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Abstract

Diabetes is a large healthcare burden worldwide. There is substantial evidence that lifestyle

modifications and drug intervention can prevent diabetes, therefore, an early identification

of high risk individuals is important to design targeted prevention strategies. In this paper,

we present an automatic tool that uses machine learning techniques to predict the develop-

ment of type 2 diabetes mellitus (T2DM). Data generated from an oral glucose tolerance

test (OGTT) was used to develop a predictive model based on the support vector machine

(SVM). We trained and validated the models using the OGTT and demographic data of

1,492 healthy individuals collected during the San Antonio Heart Study. This study collected

plasma glucose and insulin concentrations before glucose intake and at three time-points

thereafter (30, 60 and 120 min). Furthermore, personal information such as age, ethnicity

and body-mass index was also a part of the data-set. Using 11 OGTT measurements, we

have deduced 61 features, which are then assigned a rank and the top ten features are

shortlisted using minimum redundancy maximum relevance feature selection algorithm. All

possible combinations of the 10 best ranked features were used to generate SVM based

prediction models. This research shows that an individual’s plasma glucose levels, and

the information derived therefrom have the strongest predictive performance for the future

development of T2DM. Significantly, insulin and demographic features do not provide addi-

tional performance improvement for diabetes prediction. The results of this work identify the

parsimonious clinical data needed to be collected for an efficient prediction of T2DM. Our

approach shows an average accuracy of 96.80% and a sensitivity of 80.09% obtained on a

holdout set.
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Introduction

The global incidence of diabetes was estimated at 422 million in the year 2014 and its preva-

lence among the adult population increased from 4.7% in 1980 to 8.5% in 2014 [1]. In 2015

alone, about 1.6 million deaths worldwide were attributed to diabetes. In addition to the high

mortality rate, an individual with diabetes is at a greater risk of developing cardiovascular dis-

ease (CVD), visual impairment and limb amputations, as compared to a non-diabetic individ-

ual. Due to the substantial socio-economic burdens that are associated with diabetes, its early

detection, prevention, and management has become a worldwide top-level health concern.

There is experimental evidence that the development of diabetes can be delayed or even pre-

vented provided an individual undertakes a lifestyle change that includes diet management,

adopting exercise, and adhering to a pharmacological treatment [2]. The early identification of

high risk individuals of diabetes is therefore, essential for targeted prevention strategies [3].

Even though the number of clinical studies aimed at diagnosing diabetes has been growing

recently, studies predicting the risk of developing diabetes are limited. This subject has lately

received an increased amount of research interest [4]. However, the clinical significance of

such predictions largely depend on the type and quality of data collected. There are studies

that assign a probability to the future risk of diabetes using socio-demographic characteristics

such as age, ethnicity, body-mass index (BMI) and genealogical information collected through

population [5, 6]. Due to the unreliable data collection, such techniques can be misleading.

The collection of blood samples, on the other hand, provides more reliable data and is a first

step towards the disease prognosis with a deeper clinical insight [7]. The oral glucose tolerance

test (OGTT) is commonly used to screen diabetes [8] and to provide a critical understanding

of its future evolution [9]. In an OGTT, the plasma glucose and insulin levels are measured at

regular intervals in a 2-hr period after orally administering a standard dose of glucose [9]. The

glucose tolerance and insulin resistance are two of the most significant parameters deduced

from the OGTT that are widely regarded as the major factors in the development of type 2 dia-

betes mellitus (T2DM).

A precursory stage of diabetes, commonly referred to as prediabetes, exists before overt

T2DM, and is described by impaired fasting glucose (IFG), along with impaired glucose toler-

ance (IGT). According to the World Health Organization (WHO) diagnostic criteria, the IFG

is defined as fasting plasma glucose level of 100 mg/dL to 125 mg/dL. The IGT which describes

an abnormally raised glucose level is defined as the 2-hour plasma glucose level in the range of

140 mg/dL to 199 mg/dL, measured during the OGTT [10]. Although prediabetes is consid-

ered as an intermediate stage in the natural progression of T2DM [11], it has been reported

that only 50% of the subjects diagnosed with IGT developed diabetes within 10 years [12, 13].

Moreover, long-term population studies have also shown that around 50% of the diabetic

patients did not exhibit IGT at any time prior to the diagnosis [14]. This suggests that the fast-

ing and 2-hour plasma glucose levels used in and of themselves cannot accurately predict the

future development of T2DM.

