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Today machine learning methods are commonly deployed for bacterial species identification using
MALDI-TOF mass spectrometry data. However, most of the studies reported in literature only consider
very traditional machine learning methods on small datasets that contain a limited number of species.
In this paper we present benchmarking results on an unprecedented scale for a wide range of machine
learning methods, using datasets that contain almost 100,000 spectra and more than 1000 different spe-
cies. The size and the diversity of the data allow to compare three important identification scenarios that
are often not distinguished in literature, i.e., identification for novel biological replicates, novel strains
and novel species that are not present in the training data. The results demonstrate that in all three sce-
narios acceptable identification rates are obtained, but the numbers are typically lower than those
reported in studies with a more limited analysis. Using hierarchical classification methods, we also
demonstrate that taxonomic information is in general not well preserved in MALDI-TOF mass spectrom-
etry data. For the novel species scenario, we apply for the first time neural networks with Monte Carlo
dropout, which have shown to be successful in other domains, such as computer vision, for the detection
of novel species.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

In the last decade, matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) has emerged
as a novel identification method for a wide range of bacterial spe-
cies. Compared to sequencing a bacterial genome, it is a cheaper
and faster alternative for situations where a lot of strains need to
be analyzed on a daily basis [1,2]. Today, MALDI-TOF MS is rou-
tinely used in clinical laboratories for the identification of patho-
genic strains, but it is also increasingly applied to identify
environmental and food-related microbiota [3–10]. MALDI-TOF
MS generates mass spectra that quantify mostly ribosomal pro-
teins and peptides present in a purified culture. As these proteins
are highly specific for a bacterial species, mass spectra can be seen
as species-specific fingerprints, allowing for an accurate identifica-
tion of purified strains at the genus and species level [11,12].

The analysis of a sample typically starts with isolating a set of
strains using different cultivation conditions, followed by a
purification step, in which biomass is amplified to a sufficient
level [13–15]. After cultivation, which is the most time-
consuming part of the analysis, microbial cells or crude extraction
thereof are deposited onto a metal target plate and subsequently
overlaid or mixed with an appropriate organic matrix solution. As
a last step, the unlabeled spectrum of a novel strain is identified
using software tools, which typically consist of one or several
machine learning algorithms as most important building blocks.
In the present work we focus on this last step of the identification
process.

In a recent survey, Weis et al. [16] discussed 36 studies that
deployed machine learning algorithms for bacterial species identi-
fication and antimicrobial susceptibility testing using MALDI-TOF
MS. Remarkably, the vast majority of these studies apply off-the-
shelf classification methods in combination with relatively-small
datasets, typically containing less than a thousand samples and a
very small number of species, which are often limited to a single
family or even a single genus. This can be attributed to the specific
interest of individual research labs, and the substantial labour cost
of collecting a large dataset. Yet, also the business model of MALDI-
TOF MS manufacturers such as Bruker Daltonik GmbH & Co. KG
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(Germany, http://www.bruker.com/) and bioMérieux (France,
http://www.biomerieux.com/) plays an important role. In addition
to mass spectrometers, those vendors sell software packages that
have access to private databases with annotated spectra [17]. As
soon as research labs bring a new dataset in the public domain, this
dataset is acquired by industrial players, and appended to their
commercial databases. As a result, commercial software slowly
becomes the gold standard, but the black-box nature of this soft-
ware poses serious threats w.r.t. transparency, reliability and
reproducibility.

The goal of the present paper is to provide an independent
evaluation of machine learning methods for bacterial species
identification with MALDI-TOF MS. To this end, we consider
three different identification scenarios that are of practical
relevance.

In a first scenario, we assume that at test time only novel bio-
logical replicates of strains seen during training are analyzed, and
one therefore expects a good identification performance.

In a second and perhaps more realistic scenario, where also
novel strains of previously-encountered species need to be identi-
fied at test time, one can expect a drop in performance compared
to the first scenario. In a third scenario, for which specific methods
are required, we investigated how well novel species can be
detected at test time. For those three scenarios we make the fol-
lowing contributions:

1. For the first two scenarios, we present benchmarking results on
an unprecedented scale, using several datasets that contain,
together, almost 100,000 spectra from strains that represent
more than 1000 species. We experiment with classical machine
learning algorithms and more recent classification methods,
such as deep learning and hierarchical classification methods.
These last two groups of methods only work well for large-
scale datasets and have not yet been applied yet to MALDI-
TOF MS data.

2. The hierarchical classification methods that we implemented
utilize phylogenetic information in the form of a taxonomic
hierarchy. By comparing the identification performance of such
methods with the performance of methods that ignore phyloge-
netic information, we also investigate to what extent evolution-
ary relationships among species are preserved in MALDI-TOF
MS data.

3. For the novel species scenario, the goal is to detect whether a
MALDI-TOF MS sample represents a species that is not present
in the training dataset. In this scenario, which inherently trans-
lates to an out-of-distribution detection task (i.e., binary classi-
fication), the traditional classification methods in previous
scenarios are not directly applicable. We present promising
results with dropout-based neural networks, which have
recently become very popular in areas like computer vision
[18,19].

4. For the novel species scenario, the goal is to detect whether a
MALDI-TOF MS sample represents a species that is not present
in the training dataset. In this scenario it is not possible to apply
off-the-shelf classification methods.

