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-e objective of this paper is to present a novel idea about the continuous possibilistic cooperative static game (Poss-CCSTG).-e
proposed Poss-CCSTG is a continuous cooperative static game (CCSTG) in which parameter associated with the cost functions of
the players involves the possibility measures.-e considered Poss-CCSTG is converted into the crisp α-CCSTG problem by using
the α-cuts and hence into the multiple objective nonlinear programming problem. To solve the formulated α-CCSTG problem, an
interactive approach is presented in the study with the use of the reference direction method. Further, the Lexicographic weighted
Tchebycheff model is derived to obtain the weights. Also, a parametric study corresponding to the α-possibly optimal solution is
defined and determined. Finally, a decision-maker can compare their desired solution with the attainable reference point and the
weak efficient solution. -e presented model is illustrated with a numerical example and its advantages are stated.

1. Introduction

Game theory is one of the essential theories in optimization
techniques. It plays a vital role in many engineering fields
such as Economics, Engineering, Biology, computational
engineering, and other mathematical sciences with many
applications in real-world problems [1]. -e most crucial
types of games are differential games, matrix games, and
continuous static games. Matrix games derive their name
from a discrete relationship between a finite/countable
number of possible decisions and the related costs. -e
connection is conveniently represented in a matrix (or two-
player games) where one player’s decision corresponds to
the selection of a row and the other player’s decision to select
a column, with the corresponding entries denoting the costs.
It is intense that decision probabilities are not mandatory in
cooperative games. In addition, there is no time in the

relationship between costs and decisions in static games.
Differential games are identified by continuously varying
costs and a dynamic system controlled by ordinary differ-
ential equations. For continuous static games, there are
several solution concepts. How players use these concepts
depends not only on information concerning the nature of
the other players but also on their personality. A given player
may or may not play rationally, cheat, cooperate, bargain,
and so on. A player making the ultimate choice of their
control vector must consider all of these factors.-omas and
Walter [2] introduced different formulations in continuous
static games. -e three basic solution concepts for these
games are as follows:

(1) Nash equilibrium solution
(2) Min-max solutions
(3) Pareto minimal solutions

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6979075, 10 pages
https://doi.org/10.1155/2022/6979075

mailto:harishg58iitr@gmail.com
mailto:s.elmorsy@qu.edu.sa
https://orcid.org/0000-0001-9099-8422
https://orcid.org/0000-0001-9349-5695
https://orcid.org/0000-0003-0540-3864
https://orcid.org/0000-0002-8269-8822
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6979075


In our day-to-day life, uncertainties play a dominant role
and occur almost in each sector. To handle it, Zadeh [3]
stated the innovative concept of fuzzy set which relates every
component of the universal set to a unique real number,
called membership degree. By using a fuzzification principle,
Dubois and Prade [4] expanded the applications of algebraic
operations on real numbers to fuzzy numbers. Bellman and
Zadeh [5] developed decision-making in a fuzzy environ-
ment, which improved the management decision problems.
Kaufmann and Gupta [6] worked on various fuzzy math-
ematical models with their applications in management
sciences and engineering. Ebrahimnejad [7] presented an
algorithm for solving the fully fuzzy linear programming
problems. Osman [8] formulated different parametric
problems of continuous static games. Osman et al. proposed
Stackelberg leader with min-max follower’s solution [9] to
solve continuous static games with fuzzy parameters and
introduced the parametric analysis for the solution. For large
scale, continuous static games with parameters in all cost
functions and limitations, Osman et al. [10] developed the
Nash equilibrium solution. In this type of game, the players
are independent without participation with any other
players, and every player seeks to minimize their cost
functions. In addition, the information that is available to
every player contains the cost functions and constraints. To
solve Nash Cooperative Continuous Static Games, Elshafei
[11] established an interactive approach and fixed on the
first-kind corresponding’s stability set to the obtained
compromise solution. Several articles were developed for the
game’s theory by an enormous of research, and for more
details about such studies, we refer to read the articles
mentioned in [12–21]. Shuler [22] looked at cooperative
games in which the impoverished agents profiting from
collaboration with the wealthy is not applicable. Khalifa and
Kumar [23] studied the cooperative continuous static games
in a crisp environment, defined them, and found the first-
kind stability set corresponding to the solution without
differentiability. Several researchers [24–29] have recently
enriched the theory of cooperative games by considering the
degree of uncertainties in the analysis.

