments

The most common way of predicting secondary structures
of RNA uses dynamic programming (DP). Essential for this
approach is the underlying scoring scheme. In case of RNA
secondary structure this scoring scheme is composed of
thermodynamic parameters (41–43) which have been derived
experimentally and are based on the nearest neighbour model.
Structure stabilizing elements have negative free energy (DG)
contributions. In most cases one is interested in the structure
with minimum free energy (MFE-structure) and, hence, the
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optimization objective is minimisation. DP algorithms for
free energy minimisation are based on the dissection of the
structure into various loop types, namely stacking region,
hairpin loop, bulge loop left/right, internal loop, multiloop
and external loop. For complexity reasons, crossing base
pairs, such as in pseudoknots, are most often neglected but
may also be incorporated (44,45). In general, these are the
ingredients of a DP-algorithm for predicting the structure of
an RNA molecule based on its sequence.

When extending this to the folding of a set of aligned
sequences several difficulties arise. First, insertions and
deletions in the alignment lead to gaps which need special
treatment and, second, two aligned positions may be able to
base pair in only some of the sequences, which also has to be
accounted for. The handling of gaps is incorporated for two
different cases: First, gaps in base pairs are penalized and,
second, unpaired loop regions are evaluated gap-aware,
meaning that gaps are removed for their evaluation. Details
about this are given in the Methods section.

Given that the above difficulties are solved satisfactory,
the process of structure prediction for aligned RNA
sequences is similar to folding a single sequence. The
major difference is, that a specific energy function is not
only applied to one (sub)sequence, but rather to several and
that these several results have to be combined for further
computation. In the simplest approach, which is also used
within RNAlishapes, the mean of the individual energies is
taken, resulting in an algorithm predicting the consensus
structure with minimum mean free energy (MmFE) for the
aligned sequences. Additionally, a covariance contribution
accounting for compensatory and consistent mutations is
added to this mean free energy, as outlined in the Materials
and Methods section.

Functionality

This section should give a short overview of the functionality
of RNAlishapes. Examples showing the applicability follow
in the next section. Given a multiple sequence alignment, e.g.
produced by ClustalW (46) or T-Coffee (47), RNAlishapes
predicts the consensus structure attaining MmFE. The user
can also provide an energy range above the MmFE for
which suboptimal consensus structures should be computed.
As for single sequences, the number of suboptimal solutions
grows exponentially—but much slower as for single
sequences—with the sequence length and, as a result, the
user may be overwhelmed by hundreds of structures in the
output. This can be avoided by using shape abstraction
which computes shapes together with shreps and thereby
significantly and reasonably reduces the number of subopti-
mal solutions. Shape abstraction can also be used to compute
probabilities of shapes for aligned RNAs as introduced
for single sequences in (28). This is based on the partition
function approach to secondary structure prediction and can
be described as Boltzmann-weighted structure/shape count-
ing. A variant of this is statistical sampling which, for single
sequences, was introduced in (48). In this mode individual
structures are computed according to the probabilities
obtained from the partition function. Repeating this for a
reasonable number of times gives a representative set of the
Boltzmann-ensemble of structures.

Besides these major analysis modes, the user can fine tune
the scoring by giving a weight for the covariance contribution
and by defining a minimum fraction of sequences which must
be able to form a base pair comprising two specific columns
of the alignment. By default, at least one sequence is required
to actually be able to form a base pair. Additionally, the
user can choose to ignore, so-called unstable structures.
These are (sub)structures in the external loop or multiloop
which have non-negative free energy. For the output the
user can choose to either get the consensus sequence with
the most frequent base at each position or in IUPAC-notation.

APPLICATIONS

tRNA

tRNAs form the best-studied family of ncRNA and are
characterized by their cloverleaf structure. This secondary
structure model is common to all tRNAs, notwithstanding
the fact that numerous tRNAs need specific base modifica-
tions to form it (49–51). Although these modified bases are
not handled in standard folding algorithms, using alignments
of tRNAs lead to correct prediction of the cloverleaf con-
sensus. The result of applying RNAlishapes to 10 tRNA
sequences obtained from Rfam (52) is summarized in
Figure 1. The cloverleaf structure has been predicted cor-
rectly and, furthermore, the analysis shows that the cloverleaf
shape is the only shape with reasonable probability, indicat-
ing that this is a very well-defined consensus shape. Addition-
ally, the D-Loop seems to be the least stable element, albeit
on a high level, of these tRNAs as it is only present in two of
the four predicted shreps.