The structure of the present manuscript is straightforward. In
Section 2, we give an overview of the datasets and experiments
that are considered in this work. We also discuss in detail the pre-
processing and machine learning methods that are used to address
the above research questions. In Section 3, we present numerical
results for the three different scenarios. In Section 4, we discuss
the implications of these results for the community, and we make
a connection with previous studies. In Section 5, a short conclusion
is formulated.
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2. Materials and methods

2.1. Datasets

In order to address the above research questions, we will work
with three datasets, referred to as the global dataset (GD), lyop-
reservation dataset (LYO) and additional test dataset (TEST). In
what follows we provide information on how the three datasets
were generated.

The global dataset is a historical database that contains samples
for more than 2400 taxonomic reference strains, representing
more than 1000 bacterial species, cultured and analyzed in the last
decade by researchers in the Laboratory for Microbiology LM-
UGent (Ghent University, Belgium). Strains are considered refer-
ence strains in bacterial taxonomy when they are chosen as type
specimen during the formal description and naming of novel bac-
terial species, or when they have been included in comprehensive
taxonomic studies [20]. The reference strains included in the global
dataset were identified using state-of-the-art identification meth-
ods available at the time of isolation and subsequently stored in
the BCCM/LMG Bacteria Collection. More precisely, for the recent
deposits in the BCCM/LMG Bacteria Collection, strain information
was acquired by means of whole genome sequencing. Yet, for the
historically-deposited strains, other techniques were used for iden-
tification, such as DNA-DNA hybridization or housekeeping gene
sequence analysis.

All strains were cultivated according to the provider’s instruc-
tions to a third generation. Afterwards, bacterial cell extracts (1
ll) were spotted seven to eight times on a target plate (Bruker Dal-
tonik GmbH & Co. KG, Germany) and dried in air at room temper-
ature. The sample spot was overlaid with 1 ll of matrix solution
(10 mg=ml a-cyano-4-hydroxycinnamic acid in acetonitrile–wate
r-trifluoroacetic acid [TFA] [50:47.5:2.5]). Each target plate com-
prised one spot of pure matrix solution, used as a negative control,
and one spot of Bacterial Test Standard (Bruker Daltonik GmbH &
Co. KG, Germany), used for calibration. The target plate was mea-
sured automatically for four times on a Bruker Microflex LT/SH
(Smart) system (Bruker Daltonik GmbH & Co. KG, Germany), thus
obtaining a total of 28 to 32 technical replicate spectra for each
strain. The spectra were obtained in linear, positive ion mode using
FlexControl (v3.4) software according to the manufacturer’s rec-
ommended settings (Bruker Daltonik GmbH & Co. KG, Germany).
Each final spectrum resulted from the sum of the spectra generated
at random positions to a maximum of 240 shots per spectrum.

The lyopreservation dataset is a small dataset that was released
in 2019 [21]. This dataset can be subdivided into two subsets, fur-
ther denoted as LYO1 and LYO2. Both subsets contain the same
strains, but MALDI-TOF mass spectra were generated before and
after lyophilization and subcultivation of the strains. This makes
this dataset ideally suited to evaluate the performance of MALDI-
TOF MS for the scenario where novel biological replicates of
previously-encountered strains need to be identified. All samples
of the lyopreservation dataset were analyzed using the same pro-
tocol as the global dataset.

The additional dataset TEST contains MALDI-TOF mass spectra
generated from isolates obtained in a recent microbial diversity
project, in which the bacterial and yeast fraction of a food sample
was studied. MALDI-TOF MS data acquisition was performed as
described above for the global dataset GD, except that microbial
extracts were spotted in duplicate and measured only once. For
this dataset, ground-truth species labels were assigned based on
the highest match obtained after matching the mass spectra gener-
ated with those present in the BDAL (Bruker Daltonik GmbH & Co.
KG, Germany) and the LM-UGent in–house identification data-
bases. A fraction of mass spectra that did not match with a Bruker
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logscore higher than 1.8 were left out from the final dataset. This
dataset contains mass spectra generated from isolates of species
that are not represented in the global dataset GD. Some isolates
were classified to Pichiaceae, Saccharomycodaceae and Cellulomon-
adaceae, three families that are not represented in the global data-
set GD. Others belonged to species that are not present in the
global dataset yet classified as Acetobacteraceae, a family that
occurs frequently in the global dataset GD.
2.2. Data preprocessing

In what follows, let us denote a dataset by D ¼ fðSi; yiÞgi¼1;...;N ,
consisting of N MALDI-TOF mass spectra, in which the i-th sample
Si has species label yi. A MALDI-TOF mass spectrum.

of length Li. is formally represented as a set Si ¼ fðxj; kjÞgj¼1;...;Li
,

with kj the measured intensity value for a given m=z ratio xj. With
this notation we emphasize that different spectra may vary in
length.