-e present work studies the concept of continuous
static games (CSG) under an uncertain environment by
keeping the above literature in mind. For this, CSG is
considered under the possibilistic environment in the study.
In this game, it is supposed that every player helps the others
up to the point of disadvantages to himself. To discuss it in
detail, a concept of Pareto optimal solution is discussed in
which cooperation between all of the players is taken into
account. To handle the uncertainties in the game theory, a
concept of the continuous possibilistic cooperative static
game (Poss-CCSTG) is proposed. -e proposed Poss-
CCSTG is a continuous cooperative static game (CCSTG) in
which the cost functions associated with m players involve
the possibility measures. By using the concept of the α-cuts,
the considered Poss-CCSTG is converted into the crisp
α-CCSTG problem and hence into the multiple objective
nonlinear programming problem. To solve the formulated
α-CCSTG problem, an interactive approach is presented in
the study with the use of the reference direction method.

Furthermore, the α-Parametric efficient solution for players’
cooperation is discussed in the study. -e main objective of
the study is considered as

(1) An idea related to the CCSTG with possibilistic
parameters associated with the cost functions of the
m players is discussed. To handle the uncertainties in
the model and a conflicting nature between the
objectives, a possibilistic variable 􏽥ai which is cate-
gorized by a possibilistic distribution μ􏽥ai

: V⟶
[0, 1] for i � 1, 2, . . . , n is taken in the study.

(2) α-possibly efficient solution, α-parametric efficient
solution, and the relationship between them for a
Poss-CCSTG are characterized.

(3) An interactive algorithm is presented to solve the
Poss-CCSTG by considering the decision-maker’s
preference.

(4) -e first-kind stability set that corresponds to the
solution is conceptuaized.

(5) A numerical example is provided to validate the
proposed study. Also, a characteristic comparison of
the proposed study over several other existing studies
is examined.

-e organization of the article is summarized in Figure 1.

2. Preliminaries

In this section, we recall the basic definitions related to
possibilistic variables and their properties. Let V be a uni-
versal set.

Definition 1 (see [30, 31]). A possibilistic variableZ on V is a
variable categorized by a possibility distribution
μz(v): V⟶ [0, 1].

In other words, we can say that if v is a variable taking
values in V, then μz corresponding to z may be viewed as a
fuzzy constraint. Such a distribution is characterized by a
possibility distribution function μz which is associated with
each v ∈ V, the degree of compatibility of z with the real-
ization v ∈ V.

Remark 1. If V is a Cartesian product of V1, V2, . . . , Vn,
then μz(v1 , v2, . . . , vn) is an n−ary possibility distribution,
i.e., μz(v) � (μz1

(v1), μz2
(v2), . . . , μzn

(vn)).

Definition 2 (see [30]). -e α-level set of possibilistic var-
iable Z is defined as

Zα � v ∈ V: μz(v)≥ α􏼈 􏼉. (1)

Definition 3 (see [30]). A possibility distribution μz on V is
said to be convex if

μz cv
1

+(1 − c)v
2

􏼐 􏼑≥min μz v
1

􏼐 􏼑, μz v
2

􏼐 􏼑􏼐 􏼑;∀v1,

v
2 ∈ V, c ∈ [0, 1].

(2)
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Definition 4 (see [31]). -e support of a possibilistic variable
Z is defined as

Supp(Z) � v ∈ V: Sup
u∈Nε(u)

μz(u)( 􏼁> 0;∀ε> 0
⎧⎨

⎩

⎫⎬

⎭, (3)

where Nε(v) � v ∈ V: u − v< ε{ }.

Remark 2 (see [30]). Supp(Z) is closed set on V.

3. Formulation of the Problem with
Possibilistic Variables

In this section, we present the concept of the Poss-CCSTG
with m players. Consider a game problem with m players
having possibilistic parameters in the cost functions as

G1 b, ξ, 􏽥a1( 􏼁, G2 b, ξ, 􏽥a2( 􏼁, . . . , Gm b, ξ, 􏽥am( 􏼁, (4)

gj(b, ξ) � 0, j � 1, n, (5)

ξ ∈ Ψ � ξ ∈ Rt
: hl(b, ξ)≥ 0, l � 1, 2, . . . , s􏽮 􏽯, (6)

where Gi(b, ξ, 􏽥ai), i � 1, m, are convex functions onRm × Rt,
hl(b, ξ), l � 1, s, are concave functions on Rn × Rt; gj(b, ξ),

j � 1, m , stated as j � 1, 2, . . . , m are convex functions on
Rn × Rt, and a is a possibilistic n−ary, i.e., 􏽥ai, i � 1, n, are
possibilistic variables onRn characterized by the possibilistic
distributions μ􏽥ai

(Luhandjula [32, 33]). If the functions
gj(b, ξ), j � 1, m are differentiable, then the Jacobian
|δgj(b, ξ)/δbk|≠ 0, j, k � 1, n, in a neighborhood of a solu-
tion point (b, ξ) to (2). b � f(ξ) is the solution to (2)
generated by ξ ∈ Ψ. It is noted her that the differentiability
assumptions are not needed for the functions Gi(b, ξ, ai) and
hl(b, ξ). Ψ is a regular and compact set.

