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Cycle‑consistent adversarial 
networks improves generalizability 
of radiomics model in grading 
meningiomas on external 
validation
Yae Won Park1,8, Seo Jeong Shin2,8, Jihwan Eom3, Heirim Lee4,5, Seng Chan You6*, 
Sung Soo Ahn1*, Soo Mee Lim7, Rae Woong Park2,4 & Seung‑Koo Lee1

The heterogeneity of MRI is one of the major reasons for decreased performance of a radiomics 
model on external validation, limiting the model’s generalizability and clinical application. We aimed 
to establish a generalizable radiomics model to predict meningioma grade on external validation 
through leveraging Cycle‑Consistent Adversarial Networks (CycleGAN). In this retrospective study, 
257 patients with meningioma were included in the institutional training set. Radiomic features 
(n = 214) were extracted from T2‑weighted (T2) and contrast‑enhanced T1 (T1C) images. After 
radiomics feature selection, extreme gradient boosting classifiers were developed. The models were 
validated in the external validation set consisting of 61 patients with meningiomas. To reduce the 
gap in generalization associated with the inter‑institutional heterogeneity of MRI, the smaller image 
set style of the external validation was translated into the larger image set style of the institutional 
training set using CycleGAN. On external validation before CycleGAN application, the performance 
of the combined T2 and T1C models showed an area under the curve (AUC), accuracy, and F1 score of 
0.77 (95% confidence interval 0.63–0.91), 70.7%, and 0.54, respectively. After applying CycleGAN, 
the performance of the combined T2 and T1C models increased, with an AUC, accuracy, and F1 score 
of 0.83 (95% confidence interval 0.70–0.97), 73.2%, and 0.59, respectively. Quantitative metrics 
(by Fréchet Inception Distance) showed that CycleGAN can decrease inter‑institutional image 
heterogeneity while preserving predictive information. In conclusion, leveraging CycleGAN may be 
helpful to increase the generalizability of a radiomics model in differentiating meningioma grade on 
external validation.

Abbreviations
AUC   Area under the curve
CycleGAN  Cycle-Consistent Adversarial Networks
FID  Fréchet Inception Distance
GAN  Generative adversarial network
T1C  Postcontrast T1-weighted image
T2  T2-weighted image
t-SNE  T-Distributed Stochastic Neighbor Embedding
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WHO  World Health Organization
XGBoost  Extreme gradient boosting

Meningiomas are the most common primary intracranial neoplasms in adults, accounting for approximately one-
third of all intracranial  tumors1. The majority of meningiomas (80%) are classified as low-grade (World Health 
Organization [WHO] grade 1; benign) and have an indolent clinical  course2. On the other hand, high-grade 
(WHO grade 2 or 3; atypical or anaplastic) tumors have an aggressive biological behavior, a tendency to recur, 
and a poor  prognosis2. The standard management typically involves surgical resection, and adjuvant radiation 
therapy is often recommended for high-grade  meningiomas3. Therefore, developing a noninvasive generalizable 
model based on MRI to predict meningioma grade may assist clinical decision making by providing information 
on treatment planning, including surgical resection  strategy4, and care of incidentally detected meningiomas 
in asymptomatic  patients3.

MRI is the key imaging modality for diagnosis and characterization of meningioma and treatment  decision5. 
Several studies applying radiomics, which translates radiological images into high-dimensional mineable imag-
ing  data6, have shown promising results in predicting meningioma  grade7–12. However, majority of them did 
not perform external  validation7. Those studies that performed external validation showed drastically decreased 
performance in external  validation10–12, which limits the real-world application of radiomics models. Given that 
the objective of a prediction model is to predict outcomes in future patients, not to classify previously described 
characteristics, model generalizability on external validation is critical for model  implementation13.

The inter-institutional heterogeneity of MRI protocol is a major reason for decreased performance of a radi-
omics model in the external validation  stage13. Although consensus recommendations for standardized imaging 
protocol are established in brain tumors such as glioma or brain  metastases14,15, consensus imaging protocol for 
meningiomas is currently lacking, which leads to substantial inter-institutional heterogeneity.