Most of the machine learning methods described in literature,
and more precisely the ones that are going to be considered in this
work, require MALDI-TOF mass spectra with a fixed-length repre-
sentation as input. As such, the first preprocessing step to be con-
sidered is the so-called binning step. This step consists of (i)
dividing the m=z dimension in intervals (or bins), and (ii) aggregat-
ing intensity values in each obtained interval, for each spectrum Si.
For aggregation, we choose to work with the maximum of intensi-
ties, as this is frequently used in literature [22]. The next steps in
our preprocessing pipeline are the following transformations: (i)
baseline correction, where an estimated baseline in each spectrum
is removed by using the asymmetric least squares method (ALS)
and (ii) total ion current normalization (TIC), where each intensity
kij is transformed by means of

~kij ¼ kijXLi
j0¼1

kij0

;

such that the sum of intensities for every spectrum Si sums to one
[23–26].
2.3. Flat classification methods

In general, bacterial identification can be translated to a multi-
class classification problem, where the goal is to assign the correct
class, i.e. taxonomic label such as strain, species, genus or family, to
a given spectrum. More formally, let’s assume that the given data-
set D is drawn from a distribution PðS; cÞ on X � Y, with X the
instance space consisting of spectra and Y ¼ fc1; . . . ; cKg a class
space consisting of K classes. Furthermore, we will assume proba-
bilistic multi-class classifiers, which estimate conditional class
probabilities Pð� j SÞ over Y, with properties
8c 2 Y : 0 6 Pðc j SÞ 6 1;

P
c2YPðc j SÞ ¼ 1.

Bearing in mind the availability of taxonomic information, the
corresponding classification problem w.r.t. Y can be solved by
using flat or hierarchical classification models. With a flat classifi-
cation model one typically denotes a model that ignores hierarchi-
cal information. In contrast, a hierarchical classification model will
utilize hierarchical information for classification purposes. In the
experiments, we analyzed the following flat classifiers, which can
be applied to a large-scale classification setting: random forests
(RF), logistic regression (LR), support vector classifier with linear
kernel (LSVC), k-nearest neighbours (KNN) and a one-
dimensional convolutional neural network (1DCNN), which con-
sists of one-dimensional convolutional, batch normalization and
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max-pool layers. Details on how those methods were configured
are given below.

In principle, one can generate conditional class probabilities
with all the methods that are considered. However, for certain
methods, such as random forests and k-nearest neighbors, those
probabilities may not be well-calibrated. At test time, for a novel
sample S a species name y is assigned by returning the mode of
the conditional class distribution:

y ¼ argmax
c2Y

Pðc j SÞ:

Since only the mode of the conditional class distribution is
needed, the probabilities themselves do not need to be well-
calibrated.

2.4. Hierarchical classification methods

In order to implement hierarchical classification models, we
obtained a phylogenetic tree from the NCBI Taxonomy Database
[27,28]. We ran experiments with the local classifier per parent
node (LCPN) approach [29]. This approach underlies many popular
algorithms such as nested dichotomies [30–32], conditional prob-
ability estimation trees [33], probabilistic classifier trees [34], or
hierarchical softmax [35], often used in neural networks as an out-
put layer. In a basic implementation, a multi-class classifier is
trained in each parent node (i.e., all nodes except the leaves) within
the taxonomy. For example, for the taxonomy represented as a bin-
ary tree in Fig. 1, one would need to train seven separate base
learners. Each base learner is trained to distinguish between its
child nodes. When probabilistic classifiers are used as base learn-
ers, a hierarchical factorization of the conditional class distribution
Pðc j SÞ is learned, where one can express the conditional class
probability for a particular leaf node via the chain rule of
probability:

Pðc j SÞ ¼
Y

v2PathðcÞ
Pðv j ParentðvÞ; SÞ;

where PathðcÞ is a set of nodes on the path connecting the leaf and
the root of the tree structure. ParentðvÞ gives the parent of node v,
and for the root node r we have Pðr j ParentðrÞ; SÞ ¼ 1.

In the experiments, we implemented the same base learners as
used for flat classification, i.e., random forests (RF), logistic regres-
sion (LR), support vector classifier with linear kernel (LSVC), k-
nearest neighbours (KNN) and a one-dimensional convolutional
neural network (1DCNN). At test time, a top-down approach is
used to determine the most likely species label: starting from the
root node, the child node with highest probability is chosen and
this process is repeated until a leaf node is reached. Every leaf node
corresponds to a species.

2.5. Novel species detection methods

As discussed above, we consider the scenario where new spe-
cies, not yet seen during training, may arrive during test time. In
machine learning jargon, the corresponding task is often referred
to as out-of-distribution detection [36–39], open-set recognition
[40–42] or anomaly detection [43]. Many novel methods for such
tasks have been introduced recently, but none of those methods
have been applied to bacterial species identification yet. In this
work, we ran experiments with neural networks and the Monte
Carlo dropout method [18]. In this method, dropout is applied both
during the training and testing of neural networks and can be seen
as an approximation to exact Bayesian inference in Bayesian neural
networks. In contrast to neural networks, where point estimates of
the weights are learned by maximizing the likelihood of the data,
Bayesian neural networks are trained by learning distributions



Fig. 1. Example of a phylogenetic tree for eight bacterial species, starting from the root node, which consists of three phylogenetic levels: family, genus and species.

Table 1
Overview of the different scenarios considered in this work, together with
corresponding datasets. Statistics for the datasets are shown in Table 2.