-e considered Poss-CCSTGmodel defined in equations
(4)–(6) transforms into α-CCSTG based on a certain degree
α ∈ [0, 1] as

(α − CCSTG)G1 b, ξ, a1( 􏼁, G2 b, ξ, a2( 􏼁, . . . , Gm b, ξ, am( 􏼁

gj(b, ξ) � 0, j � 1, n,

ξ ∈ Ψ, ai ∈ uα 􏽥ai( 􏼁, i � 1, m.

(7)

Here, it should be noted that in problem (7), the pa-
rameters 􏽥ai, i � 1, 2, . . . , m, are decision variables not
constants.

Definition 5. Let b � f(ξ) denote the solution to (5) gen-
erated by ξ ∈ Ψ. A point ξ∗ ∈ Ψ is said to be α−possibly
efficient solution to the α − CCSTG (4) if and only if there
does not exist (ξ, a) ∈ Ψ × uα(􏽥ai) such that

Gi f(ξ), ξ, ai( 􏼁≤Gi f(ξ), ξ∗, ai
∗

( 􏼁;∀i ∈ 1, 2, . . . , m{ }. (8)

Gi(f(ξ), ξ, ai)<Gi(f(ξ), ξ∗, ai
∗);∀i ∈ 1, 2, . . . , m{ } for

some j ∈ 1, 2, . . . , n{ }where ai
∗ are α−level minimal

parameters.
From the concept of α−possibly efficient solution to the

α − CCSTG, one can see that ξ∗ ∈ Ψ is an α−possibly effi-
cient solution to the problem (7), if and only if ξ∗ is an α−

parametric efficient solution to the following α− possibilistic
multiobjective nonlinear programming (α − P MONLP)
problem (Vincent and Grantham [2]).

(α − PMONLP)min G1 ξ, a1( 􏼁, G2 ξ, a2( 􏼁, . . . , Gm ξ, am( 􏼁( 􏼁
T
,

ξ ∈ Ψ; ai ∈ uα 􏽥ai( 􏼁, i � 1, m,

(9)

where Gi(ξ, ai), i � 1, . . . , n, are convex functions on Rt ×

Rn and h
ṫ

l(ξ), l � 1, . . . , s, are concave functions on Rt,
and Gi(ξ, ai) � Gi(f(ξ), ξ, ai), h

ṫ

l(ξ) � h
...

l(f(ξ), ξ). uα(􏽥ai) is
the α− cut of 􏽥ai.

By the convexity assumption, uα(􏽥ai), i � 1, . . . , m, are
real intervals denoted by [􏽥ai

L(α), 􏽥ai
U(α) ], i � 1, m. -en,

clearly, the α − PMONLP can be rewritten as follows:

Section 2

Introduces some
preliminaries related to

possibilistic variables and
it's level set

Section 3

Formulates the problem
with possibilist

coefficients

Section 4

Introduces solution
approach for obtaining

the solution the problem
under consideration

Section 5

presents a numerical
example

Section 6

Presents the comparision
of the proposed

approach with the
existing methods

Section 7

Paper is summarized with
future directions

Figure 1: Structure of the paper.
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minGi ξ, ai( 􏼁, i � 1, m. (10)

ξ ∈ Ψ; ai ∈ 􏽥ai
L
(α), 􏽥ai

U
(α)􏽨 􏽩 � φiα, i � 1, m. (11)

Definition 6. ξ∗ is an α−parametric efficient solution for α −

PMONLP if and only if there is no ξ ∈ Ψ and ai ∈ φiα such
that Gi(ξ, ai)≤Gi(ξ

∗
, ai);∀i � 1, m and

Gi(ξ
∗
, ai)<Gi(ξ

∗
, ai) for at least one i.

Theorem 1. ξ∗ ∈ Ψ is an α−possibly efficient solution for
Poss-CCSTG if and only if ξ∗ ∈ Ψ is an α−parametric efficient
solution for α − PMONLP.