Recently, an approach based on the unpaired image-to-image translation using Cycle-Consistent Adversarial 
Networks (CycleGAN), a style transfer technique, has been suggested as a promising strategy to overcome poor 
model performance when dealing with external  images16. CycleGAN can transfer the style of the image, while 
preserving the semantic information within the  data16. The approaches using CycleGAN show superior visual 
similarities between image domains both quantitatively and qualitatively compared with other normalization 
methods and eliminate manual preparation of the representative reference image because they learn the whole 
image  distribution17,18. We hypothesized that this approach can be applied to convert heterogeneous MRIs and 
lead to improved performance of a radiomics model to predict meningioma grade on external  validation17,18. 
Thus, the objective of this study was to establish a generalizable radiomics model to predict meningioma grade 
on external validation through leveraging CycleGAN.

Materials and methods
Patient population. The Yonsei University Institutional Review Board approved this retrospective study 
and waived the need for obtaining informed patient consent. All methods were performed in accordance with 
the relevant guidelines and regulations. We identified 297 patients who were pathologically confirmed as hav-
ing meningioma and underwent baseline conventional MRI between February 2008 and September 2018 in the 
institutional dataset. Patients with 1) missing MRI sequences or inadequate image quality (n = 17), 2) a previous 
history of surgery (n = 15), 3) a history of tumor embolization or gamma knife surgery before MRI exam (n = 5), 
and 4) an error in image processing (n = 2) were excluded. A total of 257 patients (low-grade, 162; high-grade, 
95) were enrolled in the institutional cohort.

Identical inclusion and exclusion criteria were applied to identify 62 patients (low-grade, 47; high-grade, 15) 
from Ewha Mokdong University Hospital between January 2016 and December 2018 for external validation of 
the model. Patient flowchart is shown in Fig. S1.

Pathological diagnosis. Pathological diagnosis was performed by neuropathologists, according to the 
WHO  criteria19. The criteria for atypical meningioma (WHO grade 2) comprised 4–19 mitoses per 10 high-
power fields, the presence of brain invasion, or the presence of at least three of the following features: “sheet-like” 
growth, hypercellularity, spontaneous necrosis, large and prominent nucleoli, and small cells. The criteria for 
anaplastic meningioma (WHO grade 3 comprised frank anaplasia (histology resembling carcinoma, sarcoma, 
or melanoma) or elevated mitoses (> 20 mitoses per 10 high-power fields)19.

MRI protocol. In the institutional training dataset, patients were scanned on 3.0 Tesla MRI units (Achieva 
or Ingenia; Philips Medical Systems). Imaging protocols included T2-weighted (T2) and contrast-enhanced 
T1-weighted imaging (T1C). T1C images were acquired after administration of 0.1 mL/kg of gadolinium-based 
contrast material (Gadovist; Bayer).

In the external validation sets, patients were scanned on 1.5 or 3.0 Tesla MRI units (Avanto; Siemens, or 
Achieva; Philips Medical Systems), including T2 and T1C images. T1C images were acquired after administra-
tion of 0.1 mL/kg of gadolinium-based contrast material (Dotarem; Guerbert, or Gadovist; Bayer). Substantial 
variation existed between the acquisition parameters for T2 and T1C among the various MRI units between the 
institutional and external validation sets and reflected the heterogeneity of meningioma imaging data in clinical 
practice (Supplementary Table 1).

Image preprocessing and radiomics feature extraction. Image resampling to 1-mm isovoxels, low-
frequency intensity non-uniformity correction by the N4 bias algorithm, and co-registration of T2 images to 
T1C images were performed using Advanced Normalization Tools (ANTs)20. After skull stripping by Multi-



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7042  | https://doi.org/10.1038/s41598-022-10956-9

www.nature.com/scientificreports/

cONtrast brain STRipping (MONSTR)21, signal intensities were z-score normalized. An affine registration was 
performed to transform the brain images to the  MNI15222.

A neuroradiologist (with 9 years of experience) who was blinded to the clinical information semi-automat-
ically segmented the entire tumor (including cystic or necrotic changes) on the T1C images using 3D Slicer 
software (v. 4.13.0; www. slicer. org) with edge- and threshold-based algorithms. Another neuroradiologist (with 
16 years of experience) re-evaluated and confirmed the segmented lesions.