Scenario Train Validate Test

Novel strains GDtrain GDval GDtest

Novel biological replicates GD + LYO1 – LYO2
Novel species GDtrain GDval

a TEST

a Only considered for early stopping during the training of 1DCNN.
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over weights [44]. By using approximate Bayesian inference, the
aim is to detect novel species by analyzing the total uncertainty
in predictions. Moreover, in exact Bayesian inference and given a
new spectrum S�, one can measure the total uncertainty in a pre-
diction by means of the Shannon entropy of the posterior predic-
tive distribution [45]:

H½Pð� j S�;DÞ� ¼ �
X
c2Y

Pðc j S�;DÞlog2Pðc j S�;DÞ: ð1Þ

The posterior predictive distribution can then be written as
follows:

Pðc j S�;DÞ ¼
Z
W
Pðc j w; S�ÞPðw j DÞdw; ð2Þ

with the posterior distribution over the weights given by Bayes’
rule:

Pðw j DÞ ¼ PðD j wÞPðwÞR
W PðD j wÞPðwÞdw ; ð3Þ

and PðD j wÞ the likelihood of the data. Note that in the above nota-
tions, a probabilistic classifier is parametrized by a vector of
weights w. Unfortunately, calculating Eq. 2 is intractable due to
the integration over the weight space W and the calculation of
the posterior distribution Pðw j DÞ, which in turn is also intractable
due to the denumerator in Eq. 3. However, one can approximate the
posterior predictive distribution by a finite ensemble fw1; . . . ;wMg,
by means of learning different classifiers on M boostrap samples or
by using the Monte Carlo dropout technique in neural networks
during test time [46,18]. The posterior predictive distribution is
then approximated as follows:

Pðc j S�;DÞ ¼ 1
M

XM
i¼1

Pðc j wi; S
�Þ: ð4Þ

Subsequently, one can approximate the total uncertainty by
plugging Eq. 4 into Eq. 1:

utðS�Þ ¼ �
X
c2Y

1
M

XM
i¼1

Pðc j wi; S
�Þ

 !
log2

1
M

XM
i¼1

Pðc j wi; S
�Þ

 !
: ð5Þ

In the experiments, we use the total uncertainty of Eq. 5 to iden-
tify out-of-distribution samples, similar to [46,47]. Ideally, in the
dataset TEST, those samples should correspond to species that
are not present in the dataset GD. For the Monte Carlo dropout
method, we use the 1DCNN model where the number of Monte
Carlo samples is set to ten (M ¼ 10). More information with
respect to implementation details is given below.
6160
2.6. Experimental setup and hyperparameter tuning

Different training, validation and test sets were used for the
three identification scenarios that were outlined in the introduc-
tion – see Table 1 for an overview. To evaluate the novel strain
identification scenario, the global dataset is split in three different
datasets: GDtrain, GDval and GDtest, in such a way that there is no
overlap in terms of strains. More precisely, for each species in
GD, we distribute the set of unique strains over the three datasets,
such that each strain is only represented in one of the three data-
sets. For example, assumewe have for a given species the following
unique strain labels: fst:A; st:B; st:C; st:D; st:Eg. After shuffling we
obtain fst:D; st:C; st:A; st:E; st:Bg and, subsequently, after sequen-
tially distributing over the three datasets we have the following
membership: GDtrain=fst:D; st:Eg, GDval=fst:C; st:Bg and
GDtest=fst:Ag.

Species for which only one strain has been collected, are added
to the training set GDtrain in order to differentiate from the novel
species scenario. GDtrain is only used for training various machine
learning models, and the hyperparameters of these models are
tuned on GDval. GDtest is used to evaluate the identification perfor-
mance in the novel strains scenario. For the scenario where novel
biological replicates need to be identified, the LYO2 dataset is used
as test set, and the LYO1 dataset is appended to GD for training. For
the novel species detection scenario, the TEST dataset is used for
testing and GDtrain for training. Table 2 presents some summary
statistics of the datasets and Fig. 2 shows the frequency distribu-
tion of the top-7 families for GDtest, LYO2 and TEST. One can
observe a high imbalance in terms of species occurrence among
the three datasets. One can see that the three datasets follow dif-
ferent distributions.

We use the novel strains experiment to test the two different
preprocessing steps: binning with size 5, 10 and 20, combined with
either no transformation ( : ), baseline correction (ALS) or baseline
correction followed by total ion current normalization (ALS + TIC).
This results in nine different preprocessing combinations. Subse-
quently, for each of those combinations we perform hyperparame-
ter tuning by means of randomized grid search [48], where we use
five randomly sampled parameter settings for each model, on the
training (GDtrain) and validation splits (GDval) of the global dataset.



Table 2
Summary statistics for the different datasets (N – number of spectra, K f – number of unique families, Kg – number of unique genera, Ksp: – number of unique species, Kst: – number
of unique strains, ID – in-distribution, OOD – out-of-distribution).

Dataset N K f Kg Ksp: Kst:

GDtrain 50901 93 249 1087 1375
GDval 15253 24 50 211 396
GDtest 21236 34 72 321 551
LYO1, LYO2 156 6 15 47 78
TESTID 1950 2 5 23 833
TESTOOD 271 4 5 6 165

Fig. 2. Frequency distribution for top-7 families of GDtest (left), LYO2 (middle) and TEST (right).
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The optimal preprocessing combination and hyperparameters,
obtained in the novel strains experiments, are then used through-
out the other experiments.

More specifically, when it comes to hyperparameter tuning, we
consider for RFs the number of trees (f50;100;150g), the number
of features to consider in each split, maximum depth of the trees
(f30;90;heuristic� basedg), the minimum number of samples
required to split an internal node (f2;5;10;15;20g) and the mini-
mum number of samples required to be at a leaf node
(f1;2;5;10;15g). For LR, we consider a linear classifier with L2 reg-
ularized cross-entropy loss and stochastic gradient descent opti-
mization. Early stopping is applied after five iterations and the
maximum number of iterations considered during optimization
is set to 200 epochs. We tune the regularization strength
(½0:001; . . . ;1:0�) and learning rate (½0:001; . . . ;1:0�). For LSVC, we
consider again L2 regularization where the regularization strength
is tuned (½0:001; . . . ;1000�). For KNN we consider the number of
neighbours (½1; . . . ;20�) and the Euclidean, Manhattan and Cheby-
shev distance metrics.