Proof: Necessity.
Let ξ∗ ∈ Ψ be an α−possibly efficient solution for Poss-

CCSTG and ξ∗ ∈ Ψ be not α−parametric efficient solution
for α − PMONLP.-en, there are ξ1 ∈ Ψ and di ∈ φiα, i� 1,2,
. . ., m, such that

Gr ξ1, dr􏼐 􏼑≤Gr ξ∗, dr( 􏼁;∀r, i ∈ 1, . . . , m{ }. (12)

As ai ∈ φiα, i � 1, . . . , m, we get Poss
G1(ξ

1
, 􏽥a1)≤G1( ξ

∗
, 􏽥a1), . . . , Gi−1(ξ

1
, 􏽥ai−1)≤Gi−1( ξ

∗
, 􏽥ai−1),

Gi(ξ
1
, 􏽥ai)≤GI( ξ

∗
, 􏽥aI), Gi+1(ξ

1
, 􏽥ai+1)≤Gi+1( ξ

∗
, 􏽥ai+1),

. . . , Gm(ξ1, 􏽥am)≤Gm( ξ∗, 􏽥am)

⎛⎝ ⎞⎠≥ α.

-is contradicts the α−possibly efficient solution of Poss-
CCSTG.

Let ξ∗ ∈ Ψ be an α−parametric efficient solution for α −

PMONLP and ξ∗ ∈ Ψ be not α−possibly efficient
solution of Poss-CCSTG. -en, there are ξ2 ∈ Ψ and i ∈
1, . . . , m{ } such that Poss
G1(ξ

2
, 􏽥a1)≤G1( ξ

∗
, 􏽥a1), . . . ,Gi−1(ξ

2􏽥ai−1)≤Gi−1( ξ
∗
, 􏽥ai−1),

Gi(ξ
2
, 􏽥ai)≤GI( ξ

∗
, 􏽥aI), Gi+1(ξ

2
, 􏽥ai+1)≤Gi+1( ξ

∗
, 􏽥ai+1),

. . . ,Gm(ξ2, 􏽥am)≤Gm( ξ∗, 􏽥am)

⎛⎝ ⎞⎠≥ α.

sup
a1 , ..., am( )∈A

min μ􏽥a1
a1( 􏼁, μ􏽥a2

a2( 􏼁, . . . , μ􏽥am
am( 􏼁􏼒 􏼓≥ α, (13)

where

A �

a1, . . . , an( 􏼁 ∈ Rn
: G1 ξ2, 􏽥a1􏼐 􏼑≤G1 ξ∗, 􏽥a1( 􏼁, . . . ,

Gi−1 ξ2, 􏽥ai−1􏼐 􏼑≤Gi−1 ξ∗, 􏽥ai−1( 􏼁, Gi ξ2, 􏽥ai􏼐 􏼑≤Gi ξ∗, 􏽥ai( 􏼁,

Gi+1 ξ2, 􏽥ai+1􏼐 􏼑≤Gi+1 ξ∗, 􏽥ai+1( 􏼁, . . . , Gm ξ2, 􏽥am􏼐 􏼑≤Gm ξ∗, 􏽥am( 􏼁

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (14)

For the supremum to be exist, there is
(e1, e2, . . . , em) ∈ A with min(μ􏽥a1

(e1), μ􏽥a2
(e), . . . , μ􏽥am

(em))

< α, then

sup
e1 ,e2 , ...,em( )∈A

min μ􏽥a1
e1( 􏼁, μ􏽥a2

(e), . . . , μ􏽥am
em( 􏼁􏼒 􏼓< α. (15)

-is contradicts equation (6).
Hence, there is (e1, e2, . . . , em) ∈ A satisfying

min μ􏽥a1
e1( 􏼁, μ􏽥a2

(e), . . . , μ􏽥am
em( 􏼁􏼒 􏼓≥ α, (16)

ei ∈ φiα, i � 1, m. (17)

From (16) and (17), we conclude to the contradiction
that ξ∗ is an α−parametric efficient solution for
α − PMONLP. □

4. Solution Approach

-is section stated the interactive solution procedure for
solving the above formulated possibilistic models. -e steps
of the proposed approach are summarized as follows:

Step 1. Formulate the (α − MONLP) problem, after the
decision-maker specifies the initial value of
α(0< α< 1).
Step 2. Solve the following problem:

max
i�1, 2, ..., n

wi,

Gi ξ, ai( 􏼁≥wi, i � 1,m,

ξ ∈ Ψ � ξ ∈ Rt
: h

...

l(ξ)≥ 0, l � 1, s􏼚 􏼛,

ai ∈ uα 􏽥ai( 􏼁, i � 1,m;wi ∈ R.

(18)

After solving this model, assume �G be its optimum
value.
Step 3. Given initial reference point.
Decision-maker provides an initial attainable reference
point G0 such that G0 > �G.
Let I � 1, 2, . . . ,m{ }, I0 � I, k � 0.