The availability of big data in the healthcare sector has made machine learning (ML) a via-

ble instrument for disease prediction [15–18]. In contrast to traditional diagnostic techniques

employing population based statistics, ML methods develop models that are trained using

large amounts of data. In a pilot study, Maeta et al developed a ML algorithm to predict the

risk of developing glucose metabolism disorder using the OGTT data [19]. Barakat et al used

socio-demographic information, and point-of-care testing from blood and urine to develop

diagnostic models of diabetes [20]. This approach uses support vector machine (SVM) along

with a rule-based explanation to provide a comprehensibility of the results to the clinicians.

The plasma glucose levels at baseline and 2-hr were among the features used. Han et al
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employed an ensemble SVM and random forest learning approaches to develop a decision

making algorithm for the diagnosis of diabetes [21]. However, investigations that are designed

to identify individuals at high risk of developing T2DM in the long-term future are limited.

The San Antonio diabetes prediction model (SADPM) [22] uses a logistic regression supported

by physiological parameters such as systolic blood pressure and cholesterol level. The underly-

ing causes of T2DM in the form insulin resistance and insulin secretion were studied to

develop a prediction model in [14]. In another study, multivariate logistic models using the

plasma glucose values measured in the OGTT were used to predict the future risk of develop-

ing T2DM [23, 24]. The predictive power of different bio-markers such as the fasting plasma

glucose level, BMI and haemoglobin A1C (HbA1c) for T2DM onset was assessed in [25]. This

study focused on individuals with metabolic syndrome, a complex and serious health condi-

tion that greatly increases the risk of CVD and diabetes.

The standard ML algorithms are designed to yield optimal performance in terms of accu-

racy over the full data-set. However, medical applications such as diagnosis and prediction of

a disease require a biased decision-making mechanism that favours one of the classes. This

approach inherently maximises the performance of the class that is more relevant in clinic

terms. Therefore, the objective in such applications is to design a classifier that improves the

accuracy of the class that is clinically more relevant. Additionally, often the amount of data is

highly skewed with the clinically relevant class in an out-sized minority. There are various

roundabout ways to obtain accurate classifier performance in this scenario that include the

method of sampling [26] in which the class distribution is artificially balanced by either under

sampling the majority class, over-sampling the minority class or both. Furthermore, feature

weighting schemes assign distinct costs to training examples [27] in order to introduce a cer-

tain bias. Other techniques introduce evaluation metric such as the geometric mean (g-mean)

[28], that concurrently optimises the positive class accuracy (sensitivity) and the negative class

accuracy (specificity) [29].

We hypothesised that the features extracted from the OGTT will be able to predict the

future onset of T2DM. In this paper, we therefore propose a screening tool that identifies the

most relevant features extracted from the OGTT data that strongly correlate with the future

development of T2DM. We then use SVM to develop a prediction model by utilising these rel-

evant features estimated from the longitudinal cohort study, the San Antonio Heart Study

(SAHS) [30, 31].

Materials and methods

San Antonio Heart Study

The SAHS is a population-based epidemiological study that was conducted to assess the risk

factors of diabetes and cardiovascular diseases in healthy population [30, 31]. In total, 5,158

men and non-pregnant women of Mexican American (MA) and non-Hispanic White (NHW)

residents of San Antonio, Texas participated in the study in two cohorts. The age of individuals

at the time of recruitment was between 25 and 64 years. As a part of the data collection, plasma

glucose and serum insulin concentrations were collected during the OGTT at the baseline and

after an average follow-up of 7.5 years. The BMI was also recorded for each individual at the

baseline. In this study, we analysed only the data generated from the second cohort of the

SAHS which comprised of 1,492 subjects from the second cohort of the SAHS.

T2DM was diagnosed at the follow-up using the WHO criteria, i.e. fasting glucose

level> 126 mg/dL or 2-hr glucose level�200 mg/dL [10]. Furthermore, all individuals taking

anti-diabetic medications were also classified as having T2DM. Individuals that reported by

themselves any cardiovascular event such as a heart attack, stroke or angina, were labelled as
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having CVD at the follow-up. All other participants without T2DM or self-reported CVD were

labelled as healthy for the case of this study. During the course of this longitudinal study, a

total of 171 individuals developed T2DM with 10 individuals also reporting at least one cardio-

vascular event. The incidence rate of T2DM in the second cohort of the SAHS population was

10.79%. Table 1 shows the population distribution in terms of the four classes. The distribution

in terms of the ethnicity shows the T2DM prevalence among the MA individuals more than

double, as compared to the NHW population.