Finally, for 1DCNN we consider two blocks consisting of a one-
dimensional convolutional layer, followed by batch normalization,
ReLU activation and a max-pool layer. The first block consists of a
convolutional layer with eight output channels and a kernel size of
ten with stride four. The second block contains a convolutional
layer with 16 output channels and a kernel size of ten with stride
three. For both blocks, we consider a padding and dilation of one
and use kernels of size two for the max-pool layers. The fully-
connected part consists of dropout, followed by one linear layer.
The model is trained by optimizing the L2 regularized cross-
entropy loss by means of stochastic gradient descent optimization.
Early stopping is again applied after five iterations. For hyperpa-
rameter tuning, we consider the learning rate (½0:001; . . . ;0�),
weight decay (½0:001; . . . ;0�) and dropout rate (½0; . . . ;0:5�).

For the novel strains and novel biological replicates experi-
ments, accuracies on all phylogenetic levels are reported. In case
of flat classification, where no taxonomic information is incorpo-
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rated during training, hierarchical classification is easily achieved
during test time by taking the taxonomy into account. For example,
a prediction delivered by a flat classifier, trained on eight different
species with the taxonomy shown in Fig. 1, indirectly determines
the class label on the upper genus and family level. The disadvan-
tage of this approach is that it needs to discriminate among a large
number of classes, without exploring information about parent–
child class relationships present in the taxonomy.

For the novel species experiment, we consider the area under
the ROC (AUROC) and precision-recall curves (AUPR), similarly as
in [36,41,39]. All models have been implemented in Python by
using the Scikit-learn and PyTorch libraries [49,50].
3. Results

In Table 3, we report the performance of different preprocessing
pipelines and models in the novel strains scenario. For each model,
we use the optimal set of hyperparameters obtained during ran-
domized grid search on GDtrain;val and report the accuracy obtained
on GDtest. In most cases, decreasing the bin size leads to a higher
performance, as less information is lost during the binning process.
In general, most machine learning models benefit from both trans-
formations, except for LR, where a significant drop in performance
is observed when considering total ion current normalization on
top of baseline correction. A possible explanation for this result is
unstable model training due to the combination of heavily reduced
intensity values after TIC and the type of optimizer that is used in
LR. In Fig. 3, we show a specific example of a raw spectrum of Lac-
tococcus garvieae, together with all preprocessing steps considered
in this work: binning and transformation by means of baseline cor-
rection and total ion current normalization. In this particular case,
binning reduces the dimensionality of the original spectrum by a
factor of five, while retaining most of the information present in
the raw spectrum. Next, baseline correction transforms the binned
spectrum by removing any baseline or trend that is present in the



Table 3
Hyperparameter tuning in novel strains scenario with reported accuracies ( : – no transformation, ALS – baseline correction only, ALS + TIC – baseline correction and total ion
current normalization).

Bin size Model Transformation LSVC LR RF KNN 1DCNN

5 : 0.7419 0.6044 0.7055 0.7321 0.8051
ALS 0.7655 0.6626 0.7626 0.7916 0.8400
ALS + TIC 0.8236 0.0015 0.7722 0.8478 0.8200

10 : 0.7364 0.5430 0.7113 0.7322 0.7896
ALS 0.7625 0.6845 0.7719 0.8069 0.8132
ALS + TIC 0.8132 0.0015 0.7775 0.8371 0.8002

20 : 0.7146 0.5716 0.7150 0.7260 0.7646
ALS 0.7397 0.6815 0.7698 0.7987 0.7285
ALS + TIC 0.8097 0.0015 0.7851 0.8263 0.7842

Fig. 3. Example of a raw spectrum of Lactococcus garvieae, together with the different preprocessing steps: binning with size 5m=z and transformation by means of baseline
correction (ALS) and total ion current normalization (TIC). The estimated baseline by baseline correction is indicated by red in the top right figure. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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raw spectrum. Finally, the spectrum is rescaled such that the sum
of intensities is equal to one.

3.1. Species identification

Next, in Table 4, we present the results for the novel strains and
novel biological replicates experiments. For each model, we con-
sider a flat and hierarchical classifier and report the performance
6162
on three phylogenetic levels: family, genus and species. For all
models, we consider a bin size of five and both transformations,
since this combination gave rise to the best performance in the
previous experiment. Only for LR, we choose to omit the total ion
current normalization, given the issue raised in the previous exper-
iment. In the novel strains scenario, KNN outperforms the other
models with an accuracy of 84.78%, which brings us to the conclu-
sion that similar spectra, i.e., with respect to some distance metric,



Table 4
Results for novel strains and biological replicates scenario. Accuracies are reported on phylogenetic levels: (F) amily, (G) enus and (S) pecies. For each model, we report the
performance for flat and hierarchical classification. H-XXX denotes the hierarchical classification implementation of method XXX.