Step 4. Search for a reference α−possibly efficient
solution.
Let yi � G

k

i − �Gi/􏽐
n
i�1(G

k

i − �Gi), i � 1, m. -en, con-
sider the following Lexicographic weighted Tchebycheff
program (LEWT):

(LEWT)Lex min
i�1,2, ...,m

ci, 􏽘
n

i�1
Gi ξ, ai( 􏼁 − �Gi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭, (19)

yi Gi ξ, ai( 􏼁 − �Gi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ cI, i � 1, n, (20)

ξ ∈ Ψ � ξ ∈ Rt
: h

...

l(ξ)≥ 0, l � 1, 2, . . . , s􏼚 􏼛, (21)
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ai ∈ uα 􏽥ai( 􏼁, i � 1, n; 0≤ ci ∈ R. (22)

After solving this LEWTmodel, we get the α−possibly
optimal solution as (ξk

, ak
i ).

Step 5. Termination determination:When the decision-
maker satisfies with the obtained solution Gi(ξ

k
, ak

i ),
then stop the process with (ξ � ξk

, ai � ak
i ) as the final

solution. On the other hand, when decision-maker is
not satisfied with Gi(ξ

k
, ak

i ) and Gi(ξ
k
, ak

i ) � G
k

i or
k � m, then there is no satisfactory α−possibly efficient

reference solution of α − MONLP. In that case, we
proceed to Step 6.
Step 6. Modification of reference point by DM is as
follows:

(a) DM chooses any fk in Ik such that Gifk
is an

unsatisfactory objective in Gi: i ∈ Ik􏼈 􏼉 at (ξk
, ak

i ).
Let Ik+1 � Ik/ fk􏼈 􏼉.
Separate Ik+1 into the following two parts:

I
k
1 �

i ∈ Ik+1
: Gi ξ

k
, aki􏼐 􏼑<Gk

i

andDMwishes to realise the value of Gi at Gi ξ
k
, aki􏼐 􏼑

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (23)

I
k
2 �

I
k+1

I
k
1

. (24)

(b) For i ∈ Ik
1, the decision-maker provides Ηk

i , be the
amount to be relaxed for Gi, such that
Ηk

i ∈ ]0, G
k

i − Gi(ξ
k
, ak

i ) ].
Let Gk+1

i � Gi(ξ
k
, ak

i ) +Ηk
i .

For i ∈ Ik
2, let G

k+1
i � Gi(ξ

k
, ak

i ).
For i ∈ Ik/Ik+1, let G

k+1
i � G

k

i .

(c) In the case of G
k+1
i � Gi(ξ

k
, ak

i ); ∀ i ∈ Ik/ fk􏼈 􏼉,
return to (a) to separate Ik+1 again or to raise the
amount to be relaxed for some Gi, i ∈ Ik

1 at
Gi(ξ

k
, aki ), go to (b) if the DM wishes to do that.

Otherwise, stop and there is no satisfactory
α−possibly optimal solution. In this case, we have
Gk+1

i ≠Gi(ξ
k
, ak

i ), for some i ∈ Ik/ fk􏼈 􏼉, go to (d).
(d) Let f � fk,Gk+1

i � Gi
′, i � 1, 2, . . . , n; i≠fk, and

solve the auxiliary problem (AP) as follows (AP)
minGf(ξ, af):

Gi ξ, ai( 􏼁≤Gi
′, i � 1, 2, . . . , m; i≠f, (25)

ξ ∈ Ψ � ξ ∈ Rt
: hl(ξ)≥ 0, l � 1, 2, . . . , s􏽮 􏽯,

(26)

ai ∈ uα 􏽥ai( 􏼁, i � 1, m.

(27)

Let (ξ′k, a;k) be the satisfactory α−possibly optimal
solution.
When Gfk

(ξ′k, a′kfk
) � Gfk

(ξk
, ak

fk
) or Gfk

(ξ′k, a′kfk
)

for objective Gfk
is not satisfactory to the DM,

return to (b) to increase the amount to be relaxed
for some Gi, i ∈ Ik

1 at Gi(ξ
k
, ak

i ) if the DM wishes;
otherwise, stop and there is no satisfactory
α−possibly optimal solution.
When Gfk

(ξ′k, a′kfk
)≠Gfk

(ξk
, ak

fk
) and

Gfk
(ξ′k, a′kfk

) is satisfactory to the DM for objective
Gfk

, the DM providesΗk
fk
, the largest amount to be

improved for Gfk
such that Ηk

fk
∈ ]0, Gfk

(ξk
, ak

fk
)−

Gfk
(ξ′k, a′kfk

)].
Let G

k+1
fk

� Gfk
(ξk

, ak
fk

) −Ηk
fk
.