Attenuators of bacterial trp-operons

Formation of alternating structures in mRNA leader regions
is an important mechanism of gene regulation. Several vari-
ants exist, which all share the common feature of two com-
peting structures, one of which either inhibits translation
initiation or leads to premature termination of transcription.
The transition between the two structures is triggered by
an external effector, e.g. protein, tRNA, or is formed co-
transcriptional, as in classical attenuators. One such classical
attenuator is found in front of the trp-operon of several
Corynebacterium spp. and Streptomyces spp., which have
recently been studied in detail in (53). I extracted the
sequences of the leader regions and performed a multiple
sequence alignment using ClustalW with DNA parameters.
Subsequently, RNAlishapes was used to predict energetically
favourable consensus structures. The results are summarized
in Figure 2 and show two conformations which are mutually
exclusive, similar in score and also explain the attenuation
mechanism. The stem-loop at the 30 end of structure A is a
terminator hairpin, leading to premature termination of tran-
scription. It achieves a better score as structure B, resembling
the fact that structure A corresponds to the native state of this
conformational switch.

Low alignment quality

A major advantage of the algorithm presented here is the gap-
aware energy evaluation as described in the methods section.
To my opinion, this is a major advantage compared to
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Figure 2. Alternate consensus structures for trp-Attenuators. Analysis of trp-operon leaders from different Corynebacterium spp. and Streptomyces spp.
(A) MmFE structure for the alignment shown in (C). The blue hairpin corresponds to the terminator hairpin. (B) Shrep of the second best shape. The consensus
structure comprises the same sequence regions as the structure in (A), making these two structures mutually exclusive. (C) Alignment of eight trp-operon leaders
from different Corynebacterium spp. and Streptomyces spp. Colours indicate the different stems. Bases paired in both alternative structures are coded by the
mixed colour.
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RNAalifold, especially when analysing sequences with low
pairwise identities. An example for this are T-box sequences
which have been analysed in (53). The multiple sequence
alignment (see Figure 3) of these 16 sequences shows an
average percentage identity of �59.1%. RNAalifold pre-
dicted only a 3 bp hairpin (see Figure 3, last line), while
RNAlishapes was more successful (see Figure 3, second
last line) and was able to predict at least one conformation
of the T-box switch. The interesting fact about this structure

is, that an internal loop is predicted, whose 30-unpaired region
consists mainly of gaps due to an insert in only one sequence.
The scoring of RNAalifold penalizes all sequences with
this length and, therefore, favours another structure with-
out this internal loop. In response to the ‘bad’ alignment,
RNAlishapes was unable to predict the second functional
conformation of the T-box switch, e.g. the sequestor hairpin,
which prohibits binding of the ribosome to the ribosome
binding site.

Figure 3. Consensus structure of T-box leader. T-box leader sequences from 16 species have been aligned using ClustalW. The resulting alignment has an
average percentage identity of �59.1% and shows gap-rich regions. Consensus structures and their score (in parentheses) computed by RNAlishapes and
RNAalifold are shown on the second last and last line, respectively.
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Prediction accuracy

The result of the previous applications raises the question
whether RNAlishapes achieves a good prediction accuracy
in general. In order to assess this I chose two different
data-sets. Data-set I is composed of the medium and high
mean pairwise sequence identity alignments for Escherichia
coli RNase P, Saccharomyces cerevisiae tRNA-PHE and
E.coli SSU rRNA from BRAliBASE I (26). The alignment
for E.coli LSU rRNA was not included because of its length
which causes too high memory consumption. But still, this
reduced set allows comparison of the prediction accuracy of
RNAlishapes with the tools tested in (26). For RNAlishapes
the shrep of the energetically most favourable shape was
used for determining structure prediction accuracy. Sensitiv-
ity, selectivity and Matthews correlation coefficient (54) were
computed as described in (26). The results are summarized in
Table 1, which additionally gives the results of the original
study for RNAalifold, Pfold and ILM.

Data-set II contains alignments for U5 snRNA (RF00020),
5S (RF00001), Group II intron (RF00029), bacterial signal
recognition particle (SRP) RNA (RF00169), eukaryotic SRP
RNA (RF00017) and 6S RNA (RF00013) from Rfam
(Version 7.0, March 2005). Each of these alignments is com-
posed of 10 sequences having a mean pairwise sequence
identity of �83–85%. This does not hold for 6S RNA for

which only seven sequences with a mean pairwise sequence
identity of �66% are present in Rfam. For the families
present in data-set II the consensus structure contained in
the Rfam-model was taken as the reference structure when
comparing predicted consensus structures. Prediction of
consensus structures was carried out for the original (seed)
alignment obtained from Rfam as well as for an alignment
of the sequences produced by ClustalW. In order to compare
the results this was done using RNAlishapes, i.e. the shrep of
the optimal shape, and RNAalifold. The results are summa-
rized in Table 2.