The data used in this study consists of plasma glucose and serum insulin concentrations

sampled at the baseline, and at 30, 60 and 120 min thereafter. The individuals are labelled at

the SAHS follow-up using the current standard of care [30]. Fig 1 shows the distributions of

the data used in this study.

Machine learning framework

In this paper, we implemented SVM to construct the models for the prediction of future

T2DM. The SVM develops models from a given training data-set such that it generalises well

to a new data-set and minimises the empirical risk associated with misclassification of samples

in the training set [32, 33]. A model constructed by the SVM minimises the overlap between

classes in the training set by optimising the separating hyper-plane. For problems that may not

be amenable to linear separation between the two classes, the SVM technique is very attractive

due to the fact that the input feature space can be transformed to a higher dimension space,

and a linear boundary can then be determined. This approach generally provides a better

training performance, but potentially increases computational complexity excessively with the

Table 1. The classification of the 1,492 subjects used in this study based on the ethnicity.

Healthy T2DM CVD T2DM+CVD

Total 1,277 161 44 10

85.56% 10.79% 2.95% 0.67%

MA 836 131 24 7

83.77% 13.13% 2.40% 0.70%

NHW 441 30 20 3

89.27% 6.07% 4.05% 0.61%

https://doi.org/10.1371/journal.pone.0219636.t001

Fig 1. Box plots of glucose and insulin levels for healthy and diabetic subjects measured at the baseline OGTT. A:

Plasma glucose. B: Serum insulin.

https://doi.org/10.1371/journal.pone.0219636.g001
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increase of the dimensionality of the input feature space [34]. The introduction of a kernel alle-

viates the need to determine the transformation by calculating the inner product between the

coordinates of the input feature space instead. In this paper, we used the Gaussian radial basis

function (RBF), as the kernel. The performance of the SVM can be optimised by tuning the

free parameter of the kernel σ and specifying a cost that controls the rigidity of the class mar-

gin. This process is normally carried out through a grid search.

Feature extraction

We extracted all the features from the SAHS data acquired at the baseline. The data-set consists

of plasma glucose and insulin concentrations recorded before glucose intake and at three

time-points thereafter (30, 60, and 120 min). The labels (healthy and diabetes) were generated

at the 7.5 years follow-up using the current standard of care diagnostics [30]. From the glucose

and insulin concentrations, we computed the slope and area under the curve between all the

possible combinations of a pair of measurements. In addition, we also calculated three empiri-

cal markers that describe the relationship between the glucose intake and insulin response.

The first is the insulinogenic index (IGI) [35], which is a direct measure of the insulin response

to glucose. It is calculated as the ratio of the slope of the insulin curve to the slope of the glucose

curve between any two time intervals in the OGTT. The second marker, Matsuda index (M)

evaluates the insulin sensitivity from the OGTT using a product of the weighted averages of

the glucose and insulin concentrations [36],

M ¼
10; 000

8
ffiffiffiffiffiffiffiffiffiffiffiffi
G0 � I0

p ½G0 þ 2G30 þ 2G60 þ 2G90 þ G120�
� 1=2

�½I0 þ 2I30 þ 2I60 þ 2I90 þ I120�
� 1=2

ð1Þ

where the subscripts depict the time point of the OGTT. In case when the value at 90 min is

not available, the average of 60 and 120 min is used instead [36]. The third marker, homeo-

static model assessment—insulin resistance (HOMA-IR) [37] evaluates the beta-cell function.

It is defined as the product of fasting plasma glucose concentration and fasting blood insulin

concentration divided by 22.5. These markers have been used to estimate abnormalities in the

insulin sensitivity. A total of 61 features (illustrated in Fig 2) are used in this study. The prefix

AuC denotes the area under the curve and the slope is denoted by the symbol Δ. The term Thalf

represents the linearly interpolated value between any two intervals.