(e) If Gk+1
fk

� Gfk
(ξ′k, a′kfk

), let k � k + 1 and return to
step (c). Otherwise, let
(ξk+1

, ak+1
i ) � (ξ′k, a′ki ), k � k + 1, and return to (d)

when (ξ′k, a′ki ) is a unique α−possibly optimal
solution of (AP) or let (ξ′k, a′ki ) be an α−possibly
optimal solution of the following problem:

min
i�1, 2,..., m

ci, (28)

yi Gi ξ, ai( 􏼁 − �Gi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ cI, i � 1, 2, . . . , m, (29)

ξ ∈ Ψ � ξ ∈ Rt
: h

ṫ

l(ξ)≥ 0, l � 1, 2, . . . , s􏼨 􏼩

∈ uα 􏽥ai( 􏼁, 0≤ ci ∈ R.

(30)

Let k � k + 1, and return to (c). If Gk+1
fk
≥Gfk(ξ

’k
, a’kfk ),

put k � k + 1, and return to Step 4.
Step 7. Determine the first-kind stability set S(ξ, ai) by
applying the following conditions:

σi ai − d2i( 􏼁 � 0, i � 1, m, (31)

ρi d1i − ai( 􏼁 � 0, 1, m, (32)

σi, ρi ≥ 0, d1i, d2i ∈ R, d1i, d2i􏼂 􏼃 � uα 􏽥ai( 􏼁1, m. (33)

All the abovementioned steps are summarized through a
flowchart given in Figure 2.
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Start

Slove problem (P1) to obtain Ǧ

Slove problem (AP)

Want to
increase Hi

k? Relaxed Gi again

Yes

Yes

Yes

Yes

Yes

Yes

No efficient solution

No

No

No

No

No

No satisfactory solution

Seperate Ik+1 again or go to (b) to
increase Hi

k for some i ⋲ I1
k

No

Solve (LEWT) to get (ξk , ai
k)

Give G0 > Ǧ, I0 = I, k = 0

Gi
k+1 = Gi (ξk, ak

�)
 i

A

G1(ξk , ai
k)

satisfactory?

…

k = k + 1. Choose Gi� , Ik+1 = Ik/{fk}.
Separate Ik+1

G� (ξrk, ark) =�
G� (ξk, ak

�)?

Gk+1 <fk

Gfk (ξrk, ark)�

Let k = k + 1 and separate Ik+1 again or increase the amount to be relaxed, If the DM
wishes, otherwise, let(ξk+1,ai

k+1) = (ξrk,ai
rk),k = k + 1,f = fk, Gi

k+1 = Gi',i =
1,2, ... ,;i ≠ fk and solve the problem AP again

Stop

(ξ , al) is the final solution

Provide H1
k,i ⋲ I1

k, and modify G1
k

Provide Hi
k and modify Gk

fk

 Gi
k = GI

k

or k ≠ n ?

…

k = k + 1, f = fk, and Gi
k+1 = G'v

i = 1,2, ... , ; i ≠ fk

Figure 2: Flow chart of the proposed approach.
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5. Numerical Example

In this section, the approach mentioned above is illustrated
with a numerical example.

Consider the following two-player game with

G1 ξ, 􏽥a1( 􏼁 � ξ1 − 􏽥a1( 􏼁
2

+ ξ2 − 1( 􏼁
2
, (34)

G2 ξ, 􏽥a2( 􏼁 � ξ1 − 1( 􏼁
2

+ 􏽥a2 ξ2 − 2( 􏼁
2
, (35)

where player I controls ξ1 ∈ R and player II controls ξ2 ∈ R
with the constraints as follows:

0≤ ξ1 ≤ 4; 0≤ ξ2 ≤ 4. (36)

-e possibilistic variables 􏽥a1 and 􏽥a2 are characterized by
a possibility distribution μ􏽥a1

(.) and μ􏽥a2
(.) as mentioned in

Figure 3. -e supports of the possibilistic variables 􏽥a1 and 􏽥a2
are taken as [1, 5] and [6, 10], respectively. Hence, for the
parametric function 0≤ ϑ≤ 1, the supports are stated as

Supp 􏽥a1( 􏼁 � 1 + 4ϑ, μ􏽥a1
(1) � μ􏽥a1

(5) � 0,

Supp 􏽥a2( 􏼁 � 10 − 4ϑ, μ􏽥a2
(10) � μ􏽥a2

(6) � 0.
(37)

-en, the steps of the proposed approach are illustrated
as follows:

Step 1. Without loss of generality, consider the value of
α � 0.4. With this value, we formulate the
α − PMONLP model as

min
G1 ξ, a1( 􏼁 � ξ1 − 1 − 4ϑ( 􏼁

2
+ ξ2 − 1( 􏼁

2
,

G2 ξ, a2( 􏼁 � ξ1 − 1( 􏼁
2

+(10 − 4ϑ) ξ2 − 2( 􏼁
2

⎛⎝ ⎞⎠,

(38)

subject to ξ1 − 4≤ 0, ξ2 − 4≤ 0, ξ1, ξ2 ≥ 0, ; ϑ ∈ [0, 1].