Radiomic features were calculated with a python-based module (PyRadiomics, version 2.0)23, with a bin size 
of 32. They included (1) 14 shape features, (2) 18 first-order features, and 3) 75 s-order features (including gray-
level co-occurrence matrix, gray-level run-length matrix, gray-level size zone matrix, gray-level dependence 
matrix, and neighboring gray tone difference matrix) (Supplementary Material S1 and Supplementary Table 2). 
The features adhered to the standard sets by the Image Biomarker Standardization Initiative 24. A total of 214 
radiomic features (107 × 2 sequences) were extracted.

Radiomics model construction. The schematic of radiomics model construction and establishment of 
an application system based on CycleGAN is shown in Fig. 1a. Radiomic features were MinMax normalized. 
Because the number of radiomic features was larger than the number of patients, mutual information was applied 
to select the significant features. The base radiomics classifiers were constructed using extreme gradient boost-
ing with tenfold cross-validation in the training set. Synthetic minority over-sampling technique was applied 
for oversampling the minority  class25. To improve the predictive performance and avoid potential overfitting, 
Bayesian optimization, which searched the hyperparameter space for optimal hyperparameter combinations, 
was applied. The area under the curve (AUC), accuracy, sensitivity, specificity, and F1 score (definitions shown 
in Supplementary Material S2) were obtained. Feature selection and machine learning process were performed 
using Python 3 with the Scikit-Learn library module (version 0.24.2).

CycleGAN application. Figure 1b shows the general network architecture of CycleGAN. The generative 
adversarial network (GAN) has two neural networks, namely, a generator and a discriminator, for distinc-
tive purposes. The CycleGAN uses two sets of GAN for style transfer to train unsupervised image translation 
 models16. Unpaired institutional training and external validation datasets were used to train the discriminators 
and generators of CycleGAN.

To be delivered into  CycleGAN16, the brain MRIs were converted to two-dimensional images in each aspect 
of the axial, sagittal, and coronal planes. Because the image size was diverse between institutions and individuals, 
the images were resized to 99 × 117 × 95 pixels after MNI152 template registration and to 116 × 116 pixels before 
putting them into CycleGAN.

In the first set of GAN, the first generator (G1) in CycleGAN converts the images from the external validation 
dataset to the domain of the institutional training dataset, while the first discriminator D1 checks if the images 
computed by G1 are real or fake (generated). Through this process, synthetic images from G1 become better with 
the feedback of their respective discriminators. In the second set of GAN, the second generator (G2) transfers the 
synthetic image generated from the first generator (G1) back to the original external validation dataset image, 
while the second discriminator (D2) checks if the images computed by G2 are real or fake (generated). Through 
this process, the trained CycleGAN model transferred the style of the external validation images to the train-
ing set. The cycle consistency loss, which is the difference between the generated output and the input image, 
was calculated and used to update the generator models in each training  iteration16. L2 loss, which is known to 
accelerate the training process and generate sharp and realistic images in  GAN26,27, was employed to estimate 
the cycle consistency loss. Inference results were randomly sampled and checked by a neuroradiologist (with 
9 years of experience) for plausibility. External validation set images after CycleGAN were subjected to assess the 
performance of the radiomics model compared with the original external validation dataset. Because original 
external validation set and external validation set images after CycleGAN were independent from the radiomics 
modeling in the training process, there is no potential data  breach28. Details of the CycleGAN architecture are 
shown in Supplementary Table 3.

Evaluation of the effect of CycleGAN: Fréchet Inception Distance and t‑Distributed Stochas-
tic Neighbor Embedding. The Fréchet Inception Distance (FID) was calculated to measure the similar-
ity between two datasets of images to measure the model quality quantitatively by evaluating the generated 
data (Supplementary Material S3)29. FID is an extension of the Inception  Score30 and compares the distribution 
of generated images with the distribution of real images that were used to train the generator. FID has been 
shown to be consistent with human judgments and more robust to noise than inception  score29. Three FID 
scores, namely, “training vs. original external validation,” “original external validation vs. transferred external 
validation,” and “training vs. transferred external validation” were calculated. To visualize the effect of Cycle-
GAN on the extracted radiomic features, the high-dimensional feature space was projected and visualized into 
a lower dimensional space by using a two-dimensional t-Distributed Stochastic Neighbor Embedding (t-SNE) 
 manifold31.