Scenario Novel strains Novel biological replicates

Model AccF AccG AccS AccF AccG AccS

LSVC 0.9494 0.9307 0.8236 0.9744 0.9615 0.9615
H-LSVC 0.9562 0.9351 0.8152 0.9423 0.9295 0.9295
LRa 0.7558 0.7330 0.6627 0.7179 0.6859 0.6859
H-LRa 0.8771 0.8446 0.7009 0.8397 0.8269 0.8141
RF 0.8851 0.8667 0.7721 0.9423 0.9103 0.8526
H-RF 0.9361 0.9221 0.8268 0.8910 0.8462 0.8141
KNN 0.9677 0.9544 0.8478 0.9744 0.9487 0.9487
H-KNN 0.9677 0.9544 0.8478 0.9744 0.9487 0.9487
1DCNN 0.9521 0.9309 0.8200 0.8846 0.8441 0.7756
H-1DCNN 0.9426 0.9110 0.7620 0.9423 0.9167 0.9038

a Total ion current normalization omitted.
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in the input space most likely belong to the same species. When
looking at the confusion matrix on family level for flat KNN in
Suppl. Fig. 1, there appears to be confusion for the families Aerococ-
caceae, Bacillaceae, Lactobacillaceae and Microbacteriaceae. On the
other hand, in the novel biological replicates scenario, the outper-
forming model seems to be LSVC with an accuracy of 96.15%.
Again, following Suppl. Fig. 2, we observe confusion for Lactobacil-
laceae for both flat and hierarchical classifiers. In Suppl. Fig. 3, we
also show the confusion matrices on genus level for both flat and
hierarchical LSVC. In both scenarios, there is no gain when consid-
ering deep learning models, besides the fact that training is faster
in case of large-scale classification settings. The same conclusion
can be made with respect to the hierarchical classifiers, indicating
that taxonomic information is not immediately represented in
MALDI-TOF MS data.

3.2. Novel species detection

Finally, in Table 5 we evaluate whether 1DCNN with different
dropout rates and KNN are useful in the context of novel species
detection by using total uncertainty as defined in Eq. 5. For both
KNN and 1DCNN, we use an ensemble sizeM ¼ 10. The other mod-
els are not considered due to the increasing training complexity of
this scenario. 1DCNN with a dropout rate of 0.8 clearly outper-
forms KNN, considering two different performance measures: the
area under the ROC curve and the area under the precision-recall
curve. We also present the corresponding ROC and precision-
recall curves in Fig. 4.

More insights into these findings are given in Fig. 5, which visu-
alizes for the dataset TEST the first two principal components after
applying principal component analysis on the original feature
space and penultimate layer of 1DCNN, in the first and second
row, respectively. The penultimate layer represents a learned fea-
ture representation, and in deep learning it is a common procedure
to plot this space using dimensionality reduction methods such as
principal component analysis. From left to right, different color
schemes are applied to highlight families, in-distribution and
Table 5
Results for novel species scenario. Area under the ROC curve (AUROC) and area under
the precision-recall curve (AUPR) are reported for out-of-distribution detection based
on total uncertainty.

Model AUROC AUPR

KNN 0.9279 0.7934
1DCNN(0.2) 0.9882 0.8600
1DCNN(0.4) 0.9942 0.9167
1DCNN(0.6) 0.9968 0.9659
1DCNN(0.8) 0.9997 0.9975
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out-of-distribution groups and the total uncertainty score of
Eq. 5. One can see that out-of-distribution samples, which corre-
spond to species not observed during training, are clearly
separated in the penultimate layer of the neural network. This
clear separation might be explained by the fact that the
out-of-distribution samples belong to three families that are not
observed during training: Pichiaceae, Saccharomycodaceae and
Cellulomonadaceae (bottom left). In contrast, no clear separation
is visible in the principal components that are derived from the
original input space (top center). For the original feature space,
the cluster that corresponds to out-of-distribution samples is also
not characterized by a higher total uncertainty (top right), which
might explain the drop in performance for KNN. Given the above
findings, we conclude that novel species can be accurately identi-
fied by total uncertainty, especially when considering 1DCNN as
underlying model.

4. Discussion

4.1. Size and scope of the analysis

Compared to existing papers on bacterial species identification
with MALDI-TOF MS, the present paper presents benchmarking
results of machine learning methods on an unprecedented scale,
using a unique dataset that contains more than a thousand species,
more than two thousand strains and almost 100,000 mass spectra.
Weis et al. [16] discussed in a recent survey 36 studies, of which 27
conducted experiments with machine learning methods for bacte-
rial species identification, and 9 for antimicrobial susceptibility
testing. The largest of those studies considered 727 isolates [51],
but many studies have less than 50 isolates – see e.g. [52–55]. In
addition, almost all those studies analyzed species that belong to
a single family, or in some cases even a specific genus. This partic-
ular focus might be attributed to the specific interest of the
research lab that collected the data, i.e., interest in clinically-
relevant species, and the business model of vendors of MALDI-
TOF MS machines. As soon as a new dataset is released, commer-
cial players append their own license-based identification libraries
with those datasets. License-based identification libraries form a
unique selling property for commercial players, but the black-
box nature of the accompanying software poses serious threats
w.r.t. transparency, reliability and reproducibility.

4.2. Data preprocessing

In this work, the focus was less on data preprocessing. We
implemented the three preprocessing steps that are mostly used
in other studies: binning to obtain a fixed-length representation,
and baseline correction and total ion current normalization to



Fig. 4. ROC and precision-recall curves obtained in the novel species scenario for KNN and 1DCNN with dropout rates of 0.2, 0.4, 0.6 and 0.8. In both plots, one observes a
better performance for 1DCNN with dropout rate 0.8.