Step 2. -e equivalent crisp optimization model of the
above model is given as

max
i�1, 2

wi, (39)

ξ1 − 1 − 4ϑ( 􏼁
2

+ ξ2 − 1( 􏼁
2 ≥w1, (40)

ξ1 − 1( 􏼁
2

+(10 − 4ϑ) ξ2 − 2( 􏼁
2 ≥w2, (41)

ξ1 − 4≤ 0, ξ2 − 4≤ 0, ξ1, ξ2 ≥ 0, ; ϑ ∈ [0, 1], (42)

wi ∈ R. (43)

After solving this model, we get the optimal decision
variables as

�ξ1, �ξ2, �a1, �a2􏼐 􏼑 � (3.9989, 3.9996, 1.0028, 9.9972). (44)

And hence �G � (16.390, 48, 9662)T.
Step 3. Assume the decision-maker provides the initial
reference point G

0 such that G
0 > �G. As

�G � (16.390, 48, 9662)T, consider the initial reference
point as G

0
� (48, 55)T. Set I0 � I, k � 0.

Step 4. By taking yi � G
k

i − �Gi/􏽐
n
i�1(G

k

i − �Gi)

for i � 1, 2, we get y1 � 0.8397 andy2 � 0.16029.
Hence, we formulate the LWTP model as

Lex min
i�i, 2

ci,

ξ1 − 1 − 4ϑ( 􏼁
2

+ ξ2 − 1( 􏼁
2

− 16.390
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

ξ1 − 1( 􏼁
2

+(10 − 4ϑ) ξ2 − 2( 􏼁
2

− 48.9662
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.8397 ξ1 − 1 − 4ϑ( 􏼁
2

+ ξ2 − 1( 􏼁
2

− 16.390
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ cI,

0.16029 ξ1 − 1( 􏼁
2

+(10 − 4ϑ) ξ2 − 2( 􏼁
2

− 48.9662
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ c2;

ξ1 − 4≤ 0, ξ2 − 4≤ 0, ξ1, ξ2 ≥ 0, ; ϑ ∈ [0, 1]; 0≤ ci ∈ R
(45)

-e optimal solution of this model is obtained
as (ξ1, ξ2, a1, a2) � (3.15562, 3.413545, 4.36004,

6.63996)T and hence G(ξ1, ξ2, a1, a2) � (4.62078,

7.93297)T.
Step 5. From the above solutions, we get after the first
iteration as follows:

ξ1, ξ2, a1, a2􏼐 􏼑 � (3.15562, 3.413545, 4.36004, 6.63996 )
T

G ξ1, ξ2, a1, a2􏼐 􏼑 � (4.62078, 7.93297)
T
,

(46)

and the reference point G0
� (48, 55)T and

�G � (16.390, 48, 9662)T. Is the decision-maker satis-
fying with the solution: Y/N?
Assume that an expert is satisfied with such solution
and hence go to Step 7 directly.
Step 7. Now, the first-kind stability set is determined.

For the solution set, S(3.15562, 3.413545, 4.36004,

6.63996), the first-kind stability set is determined by ap-
plying the following conditions:

σ1 4.36004 − d21( 􏼁 � 0,

σ2 6.63996 − d22( 􏼁 � 0,

σ1, σ2 ≥ 0.

(47)

For J1⊆ 1, 2{ }, J1 � ∅, σ1, σ2 � 0. -en,

SJ1

3.15562, 3.413545,

4.36004, 6.63996
􏼠 􏼡 �

d2 ∈ R
2
: d21 ≥ 4.36004,

d22 ≥ 6.63996

⎧⎨

⎩

⎫⎬

⎭.

(48)

For J2 � 1{ }, σ1 > 0, σ2 > 0. -en,

SJ2

3.15562, 3.413545,

4.36004, 6.63996
􏼠 􏼡 �

d2 ∈ R
2
: d21 � 4.36004,

d22 ≥ 6.63996

⎧⎨

⎩

⎫⎬

⎭.

(49)

For J3 � 2{ }, σ1 � 0, σ2 > 0. -en,
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SJ3

3.15562, 3.413545,

4.36004, 6.63996
􏼠 􏼡 �

d2 ∈ R
2
: d21 ≥ 4.36004,

d22 � 6.63996

⎧⎨

⎩

⎫⎬

⎭.