Feature selection

Before constructing the SVM model to predict a future diabetes occurrence, we search for the

most effective subset of features in terms of relevance to the classifier output, i.e. incidence of

T2DM at the follow-up. As a first step, we selected the ten most relevant features from the 61

available features using the minimum redundancy maximum relevance (mRMR) algorithm

[38], which selects the most relevant features with minimum correlation among them. The

minimum redundancy maximum relevance (mRMR) algorithm determines the relevance

between a feature (x as continuous random variable) and the class label (y as discrete random

variable) in terms of the mutual information I defined as [39],

Iðx; yÞ ¼ �
Z

pi ln pi dx �
X

j

pj ln pj þ
X

j

Z

pij ln pij dx; ð2Þ

where pi, and pj are the probabilities of the random variables x and y taking a particular value

xi and yj 2 (−1, 1)8j respectively. The term pij denotes the joint probability P{x = xi, y = yj}. The
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three terms in Eq (2) represent the continuous, discrete and joint entropies of the random vari-

ables in the respective order. The features that are most relevant to the class label are the ones

that maximize I . A heuristic approach is to keep only one a single feature from a correlated set

of features that provides similar relevance information, and discard the remaining features. In

order to ensure this, the mRMR algorithm minimizes the mutual correlation among the fea-

tures expressed in terms of redundancy R,

RðXÞ ¼
X

xi ;xj2X

Iðxi; xjÞ: ð3Þ

where I follows its definition in Eq (2). This procedure yielding maximum I with respect to

the diabetic class, along with minimal R, shortlists a set of ten features that are potentially

strong predictors of the future development of T2DM.

Classification

We developed a supervised learning scheme using the baseline SAHS data-set and the labels

(healthy, T2DM) obtained at the follow-up after an average of 7.5 years. In each experiment,

we used a kernel-based binary SVM method to train, test and validate the performance of the

diabetes prediction models. We excluded the 44 CVD entries as the only way of defining this

class was based upon self-reporting and not on quantitative assessment. Furthermore, we also

removed all entries with any information missing. That resulted in a total of 1,492 instances

that were used in this study, out of which 171 were from the minority class and 1,321 were

majority instances. As shown in Table 1, the SAHS data-set is intrinsically unbalanced with the

class distribution skewed toward the majority class with a ratio of 7.5:1. We considered the

minority class of diabetic subjects as the positive class with a label of 1, whereas the majority

class consisting of healthy persons was termed as the negative class marked by a ‘-1’ label. To

standardise the feature range prior to training, the feature space was scaled to unit variance

around the respective mean for each feature respectively. To ensure that a model was unbiased,

robust, and generalised well to the new data, we performed 10-fold cross-validation (CV). We

Fig 2. Illustration of all 61 features extracted from the SAHS data-set.

https://doi.org/10.1371/journal.pone.0219636.g002
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refrained from balancing the data-set so that the majority and minority class prevalence

becomes the same, as we believe this measure artificially boosts the classification performance.

For each CV, we first randomly selected a hold-out set consisting of 11 minority and 83

majority instances. We evaluated each model 100 times, in which the data was randomly parti-

tioned on each occasion. We compared the performances of linear and non-linear SVM for

all 1,023 possible combinations of the 10 most relevant features by considering all 1 to 10

combinations of features. The optimal hyper-plane parameters of the kernel were determined

through a grid search. To select the best feature set, we have used the geometric mean of sensi-

tivity and specificity [28]. All experiments were performed by an in-house developed software

using Matlab1(v9.2.0 MathWorks Inc., Natick, Massachusetts, USA).

Results and discussion

The mRMR algorithm produces a sequential list of ten ranked features, shown in Table 2.

Besides ethnicity (ranked fourth), all other features are notably derived from OGTT measure-

ments. The list contains six features derived from plasma glucose concentrations, while only

three features are deduced from insulin concentrations.

In all the classification experiments, we aimed to maximise the ability to correctly predict

the diabetic class without compromising the classifier accuracy. The bar plots in Fig 3 show the

g-mean of the sensitivity and specificity obtained from the linear and RBF kernels. For each

number of features used, we selected the combination that generated the maximum g-mean.

All the results presented here are averaged over 100 iterations of the respective classifiers.

The g-mean obtained from the linear SVM ranges from 0.8711 to 0.8742. As observed from

Table 2. List of ten most relevant features ranked by the mRMR algorithm.