Overall, RNAlishapes performed quite well, achieving
a sensitivity, selectivity and correlation of 60–100%,
59.5–100% and 0.596–1.000 respectively, which is compara-
ble to other tools, such as RNAalifold, Pfold and ILM, but
also to alignment-free methods such as Carnac (55) and
Dynalign (24) [see (26) for Details]. The worst accuracy
was achieved for the high similarity set of E.coli RNase P
RNA, for which the authors of the original study note:
‘RNase P is a difficult data-set to study. Five sequences in
the high similarity data-set are truncated at both the 50 and
30 ends (due to the primers used for sequencing these).’
The tendency that RNAlishapes performs especially good
on medium similarity alignments is substantiated by the
results shown here. However, it seems to be the quality of

Table 2. Prediction accuracy for data-set II

RNA family Alignment % Sensitivity % Selectivity Correlation
Source Length (nt) PI (%) S F S F S F

U5 (RF00020) Rfam 122 �85 96.7 96.7 100.0 100.0 0.983 0.983
ClustalW 122 �85 96.7 93.3 96.7 96.6 0.966 0.949

5S (RF00001) Rfam 120 �85 61.8 61.8 80.8 80.8 0.703 0.703
ClustalW 120 �84 61.8 67.6 72.4 82.1 0.664 0.742

Group II intron (RF00029) Rfam 84 �83 100.0 100.0 100.0 100.0 1.000 1.000
ClustalW 84 �83 89.5 89.5 100.0 94.4 0.945 0.918

SRP bact. (RF00169) Rfam 104 �84 90.0 90.0 93.1 93.1 0.914 0.914
ClustalW 104 �83 93.3 90.0 96.6 93.1 0.949 0.914

SRP euk. (RF00017) Rfam 310 �83 86.0 82.6 93.7 95.9 0.897 0.890
ClustalW 310 �83 66.3 66.3 72.2 77.0 0.690 0.713

6S (RF00013) Rfam 203 �66 69.8 69.8 75.5 75.5 0.724 0.724
ClustalW 203 �66 90.6 58.5 96.0 72.1 0.932 0.647

Selectivity, sensitivity and correlation (Matthews correlation coefficient) for consensus structures predicted by RNAlishapes (S) and RNAalifold (F) for U5 snRNA,
5S RNA, Group II intron, bacterial signal recognition particle (SRP) RNA, euk. SRP RNA and 6S RNA. In the case one approach performs better, the corresponding
value is given in bold. (PI ¼ mean pairwise sequence identity, Rfam ¼ Rfam seed alignment, ClustalW ¼ realigned sequences from Rfam seed alignment using
ClustalW).

Table 1. Prediction accuracy for data-set I

Algorithm PI S.cerevisiae tRNA-PHE E.coli RNase P E.coli SSU rRNA
% Sen. % Sel. MCC % Sen. % Sel. MCC % Sen. % Sel. MCC

RNAlishapes H 100.0 100.0 1.000 60.0 59.5 0.596 70.9 75.3 0.731
M 100.0 100.0 1.000 69.1 75.2 0.720 81.2 88.4 0.847

RNAalifold* H 90.5 100.0 0.950 78.9 77.8 0.782 59.8 60.6 0.601
M 77.8 100.0 0.880 57.4 57.4 0.571 84.4 92.1 0.881

ILM* H 76.2 69.6 0.722 43.7 36.5 0.395 51.3 43.0 0.469
M 100.0 75.0 0.863 70.4 55.1 0.620 59.9 51.5 0.554

PFOLD* H 95.2 100.0 0.975 66.2 88.7 0.765 70.9 92.6 0.810
M 100.0 100.0 1.000 87.0 92.2 0.895 n.c. n.c. n.c.

Sensitivity (Sen.), selectivity (Sel.) and correlation coefficient (MCC, Matthews correlation coefficient) for consensus structures predicted by RNAlishapes,
RNAalifold, ILM and Pfold for RNase P, tRNA-PHE and SSU rRNA. PI ¼ mean pairwise sequence identity, H ¼ high, M ¼ medium, n.c. ¼ not computed, *
¼ data taken from Ref. (26)].
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the alignment rather than the average sequence similarity
which makes the difference and seems to have smaller effects
on RNAlishapes, which is especially reflected by the analysis
of the realigned 6S RNA. Here, RNAlishapes signific-
antly outperforms RNAalifold. Interestingly, the results in
Table 2 show that the alignment obtained from Rfam is not
always optimal. The predicted consensus structure is in
some cases, e.g. 6S and bact. SRP, more accurate when the
sequences are realigned using ClustalW.