Results
Patient characteristics in the institutional training (n = 257) and external validation sets (n = 61) are summarized 
in Table 1. The proportion of female sex was higher in the high-grade meningiomas in the training set (p < 0.001), 
but not in the external validation set (p = 0.833). No significant differences were found in other clinical charac-
teristics between the training and external validation sets.

http://www.slicer.org
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Performance of the classifier for the original external validation and CycleGAN style‑trans-
ferred external validation images. A total of 27 radiomic features were identified to differentiate men-
ingioma grade (10 features from T2 and 17 features from T1C; 6 shape features, 2 first-order features, and 
19  s-order features; details on Supplementary Table  4 and Fig.  S2). In the institutional training set, the best 
performing classifier was achieved in the combined T1C and T2 models, with an AUC, accuracy, sensitivity, 
specificity, and F1 score of 0.88 (95% confidence interval [CI] 0.77–0.87), 77.7%, 82.8%, and 72.6%, respectively. 
The T2 and T1C models showed lower performances, with AUCs of 0.84 (95% CI 0.79–0.89) and 0.85 (95% CI 
0.82–0.88), respectively.

In the external validation dataset before CycleGAN application, the T2 model showed the highest perfor-
mance, with an AUC, accuracy, sensitivity, specificity, and F1 score of 0.78 (95% CI 0.64–0.92), 62.7%, 92.3%, 
54,4%, and 0.52, respectively. The combined T2 and T1C models showed a similar performance, with an AUC 
of 0.77 (95% CI 0.63–0.91), whereas the T1C model showed the lowest performance, with an AUC of 0.73 (95% 
CI 0.58–0.87), respectively.

Figure 1.  (a) Overall pipeline of the CycleGAN and radiomics for meningioma grading. (b) General 
network architecture of CycleGAN. CycleGAN = Cycle-Consistent Adversarial Networks, T1C = postcontrast 
T1-weighted image, T2 = T2-weighted image.
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The style of T2 and T1C images of the original external validation dataset was transformed to match that of 
the institutional training set images by using CycleGAN (Fig. 2). In the external validation dataset after Cycle-
GAN application, the performance of all three radiomics models increased, although it did not reach statistical 
significance (Ps > 0.05). The combined T1C and T2 models showed the highest performance, with an AUC, 
accuracy, sensitivity, specificity, and F1 score of 0.83 (95% CI 0.70–0.97), 73.2%, 84.6%, 69.8%, and 0.59, respec-
tively. T2 and T1C models showed lower performance, with AUCs of 0.80 (95% CI 0.66–0.95) and 0.80 (95% CI 
0.67–0.93), respectively. The performance of the radiomics models in the institutional training set and external 
validation set before and after applying CycleGAN is shown in Table 2. Figure 3 shows the performance of the 
radiomics models, demonstrating the effect of style transfer by CycleGAN on the classification performance of 
the radiomics model on external validation. Figure 4 shows representative cases demonstrating the improvement 
in classifications after CycleGAN. Predictive scores close to 1.0 indicate that the model predicts the meningioma 
grade with confidence.

Table 1.  Patient characteristics in the institutional training and external validation sets. Data are expressed 
as mean with standard deviation in parentheses or number with percentage in parentheses. *Calculated 
from Student’s t-test for continuous variables and Chi-square test for categorical variables to compare the 
characteristics between low-grade and high-grade patients of the institutional cohort and the external 
validation set. ✝Calculated from Student’s t-test for continuous variables and Chi-square test for categorical 
variables for comparison of institutional training and external validation sets.