Rank Feature

1 AuC-G0-120

2 ΔG120-0

3 ΔG120-60

4 Ethnicity

5 ΔI120-0

6 ΔG60-0

7 ΔG30-0

8 ΔG60-30

9 ΔI120-60

10 ΔI60-0

https://doi.org/10.1371/journal.pone.0219636.t002

Fig 3. The g-mean of sensitivity and specificity for A: linear, and B: RBF kernels. The maximum performance

feature combination is depicted by a different colour scheme.

https://doi.org/10.1371/journal.pone.0219636.g003

Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test

PLOS ONE | https://doi.org/10.1371/journal.pone.0219636 December 11, 2019 7 / 11

https://doi.org/10.1371/journal.pone.0219636.t002
https://doi.org/10.1371/journal.pone.0219636.g003
https://doi.org/10.1371/journal.pone.0219636


Fig 3(a), the addition of more features does not result in a substantial performance improve-

ment. However, the maximum g-mean of the sensitivity and specificity is obtained when all 10

features are used. For the non-linear SVM with RBF kernel, the g-mean ranges from 0.8638 to

0.8903. The combination of the features namely, AuC-Glu0-120, ΔG120-0, ΔG120-60 and ΔG30-0

yields the maximum performance. Notably, all four features are derived from the plasma glu-

cose concentrations. We note that the glucose derived features are ranked the highest during

feature selection. Moreover, a combination of glucose only features generate the best SVM

models when less than four features are used.

The accuracy and sensitivity of the same feature combinations are separately shown in Fig

4. The best model obtained using a combination of four glucose derived features and RBF ker-

nel has an accuracy of 96.80%, and sensitivity of 80.09%.

Table 3 presents a comparison of the generated SVM models to the results obtained in

other studies using the SAHS data-set. We compared our results with the SADPM [22], in

which a person’s age, gender, ethnicity, fasting glucose level, family history, blood pressure,

and cholesterol level were used to construct a logistic regression. It is notable that the SADPM

has the highest sensitivity (88.80%) however, the increased prediction performance comes

along with a very low accuracy of 56.33%. In [23], a two-step approach was introduced that

first used the SADPM risk score and then augmented it with the 1-hour plasma glucose con-

centration measured in the OGTT. This strategy resulted in an improved accuracy but the sen-

sitivity dropped to 77.70%.

In the SAHS data-set, the prevalence of IFG and IGT was 8.91% (133 instances) and 22.52%

(336 instances) respectively. Out of the 399 subjects diagnosed with prediabetes showing IFG

or IGT at the baseline, only 120 (30.08%) actually developed diabetes between the baseline and

the follow-up. Furthermore, 120 (25.67%) subjects diagnosed with diabetes at the follow-up

did not show any symptoms of either IGT or IFG at the baseline.

Fig 4. The classifier performance in terms of accuracy and sensitivity for the best feature combinations. A: Linear

kernel. B: RBF kernel.

https://doi.org/10.1371/journal.pone.0219636.g004

Table 3. Comparison of validation performance of the best SVM classifiers with previous studies.

Accuracy ± SD Sensitivity ± SD Specificity ± SD g-mean ± SD

Linear SVM (10 features) 95.55% ± 0.24% 78.09% ± 0.33% 97.87% ± 0.30% 0.8742% ± 0.2100

SVM-RBF (4 features) 96.80% ± 0.41% 80.09% ± 1.42% 99.02% ± 0.33% 0.8903 ± 1.5600

SADPM [22] 56.329% 88.80% 52.00% 0.6795

Two-step Approach [23] 77.43% 77.70% 77.40% 0.7755

https://doi.org/10.1371/journal.pone.0219636.t003
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Our investigation shows that features derived from insulin have less predictive value for

T2DM as compared to glucose based features. Indices such as Matsuda and HOMA-IR that

are commonly used to assess the insulin function, also did not yield high correlation with the

future development of T2DM.

Conclusion

In this paper, we developed a non-linear SVM based prediction model that accurately identi-

fies the persons at a higher risk of developing T2DM in future. To develop the model, we first

assessed the predictive power of features that were derived from the OGTT data and were

augmented by personal information such as age, ethnicity, and BMI. Using a feature selection

algorithm, we demonstrated that the features deduced from the plasma glucose concentrations

provide the optimal feature subset and have the strongest predictive power for the future devel-

opment of T2DM. Moreover, the performance of the presented prediction model is signifi-

cantly better in terms of combined accuracy and sensitivity combined, compared to other

T2DM prediction models. In order to address the unbalanced nature of the SAHS data-set, we

chose the g-mean of sensitivity and specificity as the performance evaluation criteria. Our pre-

diction model outperforms other similar models by more than 12% in terms of the g-mean of

sensitivity and specificity. The mean accuracy, specificity and sensitivity achieved after 100

iterations were 96.80%, 99.02%, and 80.09%.

