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Glioblastoma (GBM) has long been a major clinical research challenge to scientists.
The pivotal role of the mitochondria related gene family in the promotion of GBM
tumorigenesis is not clear. We detected that microtubular tubulin beta 6 class V (TUBB6)
was one of 33 differentially expressed mitochondrial-focused genes (DEMFGs) in GBM,
and considered that TUBB6 is a potential therapeutic target in GBM. TUBB6 was vital
for GBM and marked as the key prognostic gene in primary GBM. Mutations of TUBB6
in GBM were rare. Only four TUBB6 co-expressed hub genes (ANXA2, S100A11,
FLNA, and MSN) exhibited poorer overall survival rates in higher expression groups
(p-value < 0.05). We have confirmed the up-regulation of TUBB6 and its partners,
ANXA2 and S100A11 in GBM and validated their importance as prognostic factors in
primary GBM. TUBB6 was significantly correlated with stromal score in GBM samples
(p-value = 6.99E-04). This study aimed to assess the importance of novel hub genes by
analyzing the expression, potential function and prognostic impact of TUBB6 in human
primary GBM cancer.
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INTRODUCTION

Reliable biomarkers have been the subject of many classic studies in cancer research (Salamone
et al., 2018). Pan-cancer research can play a pivotal role in the development of diagnosis,
treatment plans and novel therapeutics (Gizem et al., 2020). Gliomas [ependymoma, astrocytoma,
oligodendroglioma, brainstem glioma, and glioblastoma (GBM)] are malignant brain tumors. The
median patient survival time for GBM patients is only 15 months. Glioblastoma has the highest
incidence of all gliomas and is the most malignant (stage 4) on the World Health Organization’s
(WHO) scale of severity (Zhao et al., 2020). Palliative treatments include surgery, radiotherapy and
chemotherapy. In China, the annual incidence of GBM was 5–10 million new patients per year.

The discovery of potential biomarkers is important to improve diagnosis, prognosis, and
targeted therapy of GBM. Recently, we detected the HMG-box family establishing the significance
of SOX6 in the malignant progression of GBM (Jiang et al., 2020a), and found three core
genes associated with survival in GBM (Jiang et al., 2020b). Besides, another study revealed that
expression of 77 known genes can serve as biomarker in pan-cancer (Ji and Cui, 2020). In the
last decade, the role of mitochondria in metabolic pathways and cell metabolism became apparent
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and may become a therapeutic target against cancer (Porporato
et al., 2018), and play driver roles in some cancer types
(Yuan et al., 2020) including GBM, such as the IDH1-mutated
GBM cells that are full of mitochondria (Navis et al., 2013)
and the importance of mitochondria in relation to altered
energy metabolism (Khurshed et al., 2017). Mitochondria have
become increasingly important in cancer research. Silencing of
the mitochondrial protein VDAC1 (Voltage-Dependent Anion
Channel 1) inhibits cell growth in GBM, lung cancer and breast
cancer (Porporato et al., 2018). CHCHD2 (Coiled-Coil-Helix-
Coiled-Coil-Helix Domain Containing 2) promotes malignancy
and recurrence of GBM in the context of cell proliferation,
metabolism, therapeutic resistance, and invasion (Lumibao et al.,
2018). SIRT3 (Sirtuin 3) may well be a potential anti-GBM
target for treatment via mitochondrial and PI3K/Akt pathways
to induce GBM cell death (Wang et al., 2018). The connection of
mitochondria and microtubules is also essential for independent
segregation of mitochondria during mitosis (Chacko et al., 2019).
Mitochondria provide ATP and are recruited by transportation
along microtubules (Devine and Kittler, 2018). TUBB6 (Tubulin
Beta 6 Class V) is a member of the beta tubulin superfamily,
which is a major component of microtubules, and has a molecular
weight of approximately 50 kDa. Microtubules contribute to
many cellular processes, such as structural support, intracellular
transport and DNA segregation (Findeisen et al., 2014).

In this study, we hope to solve the following questions:
(1) Which mitochondrial-focused genes are significantly
differentially expressed in GBM? (2) Can we determine novel
targets for anti-cancer treatment? (3) What are the potential
functions of novel hub genes and co-expressed genes? In
the present study, we applied a wide range of integrated
bioinformatic approaches to assess the importance of these
hub genes by analyzing the expression, potential function and
prognostic impact of novel hub genes in human GBM cancer.
The workflow diagram of all strategies is shown in Figure 1.