Variables

Institutional training set (n = 257) External validation set (n = 61)

P-value✝
Low-grade 
(n = 162)

High-grade 
(n = 95) P-value*

Low-grade 
(n = 46)

High-grade 
(n = 15) P-value*

Clinical

Age (years) 56.44 ± 12.08 58.40 ± 14.01 0.226 55.13 ± 13.61 56.73 ± 19.25 0.723 0.387

Female sex 138 (85.2) 59 (62.1)  < 0.001 31 (67.4) 10 (66.7) 0.959 0.127

Skull base location 31 (19.1) 26 (27.4) 0.125 12 (26.1) 5 (33.3) 0.587 0.344

Figure 2.  Representative cases showing the institutional training dataset and images before and after style 
transfer of the external validation set. (a) T2 and T1C images of a patient from the institutional training 
dataset that were leveraged to generate the radiomics model. (b) T2 and T1C images from the original external 
validation. (c) Style of T2 and T1C images from the external validation set after transformation to match that of 
the institutional training set images by using CycleGAN. CycleGAN = Cycle-Consistent Adversarial Networks, 
T1C = postcontrast T1-weighted image, T2 = T2-weighted image.
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Table 2.  Model performance on institutional training set and external validation set before and after applying 
CycleGAN. AUC = area under the curve, CI = confidence interval, CycleGAN = Cycle-Consistent Adversarial 
Networks, T1C = postcontrast T1-weighted image, T2 = T2-weighted image.

AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%) F1 score

Institutional training set

T2 0.84 (0.79–0.89) 78.2 82.9 73.5 0.79

T1C 0.85 (0.82–0.88) 79.3 83.4 75.2 0.75

T2 + T1C 0.88 (0.83–0.93) 81.9 85.1 78.9 0.83

External validation set before applying CycleGAN

T2 0.78 (0.64–0.92) 62.7 92.3 54.4 0.52

T1C 0.73 (0.58–0.87) 60.3 61.5 60.0 0.43

T2 + T1C 0.77 (0.63–0.91) 70.7 76.9 68.9 0.54

External validation set after applying CycleGAN

T2 0.80 (0.66–0.95) 64.9 92.3 56.8 0.55

T1C 0.80 (0.67–0.93) 67.2 76.9 64.4 0.55

T2 + T1C 0.83 (0.70–0.97) 73.2 84.6 69.8 0.59

Figure 3.  Radiomics model performance on the (a) AUCs, (b) accuracies, and (b) F1 scores of the radiomics 
model in the institutional training set and external validation set before and after applying CycleGAN. 
AUCs = areas under the curve, CycleGAN = Cycle-Consistent Adversarial Networks, T1C = postcontrast 
T1-weighted image, T2 = T2-weighted image.

Figure 4.  Representative cases showing the improvement in classifications after CycleGAN. Predictive scores 
close to 1.0 indicate that the model predicts the meningioma grade with confidence. (a) A case incorrectly 
diagnosed as high-grade meningioma before style transfer but correctly diagnosed as low-grade meningioma 
after style transfer. (b) A case incorrectly diagnosed as low-grade meningioma before style transfer but correctly 
diagnosed as high-grade meningioma after style transfer. CycleGAN = Cycle-Consistent Adversarial Networks.
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Evaluation of the effect of CycleGAN: FID and t‑SNE. The FID scores by our proposed model are 
shown in Fig. S3. The FID score was highest in the “training vs. original external validation,” followed by the 
“training vs. transferred external validation” and then by the “original external validation vs. transferred external 
validation.” The FID score decreased to 52.2% after style transfer in the external validation set. However, the 
“original external validation vs. transferred external validation” showed the lowest FID score, which was 25.6% 
of the FID score of the “training vs. original external validation”.

The resulting extracted radiomics feature space on t-SNE for the institutional training and external validation 
sets before and after style transfer is shown in Fig. S4. Before the style transfer, a marked difference was noted 
between the institutional training and external validation test sets on the values of computed radiomic features. 
After applying CycleGAN, this influence was markedly decreased. The density plot shows that the distributions 
of the selected radiomic features of the external validation set became more similar to the institutional training 
set after applying CycleGAN (Fig. S5).

Discussion
We demonstrated that leveraging CycleGAN is an effective approach to increase the generalizability of radiomics 
model on external validation. The areas under the curve of the combined T2 and T1C models in the external 
validation set increased from 0.77 to 0.83 after CycleGAN application. The FID score and t-SNE showed that 
data distributions between the institutional training and external validation sets in the image and radiomic fea-
ture levels became more similar after applying CycleGAN. To the best of our knowledge, this study is the first to 
investigate CycleGAN strategy for brain tumor imaging to develop a generalizable radiomics model.