(50)

For J4 � 12{ }, σ1 > 0, σ2 > 0. -en,

SJ4

3.15562, 3.413545,

4.36004, 6.63996
􏼠 􏼡 �

d2 ∈ R
2
: d21 � 4.36004,

d22 � 6.63996

⎧⎨

⎩

⎫⎬

⎭. (51)

S
3.15562, 3.413545,

4.36004, 6.63996
􏼠 􏼡 � 􏽘

4

q�1
SJq

3.15562, 3.413545,

4.36004, 6.63996􏼠 􏼡.

(52)

6. Characteristic Comparison

In this section, the proposed approach has been compared
with some existing literatures [23–27] in terms of their
characteristic features to illustrate the advantages of the
suggested approach. -e results for this analysis are sum-
marized in Table 1.-e symbol “7” or “✓” shown in the table
represents whether the associated feature satisfy or not. Also,
it is mentioned that the proposed approach has considered
the environment of uncertainty and possibility while all the
others have taken either the fuzzy or crisp environment to
solve the game problems.

It is also seen from the table that the proposed method
utilizes the Lexicographic weighted Tchebycheff model to

compute the weights. In contrast, all other existing models
fail to deal with it. Other than that the method proposed in
[24, 26, 27] also derived the efficient solution for the problem
along with the proposed one, but all these existing methods
have considered the uncertainties with fuzzy variables;
however, in the proposed method, a possibility variable has
been used to address the uncertainties. -e proposed
method suggested the interactive approach based on the
decision-maker preferences. Utilizing this feature, an expert
can change their preferences if not satisfied with the ob-
tained result through the process. -rough it, a person can
select the desired one as per their choices related to opti-
mism or pessimism towards the objective of the problem.

7. Conclusion

-e main contribution of the paper can be summarized as
follows:

(1) In this study, we presented a novel idea related to the
continuous cooperative static game (CCSTG) with
possibilistic parameters associated with the cost
functions of the m players. To handle the uncer-
tainties in the model and a conflicting nature be-
tween the objectives, a possibilistic variable 􏽥ai is
taken instead of fuzzy variable, which is categorized
by a possibilistic distribution μ􏽥ai

: V⟶ [0, 1] for
i � 1, 2, . . . , n.

(2) By utilizing the concept of α−cut, the considered
Poss-CCSTG model is converted into the crisp

0
0

0.5

1

1.5

2

2 4 6
R

μ ã
1

8 10 12

(a)

0
0

0.5

1

1.5

2

2 4 6
R

μ ã
2

8 10 12

(b)

Figure 3: Possibility distributions (a) μ􏽥a1
(.) for 􏽥a1 and (b) μ􏽥a2

(.) for 􏽥a2.

Table 1: Characteristic comparison of the proposed method with other existing methods.

Ref.
Features

EnvironmentInteractive
approach

Continuous cooperative
static games

Best compromise
solution

Lexicographic weighted
Tchebycheff program

Zaichnko et al.
[24] 7 ✓ 7 7 Uncertainty/fuzzy

Donahue et al.
[25] 7 7 ✓ 7

Deterministic/
certain

Zhou et al. [26] 7 ✓ 7 7 Uncertainty/fuzzy
Khalifa and
Kumar [23] 7 ✓ 7 7

Deterministic/
certain

Khalifa et al. [27] 7 ✓ 7 7 Uncertainty/fuzzy

Proposed study ✓ ✓ ✓ ✓ Uncertainty/
possibilistic
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α-CCSTG problem and hence into the α − PMONLP
model.

(3) -e relationship between the α−efficient solution of
the α-CCSTG problem and α − PMONLP model is
derived. From the study, we conclude that ξ∗ ∈ Ψ is
an α−possibly efficient solution of the α-CCSTG
problem if and only if ξ∗ ∈ Ψ is an α−parametric
efficient solution for α − PMONLP.

(4) An interactive approach has been presented in the
study to solve the obtained model. -e significant
advantages of the proposed model are that it is a
generic method that applies to any convex or non-
convex, differentiable, or nondifferentiable problem.
Another advantage is that in the proposed interactive
approach, there is no need to provide the reference
set (feasible or infeasible) in advance by the decision-
maker to solve the problem. In addition to it, a set of
the first kind, which corresponds to the stability set
of the final solution, is determined.

(5) Based on the solution obtained through the ap-
proach, a decision-maker can analyze the impact of
the different objectives as per their desired goals. If
the decision-maker is satisfied with the output, they
can stop the algorithm and obtain the optimal re-
sults; otherwise, they will modify their preferences
and improve the results that are met according to
their goals and hence select their optimal design
parameters.

In the future, the result of the presented approach shall
be extended to some other real-life problems related to
different optimization models. Also, we shall extend the
proposed approach under the different uncertain environ-
ments such as possibility-Pythagorean and interval-valued
Pythagorean fuzzy set, spherical fuzzy set, and intuitionistic
fuzzy set [34–37].
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