The principal contribution of this study includes a T2DM prediction model based on the

features derived only from the plasma glucose concentrations measured during an OGTT.

The findings of this paper provide a complementary and cost-effective tool for the clinicians to

screen individuals that are at an increased risk of developing T2DM in the future.
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type 2 diabetes onset in middle-aged subjects with the metabolic syndrome. Diabetology & Metabolic

Syndrome. 2013; 5(1):36. https://doi.org/10.1186/1758-5996-5-36

26. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling tech-

nique. Journal of Artificial Intelligence Research. 2002; 16:321–357. https://doi.org/10.1613/jair.953

27. Domingos P. MetaCost: A General Method for Making Classifiers Cost-sensitive. In: Proceedings of the

Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’99. New

York, NY, USA: ACM; 1999. p. 155–164.

28. Kubat M, Matwin S, et al. Addressing the curse of imbalanced training sets: one-sided selection. In:

ICML. vol. 97. Nashville, USA; 1997. p. 179–186.

29. Tang Y, Zhang Y, Chawla NV, Krasser S. SVMs Modeling for Highly Imbalanced Classification. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2009; 39(1):281–288. https://

doi.org/10.1109/TSMCB.2008.2002909

30. Burke JP, Williams K, Gaskill SP, Hazuda HP, Haffner SM, Stern MP. Rapid Rise in the Incidence of

Type 2 Diabetes From 1987 to 1996: Results From the San Antonio Heart Study. Archives of Internal

Medicine. 1999; 159(13):1450. https://doi.org/10.1001/archinte.159.13.1450

31. Lorenzo C, Williams K, Hunt KJ, Haffner SM. Trend in the Prevalence of the Metabolic Syndrome and

Its Impact on Cardiovascular Disease Incidence: The San Antonio Heart Study. Diabetes Care. 2006;

29(3):625–630. https://doi.org/10.2337/diacare.29.03.06.dc05-1755 PMID: 16505517

32. Vapnik VN. The nature of statistical learning theory. 2nd ed. Statistics for engineering and information

science. New York: Springer; 2000.

33. Vapnik VN, Chervonenkis AY. On the uniform convergence of relative frequencies of events to their

probabilities. In: Measures of complexity. Springer; 2015. p. 11–30.

34. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. Springer Series in Statistics.

Springer New York; 2001.

35. Seino Y, Ikeda M, Yawata M, Imura H. The insulinogenic index in secondary diabetes. Hormone and

Metabolic Research. 1975; 7(02):107–115. https://doi.org/10.1055/s-0028-1093759

36. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: com-

parison with the euglycemic insulin clamp. Diabetes Care. 1999; 22(9):1462–1470. https://doi.org/10.

2337/diacare.22.9.1462 PMID: 10480510

37. Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment:

insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man.

Diabetologia. 1985; 28(7):412–419. https://doi.org/10.1007/bf00280883 PMID: 3899825

38. Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency,

max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence.

2005; p. 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 PMID: 16119262

39. Ross BC. Mutual Information between Discrete and Continuous Data Sets. PLOS ONE. 2014; 9(2):1–

5. https://doi.org/10.1371/journal.pone.0087357

Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test

PLOS ONE | https://doi.org/10.1371/journal.pone.0219636 December 11, 2019 11 / 11

https://doi.org/10.2337/dc10-2201
https://doi.org/10.2337/dc10-2201
http://www.ncbi.nlm.nih.gov/pubmed/21788628
https://doi.org/10.2337/dc08-1264
http://www.ncbi.nlm.nih.gov/pubmed/19017778
https://doi.org/10.1186/1758-5996-5-36
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/TSMCB.2008.2002909
https://doi.org/10.1109/TSMCB.2008.2002909
https://doi.org/10.1001/archinte.159.13.1450
https://doi.org/10.2337/diacare.29.03.06.dc05-1755
http://www.ncbi.nlm.nih.gov/pubmed/16505517
https://doi.org/10.1055/s-0028-1093759
https://doi.org/10.2337/diacare.22.9.1462
https://doi.org/10.2337/diacare.22.9.1462
http://www.ncbi.nlm.nih.gov/pubmed/10480510
https://doi.org/10.1007/bf00280883
http://www.ncbi.nlm.nih.gov/pubmed/3899825
https://doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
https://doi.org/10.1371/journal.pone.0087357
https://doi.org/10.1371/journal.pone.0219636