MATERIALS AND METHODS

Dataset Collection and Functional
Analysis
The gene normalized expression data and associated patient data
were downloaded from the TCGA database for the GBM dataset
(n = 174) (tumor: normal = 169:5) (Tomczak et al., 2015). We
used the MSigDB v7.0 (Liberzon et al., 2011) and WikiPathway
(Kutmon et al., 2016) in 2019 to detect the mitochondria-focused
genes (MFGs). Differential expression analysis was performed
using DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010)
and limma (Smyth, 2005), and genes with adjusted p-value (q-
value) <0.05 and fold change >4 were recognized as differentially
expressed genes (DEGs), and Venn diagrams were drawn by
VennDIS (Ignatchenko et al., 2015). Ggplot2 package was used
to make a volcano plot.

The functional enrichment analysis of differentially expressed
mitochondrial-focused genes (DEMFGs) was performed by
R package “GOplot” (Walter et al., 2015), which visually
displayed the GO annotations and KEGG pathway enrichment.

The Multi-Protein Search module of DisNor was used to generate
a protein interaction network linking DEMFGs (Lo Surdo et al.,
2018), and visually displayed the first neighbor (level two).
STRING v11.0 was used for protein interaction network analysis
(Szklarczyk et al., 2018).

Identification of Prognostic DEMFGs and
Construction of the Risk Formula for
Overall Survival Prediction
Univariate Cox proportional hazards regression was performed
to obtain survival-related DEMFGs which were significantly
connected to the overall survival (OS) of GBM patients in the
training group (Zhao et al., 2018). After acquiring survival-
related DEMFGs (q-value < 0.05), we excluded those that were
not expressed in at least 10% of the samples. The remaining
OS-related DEMFGs were then adjusted through the stepwise
multivariate Cox regression model. Finally, those OS-related
DEMFGs were selected for further analysis.

The subjects in each dataset were classified into a high-risk
group and low-risk group according to the median risk score
of the risk formula derived from the training set. This included
76 high-risk samples and 76 low-risk samples. To identify the
potentially altered pathways in the high-risk group, we performed
gene set enrichment analysis (GSEA) to scan Kyoto encyclopedia
of genes and genomes (KEGG) pathways by “clusterProfiler”
(Yu et al., 2012) in R. Explicitly, we constructed a pre-ranked
gene list of all expressed genes ordered by log2FoldChange from
the DESeq2 package in two groups. Significant pathways with
q-value < 0.05 were identified.

The Oncomine database was selected to examine differences
in mRNA expression of TUBB6 co-expressed key genes between
GBM and normal tissues (Rhodes et al., 2007). The threshold
limits were as follows: p-value < 1E-4; fold change >2; gene
level, top 10%. For each key gene, we compared the results for
GBM with those for normal tissues. GBM mRNA expression data
was downloaded from CGGA data portal1, to further validate
the key gene TUBB6. The prognostic value of TUBB6 expression
for GBM patients was determined in CGGA. TUBB6 mutation
analysis was produced by COSMIC database (Tate et al., 2019)
and characterized in a pie chart. The frequency of TUBB6
mutations in GBM was tested by cBioPortal (Gao et al., 2018).

Gene Association Analysis
GEPIA2 (top 199) (Tang et al., 2019) and Oncomine
(correlation ≥ 0.50) (Rhodes et al., 2007) were used to retrieve
TUBB6 co-expressed genes. GO and pathway enrichment
analysis (q-value < 0.05) were performed by ClueGO (Bindea
et al., 2009). Based on the co-expressed genes, GO analysis
was performed in four categories: biological processes
(BP), cellular components (CC), molecular functions (MF)
(no significant enrichment results), and immune system
processes (ISP); the pathway enrichment analysis included the
Reactome, WikiPathway and KEGG pathway (no significant
enrichment results).

1http://www.cgga.org.cn.portal.php

Frontiers in Genetics | www.frontiersin.org 2 September 2020 | Volume 11 | Article 566579

http://www.cgga.org.cn.portal.php
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-566579 September 17, 2020 Time: 18:54 # 3

Jiang et al. TUBB6 in Primary Glioblastoma

FIGURE 1 | Flow chart of strategies in this study. The illustration of mitochondrion and GBM were downloaded from website:
https://pulmonaryhypertensionnews.com/wp-content/uploads/2015/01/mitochondria.jpg and https://www.medicalnewstoday.com/articles/321809.