Fig. 5. Principal component analysis applied on the original input space of dataset TEST (top) and corresponding penultimate layer of 1DCNN with dropout rate 0.8 (bottom).
In all plots, the first two principal components are shown on the horizontal and vertical axis, respectively. Left color scheme: family information, center color scheme: in-
distribution (ID) and out-of-distribution (OOD) information, right color scheme: estimated total uncertainty, where larger values correspond to higher total uncertainty. A
better distinction between in-distribution and out-of-distribution samples is observed for the total uncertainty estimated by 1DCNN. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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mitigate technical variability. As already stated, one can choose to
work with equally or non-equally spaced intervals for binning,
where intervals can be either overlapping or non-overlapping,
but previous work has shown that all those options lead to compa-
rable results [22]. The choice for non-overlapping equally-spaced
bins is therefore mainly motivated by common practice and
preservation of interpretability. Some other preprocessing steps
are bundled in the open-source MALDIquant package [56]. In our
opinion, those steps are mainly useful in the context of unsuper-
vised learning, such as data visualization and clustering, but they
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do not influence the performance of supervised classification
methods. Because of computational reasons, the recently-
introduced machine learning method of Weis et al. could not be
applied [57]. Inspired by topological data analysis, these authors
introduced the so-called PIKE kernel. Interestingly, this is a kernel
that avoids binning as a preprocessing step, and it can be used in
combination with Gaussian processes and support vector
machines. Unfortunately, computing the kernel matrix has a
OðN2L2Þ complexity, making the approach unsuitable given the
size of the data that we analyzed.



T. Mortier, A.D. Wieme, P. Vandamme et al. Computational and Structural Biotechnology Journal 19 (2021) 6157–6168
4.3. Machine learning models for species identification

For the identification of novel strains and novel biological repli-
cates, we applied in this paper for the first time convolutional neu-
ral networks (CNNs). The other machine learning methods that we
analyzed have been considered before for bacterial species identi-
fication using MALDI-TOF MS data, albeit with smaller datasets –
see. e.g. [58–63]. CNNs have become very popular recently in many
fields. For large datasets with complex feature spaces, they usually
outperform classical machine learning methods, since they com-
bine the data preprocessing and learning phase in a single algo-
rithm, while avoiding the need for domain-specific preprocessing
techniques [64]. Surprisingly, our results indicate that CNNs are
not able to outperform traditional methods such as KNNs and
LSVMs, which yielded the best predictive performance. However,
CNNs turned out to be more stable than other methods w.r.t. the
application of specific preprocessing pipelines. Without prepro-
cessing, the performance of CNNs did not drop substantially. In
addition, we observed that CNNs could be trained in a very efficient
manner, unlike some of the older methods, for which implementa-
tions are not always optimized to handle large datasets. A recent
paper that analyzed one-dimensional CNNs for single-cell
MALDI-TOF MS data came to a similar conclusion [22]. In this rev-
olutionary technology, a spectrum is generated for every cell in a
natural environment, e.g. a urine sample of a patient, while avoid-
ing a time-consuming culturing phase. Datasets obtained in that
way easily contain more than 100,000 spectra, so the need for
computationally-efficient machine learning methods will probably
increase in the near future.

As far as we know, this is also the first work that implements
hierarchical classifiers for large-scale bacterial species identifica-
tion using MALDI-TOF MS. Surprisingly, hierarchical classifiers
did not outperform their flat counterparts on species level, indicat-
ing that taxonomic information is not directly represented in
MALDI-TOF MS data. If spectra generated from closely related bac-
teria are also close w.r.t. some similarity or distance metric in the
feature space, hierarchical classification is expected to be more
accurate compared to flat classification [65]. This is in fact a neces-
sary condition for improvement, as observed in fields where hier-
archical classifiers have gained interest, such as text categorization
[35], protein function prediction [66,65], functional annotation of
genes [67,68], identification of plants based on images [69] and
discrimination of bird songs [70]. In microbiology, hierarchical
classifiers have been successfully applied to bacterial species iden-
tification using Fourier-Transform-Infrared spectra [71,72] and
fatty acid methyl esther profiles [73].

Hierarchical classifiers might be preferred over flat classifiers
for other reasons than predictive performance on species level. A
nice property of hierarchical classifiers is their ability to abstain
at different levels in the hierarchy [29]. When there is too much
uncertainty about the species name of a sample, one can decide
to identify that sample only on genus or family level [74,75].
This is nicely illustrated in our experimental results, where the
accuracy on family level was in general substantially higher for
hierarchical classifiers. On family level, the low performance of
some flat classifiers can be attributed to the detour that these
models make, i.e., they first identify a sample on species level
and convert the label to family level as a post-processing step.
Such a detour with a one-versus-all decomposition on species
level leads to an overparameterized model when species only
need to be identified on family level. As a side note, hierarchical
classifiers might also be preferred over flat classifiers for
computational reasons. At test time, hierarchical classifiers have
logarithmic time complexity to identify samples at species level,
whereas flat classifiers have a linear time complexity (w.r.t. the
number of classes) [35,76].
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4.4. Evaluation protocols for species identification

In the present study, we analyzed three of the most common
reasons why machine learning algorithms might not assign the
correct species name to a MALDI-TOF mass spectrum, namely the
existence of novel strains, novel biological replicates and/or novel
species at test time. Remarkably, many existing studies do not
make such a distinction [16]. When we compared the performance
for the novel strains and novel biological replicates scenarios, we
observed that the accuracy on species level increased with more
than 10% if only novel biological replicates are analyzed at test
time. Therefore, we believe that relatedness between spectra is
indeed present at the more fine-grained strain level, since a classi-
fier yields more accurate identifications for a particular strain
when that strain also appears in the training dataset. However, it
is very reasonable to test machine learning models in terms of gen-
eralization to unseen strains, as most often, novel strains may
arrive during test time. Going one step further, one could also try
to classify MALDI-TOF MS spectra at strain level, but then the pre-
dictive performance usually becomes too low to be useful in
practice.