CycleGANs are a relatively novel type of conditional generative adversarial networks, which have received 
considerable attention because of their ability to capture the characteristics of a single image collection and to 
generate synthetic images in the absence of any paired training  examples16,32. Previous generative adversarial 
network studies on brain imaging have mainly focused on generating missing brain MRI  data33–35 or creating 
high-resolution images from low-resolution  images36, which requires ground truth sequences. However, no 
“ground truth” dataset of paired training examples (consisting of internal and external MRI examinations of iden-
tical patients at the same period) exists in real-world clinical practice. In our study, we focused on a practical and 
crucial problem encountered in implementing a machine learning model in medical imaging, which is increas-
ing the generalizability of a radiomics model on external validation. External validation is a crucial process in 
models with artificial intelligence, because internal validation itself cannot guarantee model  generalizability13,37. 
However, classical preprocessing steps, such as isovoxel resampling, bias field correction, and signal intensity 
normalization, are insufficient to counter image heterogeneity. We speculate that CycleGAN may be a practical 
approach to solve the image heterogeneity of an external dataset. A recent study has shown that CycleGAN can 
reduce the heterogeneity between radiomic features and increase reproducibility in chest radiographs, which is 
in line with our  study38.

A notable finding in our study was that the T2 radiomics model showed relatively less decreased perfor-
mance in the external validation set before applying CycleGAN, whereas the T1 radiomics model showed a 
larger decrease in performance in the external validation set before applying CycleGAN. Compared with the 
T1C protocols with different protocols, T2 protocols are relatively similar between institutions and less prone 
to failures from image acquisition  artifacts39, which may lead to higher performance on external validation 
than the T1C model. Nonetheless, after CycleGAN application, the combined T2 and T1C models showed 
the highest performance. This finding suggests that CycleGAN may preserve the biological information from 
T2 and T1C sequences while effectively removing inter-institutional variation. Our results are in concordance 
with other studies that demonstrate that single sequence models have limited ability to reflect the underlying 
pathophysiology of  meningiomas9,40.

Our external validation dataset included different scanner vendors, acquisition protocols, image reconstruc-
tion algorithms, and field strengths, resulting in large heterogeneity, which reflects the real-world clinical dataset 
in  meningiomas41. Apart from the different MRI vendors with different field strengths, the resolution, sequence, 
echo time, repetition time, and inversion time have also not reached consensus in meningioma imaging. All of 
these differences induce heterogeneity of the MRI datasets, which poses as a unique challenge in the generaliz-
ability of the artificial intelligence in this area. Collecting heterogeneous labeled data from multiple institutions 
worldwide is the best solution to overcome this challenge. Nonetheless, even if we tackle this daunting chal-
lenge, the generalizability of the resulting artificial intelligence model cannot be fully guaranteed, as the data 
in another institution are possibly out-of-distribution. In this study, we demonstrate that leveraging an image 
harmonizing technique based on deep learning is feasible to increase generalizability in radiomics application 
for grading meningiomas.

The FID score was lowest in the “original external validation vs. transferred external validation,” rather than 
in the “training vs. transferred external validation” datasets. Considering the equation in  FID42, which calculates 
the difference between the synthetic and real data distributions, the transferred external validation dataset has 
understandably the most close resemblance to the original external validation dataset. Nonetheless, the FID score 
from the “original external validation vs. transferred external validation” datasets decreased to 52.2% compared 
with that from the “training vs. original external validation” datasets. This result demonstrates that the data 
distributions between the training and external validation sets became more similar after applying CycleGAN.

This study has several limitations. First, it was conducted with a relatively small amount of data, particularly 
in the external validation set. As this is a technical feasibility study, a larger multi-institutional validation set is 
warranted to demonstrate significant performance improvement with CycleGAN. Second, we used two-dimen-
sional CycleGAN rather than three-dimensional CycleGAN because of relative paucity of data. This may lead to 
slice-to-slice inconsistencies, which may adversely affect the performance. However, despite these limitations, 
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as shortfall in generalization to real-world datasets with heterogeneous imaging data is the major barrier for 
the adoption of artificial intelligence in medical imaging, the strength of our study is that we demonstrated that 
CycleGAN is a feasible approach to tackle this challenging issue.

In conclusion, CycleGAN is potentially helpful in increasing the generalizability of a radiomics model in 
differentiating meningioma grade on external validation.
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