DISCUSSION

The concept of structure prediction for aligned RNAs has
become a prominent method in various tasks of RNA bioin-
formatics. The original aim of consensus structure predic-
tion was extended to assess structural significance and used
to predict potential ncRNA genes (35), which was shown to
be a very powerful approach. For such newly predicted RNA
genes it is of general interest to derive a sequence/structure-
model describing it. This means to get information about
structural details, such as regions of structural stability or
stretches which are mainly unpaired. At this point RNAl-
ishapes comes into play. It allows to analyse the aligned
RNA sequences in various ways and, thus, gives insight into
structural features. Complete suboptimal structure prediction
can be used to analyse the complete or part of the folding
space. For single sequences such analyses are provided with
tools, such as barriers (56), paRNAss (57) or the approach
presented by Kitagawa et al. (58).

An emerging research area are small RNAs in bacteria and
their targets (59). A major problem in predicting targets of
small RNAs is to find those targets which show complemen-
tarities in mainly unpaired regions. This means that the target
has to have accessible targeting sites. The prediction of
unpaired regions for single RNAs can be done by drawing
statistical samples from the Boltzmann-ensemble of struc-
tures. Now, for each individual base the frequency of being
unpaired can be approximated from this sample. In the case
that homologous targets are known, this approach can be
extended to the aligned set of the targets using RNAlishapes,
which is likely to give more reliable results.

A major method presented in this paper is shape abstrac-
tion for aligned RNAs, which combines the power of align-
ment folding with the charm of abstract shapes of RNA. It
allows to assess structural diversity, such as for attenuators
and riboswitches, as well as structural well-definedness,
such as for aligned tRNAs. The two alternating conforma-
tions of bacterial trp-operon leaders could be identified by
performing a standard ClustalW multiple sequence alignment
followed by shape abstraction using RNAlishapes. This
shows how RNAlishapes helps to make predictions of func-
tion out of structural analyses, or at least to identify the con-
sensus shape of a family fitting best with further knowledge,
e.g. from experimental structure probing.

The focus during the design of RNAlishapes was on port-
ing various kinds of structural analysis methods from single
sequences to aligned sequences. More or less unintentionally,
an accurate method for consensus structure prediction was
developed. RNAlishapes achieves an overall prediction accu-
racy, which is comparable to that of RNAalifold, Pfold and
others. Especially, the good performance on medium/low

quality alignments is interesting. To my opinion, this is
achieved by the gap-aware handling of unpaired regions,
which alleviates alignment effects in unpaired regions with
low homology. Nevertheless, still the major problem the
tool is facing is the rather poor alignment quality achieved
in the initial sequence alignment step. This is mainly due to
the use of sequence alignment algorithms, which totally
neglect structure information. A promising approach would
be to use structure enhanced methods, such as MARNA
(21) or RNAforester (20) for the initial alignment step.

With RNAlishapes I present a tool which combines the
power of various analysis methods for RNA secondary struc-
ture with the benefits of inferring evolutionary conservation
by multiple sequence alignments. Through this it is now pos-
sible to infer functional properties, such as conformational
switching, from in-depth analyses of the consensus folding
space of aligned RNAs. The adapted energy model, with
gap-aware evaluation of unpaired regions and covariance
scoring of paired positions, improved the predictive power,
especially for alignments with medium quality. This directly
raises the question if the prediction of RNA genes, such as
with RNAz (34), could also be improved through the incorp-
oration of RNAlishapes. Unfortunately, this would also require
to recompute all the background statistics and training data
used by the various support vector machines within RNAz.

This enormous amount of data to be analysed requires
a performance improved version. While the ADP-Haskell
framework is well-suited for algorithm development and
testing, the Haskell background hampers fast and memory
efficient programs. This will, hopefully soon, be overcome
by porting RNAlishapes to C using the ADP-Compiler (60),
which is still work in progress (P. Steffen, personal commun-
ication). In parallel this step would enable the use of the
existing graphical user interface for RNAshapes (61) with
RNAlishapes.

Although it was not the intention to improve consensus
structure prediction, I think that RNAlishapes might become
part of a standard approach for this purpose. This definitely
needs a suitable algorithm for aligning multiple sequences.
Ideally, such an algorithm would allow to already take struc-
tural information into account, but only with a small score
contribution, e.g. matching two base pairs gets 10% of the
score for matching two bases. Available methods, such as
MARNA or RNAforester might be good candidates, but could
also be disproportionate for this task and a more lightweight
but very specialized RNA alignment tool might fit better.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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