The most common testing protocol in literature is k-fold cross-
validation, where, repeatedly, one of the k-folds is left out for test-
ing, while the other folds are used for training. Obviously, such an
approach is not able to quantify how well novel strains can be
identified. Even for identification of novel biological replicates,
cross-validation is a questionable approach, especially when many
technical replicates are present in a dataset. Only four existing
studies avoid cross-validation by evaluating models on an inde-
pendent test dataset that is not used during training
[77,78,53,54]. In all four cases, data of one or more labs were con-
sidered for training and data of other labs for testing. This allows to
make location comparisons, as MALDI-TOF mass spectra measured
at different locations suffer from batch effects, which are likely to
stem from differences in laboratory routine or system settings
[79]. However, an independent test dataset can in principle contain
a mix of novel technical replicates, novel biological replicates,
novel strains, novel species and other deviations from the training
data that might impact identification. So, if one intends to investi-
gate the impact of one particular type of deviation, it is important
that the test dataset is constructed in such a way that the specific
source of deviation is isolated from other sources. That is in fact the
main reason why we considered three different test datasets in this
paper. With the dataset GDtest, we evaluated the performance for
novel strains, with LYO2 we only analyzed novel biological repli-
cates, and with the independent dataset TEST we evaluated the
performance on a mix of samples, consisting of novel biological
replicates, novel strains and novel species. We did not analyze
the identification performance for technical replicates, because
that’s practically less useful, and because previous work has stud-
ied the impact of technical variation extensively.

4.5. Novel species detection

For the third scenario, in which novel species had to be detected
in the dataset TEST, specific machine learning methods are needed.
Technically speaking, in this case, one is not solving a classification
problem but an out-of-distribution detection problem. In the
machine learning literature this setting is also often referred to
as open-set recognition [80,81], anomaly detection [43] or classifi-
cation with reject option [76]. Inspired by applications like self-
driving cars, where it is of uttermost importance to abstain from
making a prediction if the uncertainty is too high, out-of-
distribution detection has become a very popular research topic
[82,83,36,84–86]. As a result, a whole bunch of novel methods
have been recently proposed, including exact and approximate
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Bayesian methods [87,88,18], models based on Dirichlet priors
[38], generative models [89,41,90–92,39] and distance-based
methods [93,41,94]. Very few of these methods have been applied
to bacterial species identification. Two papers identify bacterial
species based on genomics data, using Naive Bayes [74] and a
specific generative model [39] for detecting out-of-distribution
samples. Weis et al. [57] use Gaussian processes for out-of-
distribution detection on MALDI-TOF MS data, using specific
preprocessing techniques [56,95]. The commercial ClinProTool of
Bruker Daltonik GmbH & Co. KG (Germany, http://www.bruker.
com/) also detects out-of-distribution samples when no match in
their database is found, i.e., when the similarity of the nearest
neighbour drops below a certain predefined threshold.

In this work, we decided to experiment with Monte Carlo drop-
out, as this method is frequently used in several domains
[19,46,83]. This type of approximate Bayesian inference seemed
to work reasonably well in our setting, yet a more extensive study
in which the different frameworks from literature are analysed
might be desirable, and is left as potential future work. More
specifically, we believe that it would be very useful to conduct
experiments with methods that are able to differentiate between
aleatoric and epistemic uncertainty [45]. Aleatoric uncertainty
originates from inherent noise in the data, which cannot be miti-
gated by collecting more data, whereas epistemic uncertainty
alludes to uncertainty that can be reduced if more data would be
available. In fact, the total uncertainty of Eq. 5, which was consid-
ered as criterion to detect out-of-distribution samples, can be
easily decomposed into an aleatoric and epistemic part. In the con-
ducted experiments, we did not see an improvement when consid-
ering the decomposition, however, other methods might yield
different conclusions.
5. Conclusion

In this work, we performed a large-scale benchmarking study of
bacterial identification using MALDI-TOF mass spectrometry and
machine learning methods. We implemented several traditional
machine learning methods, as well as a few novel methods, such
as one-dimensional convolutional neural networks, hierarchical
classifiers and an out-of-distribution detection method. The size
and the diversity of the data that we analyzed allowed us to com-
pare three important identification scenarios that are generally not
distinguished in literature, i.e., identification of novel biological
replicates (i.e., isolates that represent strains that are already pre-
sent in the database), novel strains (i.e., isolates that represent
novel strains that belong to species that are present in the data-
base) and novel species that are not present in the training data
(i.e., isolates that represent strains of species that are not present
in the database). The results demonstrate that in all three scenarios
acceptable identification rates are obtained, but the numbers are
typically lower than those reported in studies with a more limited
analysis. Using hierarchical classification methods, we also demon-
strated that taxonomic information is in general not well preserved
in MALDI-TOF mass spectrometry data. For the novel species sce-
nario, we applied for the first time neural networks with Monte
Carlo dropout, which have shown to be successful in other
domains, such as computer vision, for the detection of novel
classes. Especially for this last scenario, we still see a lot of possi-
bilities for benchmarking other recent methods in a separate study.
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