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Editorial on the Research Topic

Metabolism in Alzheimer’s Disease

Alzheimer’s disease (AD) pathology begins decades before clinical onset of dementia. Amyloid beta
(Aβ) generally accumulates first in cognitively normal (CN) individuals, with tau and cognitive
abnormalities following (Jack et al., 2013). AD pathologies have been found to correlate and interact
with metabolic outcomes in studies spanning numerous experimental paradigms (Mosconi et al.,
2009, 2010a,b,c; Mosconi, 2013; Morris et al., 2014a; Wilkins et al., 2014; Swerdlow et al., 2017;
Weidling et al., 2020; Wilkins and Swerdlow, 2021).

Metabolic changes are prominent in AD. Fluorodeoxyglucose positron emission tomography
(FDG-PET) comparing AD and CN individuals reveals lower glucose levels in the brains of AD
patients (Herholz et al., 2002; Mosconi et al., 2010a; Marcus et al., 2014; Suppiah et al., 2019). These
findings have led to overwhelming evidence of metabolic deficiencies in AD. Beyond reductions in
brain glucose metabolism, mitochondrial dysfunction is observed not only within the brain but
also systemically (Parker, 1991; Kish et al., 1992; Cardoso et al., 2004a,b; Morris et al., 2014b;
Fisar et al., 2016; Guo et al., 2017; Swerdlow, 2018; Baloyannis, 2019; Chakravorty et al., 2019).
More recent genome wide association studies (GWAS) identified risk-associated single nucleotide
polymorphisms (SNPs) in genes which function inmitochondrial andmetabolic pathways (Lakatos
et al., 2010; Swerdlow et al., 2020; Harwood et al., 2021; Wightman et al., 2021). Apolipoprotein E
(APOE), the strongest genetic risk factor for sporadic AD, is both central to lipid metabolism and
has been found to interact with inheritedmitochondrial genes to amplify risk for AD (Carrieri et al.,
2001; Andrews et al., 2020; Swerdlow et al., 2020).Moreover, molecular studies of AD brain show an
overall reduction in the number of intact mitochondria and mitochondrial DNA (Swerdlow, 2018;
Wilkins and Swerdlow, 2021). Thus, mitochondrial function/dysfunction plays a role in protein
aggregation, inflammation, and cell death; all events observed in AD. Overall, metabolism and
mitochondrial function/dysfunction are strongly associated with AD.

The goal of this Research Topic was to further understand topics in the AD field that broadly
focus on metabolic changes in AD and the interaction between metabolism, AD risk factors, and
pathologies. These include: the role of genetic risk factors for sporadic AD (such as APOE) in non-
cell autonomous functions, the intersection between metabolism and inflammation, the role of
metabolism in protein aggregation, how current therapies target metabolism, inflammation, and
protein aggregation, the role of novel metabolism/mitochondrial genes identified by GWAS in
pathological mechanisms, the role of metabolism in the communication between neurons and glia
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FIGURE 1 | Metabolism in Alzheimer’s Disease. Research and review articles

discuss the role of hormone response to meals, lifestyle factors on brain

function with respect to mTOR, PPAR, PS1, ABAC7, and APOE. All of which

regulate glycolysis/glucose and lipid metabolism, mitophagy/autophagy, and

mitochondrial function. Created with BioRender.com.

in AD, how we can leverage existing model systems and develop
better models to address questions of brain metabolism in the
context of AD.

The articles of this Research Topic highlight a variety of
reviews and original research which discuss and address topics
of metabolism in AD (Figure 1). Several articles focus on
potential AD therapeutics. These include a thorough review
on the use of pioglitazone for AD treatment. Pioglitazone is
a peroxisome proliferator-activated receptor gamma and alpha
(PPAR-γ; PPAR-α) activator. PPARs are transcription factors
critical for regulation of many pathways implicated in AD
including insulin and glucose metabolism, lipid homeostasis,
inflammation, tau and Aβ homeostasis, and mitochondrial
function. The review by Saunders et al. discusses pre-clinical and
clinical data with longitudinal observational studies revealing
a positive impact of pioglitazone in AD and dementia onset
in those at risk. The authors also discuss the dose-dependent
effects and the caveats revealing future needs for further study
into discrepancies found with placebo controlled blinded studies.
Norowitz and Querfurth discusses mTOR regulation and drug
targeting in AD. The authors focus on nuances for targeting
mTOR in therapies including specificity for disease/region/and
timing, pleiotropy, personalized therapy with relation to the
effects of genetic factors, and the role of lifestyle factors
and interventions.

Several other articles discuss the role of specific metabolic
pathways in AD. Zhang et al. reviewed the role of glycolytic
metabolism in brain resilience in AD. The authors

highlight the correlation between glycolytic flux, Aβ, and
tau accumulation in humans, where decreased glycolytic
function is associated with higher pathologies. In a separate
review article, Kyrtata et al. discuss glucose transport in
AD with particular focus on glucose transporter (GLUT)
deficiencies in AD. The authors discuss the timing of changes
to GLUT expression and glucose uptake in brain through
rodent studies and how this relates to the timing of onset of
Aβ pathology.

An additional review presents the effect of sialometabolism
on brain health and AD. Rawal and Zhao discuss the role
of sialic acids in brain function and neuroinflammation. The
novelty of this pathway in AD is the identification of sialic acid
binding Ig-like lectin 3 (CD33) as a genetic risk factor for AD
through GWAS.

A separate AD genetic risk factor, ATP binding cassette
subfamily A member 7 (ABCA7) was examined. Aikawa et al.
used mice with haplodeficiency of ABCA7 to determine the
response to immune modulation with lipopolysaccharide
(LPS). The authors report that mice deficient in ABCA7
had activated lipid metabolism pathways. This study
again highlights the relationship between metabolism and
neuroinflammation. Morris et al. describes the role of
meal stimulated hormone response through the incretin
pathway in cognitive function and brain volume. The
authors report that in human AD subjects, a higher
meal-stimulated response of insulin, glucose, and peptide
tyrosine was observed. Brain volume significantly correlated
negatively with insulin, C-peptide, and glucose-dependent
insulinotropic polypeptide (GIP). These articles highlight the
role of diverse metabolic pathways in brain health, aging,
and AD.

A focus on genetic risk factors and metabolism was discussed
through a review of APOE in AD by Husain et al. The
authors focused on the role of APOE in lipid transport and
interactions with AD pathologies (such as tau and Aβ). Other
genetic components of AD include mutations in presenilin (PS)
in familial AD, and PS has a role in mitochondrial function.
Contino et al. examined the role of PS deficiency on neurons
and astrocytes derived from mice. Their prior studies showed
mitochondrial deficits in mouse embryonic fibroblasts, but in
the current study no effects were observed on similar endpoints.
This study highlights the importance of model systems used
for study.

Mitophagy and autophagy are implicated in AD
and are the focus of many therapeutic initiatives.
Tran and Reddy discuss deficiencies in autophagy and
mitophagy in AD. The authors focus on metabolic
drivers of autophagy/mitophagy deficiencies, the
influence of aging, and how these pathways influence
AD pathologies.

Collectively, the articles in this Research Topic emphasize
that the field of brain metabolism in AD is emerging
and generating large interest from a therapeutic standpoint.
Progress in filling our gap in knowledge on the role of
metabolism in AD will advance new therapeutic avenues for this
devastating disease.
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