Mutations of TUBB6 in GBM were analyzed using cBioPortal2

and COSMIC database (Tate et al., 2019). Forty co-expressed
genes were co-expressed into a protein-protein interaction
network by the STRING database (Szklarczyk et al., 2018),
and the most important module was obtained by Cytoscape
(CytoHubba plug-in) (Niissalo, 2007). Hierarchical clustering
of the hub genes was performed by using the UCSC Cancer
Genomics Browser. Gene correlation analysis was performed by
“ggcorrplot” package in R.

Tumor Environment Analysis in
Pan-Cancer
Based on ESTIMATE database3, we downloaded estimate scores
for each sample across all TCGA platforms. The files “estimate
score” and “TUBB6 expression in pan-cancer” were uploaded

2http://cbioportal.org/
3https://bioinformatics.mdanderson.org/estimate/

into R to calculate the stromal and immune scores. CIBERSORTx
(Newman et al., 2019) was a machine learning method which
was used to establish the 22 immune cell subtype abundances
from pan-cancer datasets (p-value < 0.0001). The correlation
analysis between TUBB6 and cancer type and immune/stromal
score/immune cell type was obtained using “ggplot2” package
(p < 0.0001). The heatmap of TUBB6 co-expressed genes
was designed by a “reshape2” package. Gene Set Enrichment
Analysis analysis for TUBB6 in pan-cancer was analyzed by a
“clusterProfiler” package (Yu et al., 2012).

RESULTS

Identification and Functional Analysis of
DEMFGs
We detected 766 MFGs in the MSigDB and WikiPathway
databases, and 33 DEMFGs were identified by limma, DESeq2
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and edgeR packages (Figure 2A), 18 DEMFGs were up-regulated
and 15 DEMFGs were down-regulated according to their
q-value < 0.05 and log2FoldChange >2 (Figure 2B).

To determine the biological significance of DEMFGs, the
chord diagram for GO terms and KEGG pathway were
determined by GOplot (Figure 3). The top ten GO enrichments
(q-value < 0.05) showed vesicles in the molecular functions
of expressed transcripts during development, such as “blood
microparticle”, “tertiary and pigment granule”, “axon terminus”,
“endocytic vesicle”, and “neuron projection terminus.” The
top one of the KEGG pathways was “amyotrophic lateral
sclerosis (ALS).”

The key neighbor genes (first neighbors of twelve) were
discovered by DisNor, among which five DEMFGs (H3F3A, VIM,

LGALS3, ANXA2, and MSN) that are extracellular matrix genes,
GRIA2 that is a cell membrane gene, another five DEMFGs
(SH3BP5, TK1, NUSAP1, GDF15, and GOT1) that are cell
matrix genes, and TP53 is a nucleus gene (Figure 4A). TP53 is
activated by five key genes (CHEK1, 0.54; CDK2, 0.44; MAPK8,
0.42; MAPK14, 0.42; EP300, 0.56), and AURKB inhibits TP53
(score = 0.50). The AKT family induces MDM2 (score = 0.42)
and AKT1 (score = 0.48), TP53 is indirectly activated by MDM2
(score= 0.59), and MDM2 inhibits TP53 (score= 0.83).

The protein-protein interaction (PPI) network was composed
of an expected number of 47 edges and PPI enrichment
p-value = 1.72E-05 by STRING (Figure 4B), which comprised
20 nodes and 78 edges (average node degree of 7.8 and average
local clustering coefficient of 0.698).

FIGURE 2 | Differential gene expression. (A) Venn diagrammatic representation of DEGs by edgR, limma and DESeq2 (q-value < 0.05, logFoldChange >2).
(B) Volcano plot of DEGs analysis.

FIGURE 3 | Function and pathway enrichment analysis. (A) Chord diagram for GO enrichment. (B) Chord diagram for KEGG pathway.
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FIGURE 4 | Interaction of DEMFGs. (A) The gene-gene interaction analysis by DisNor. (B) The protein-protein interaction analysis by STRING.

Prognostic Significance Analysis of
DEMFGs
Univariate cox regression analysis of the DEMFGs was operated,
and six genes (TUBB6, MTHFD2, LYZ, FABP3, SLC25A22, and
RAB15) were marked as prognostic-related genes. We found
significant differences between the high and low risk groups (p-
value = 4.077E-4) via 5-years OS (Figure 5A). The distribution
of six-DEMFGs for GBM patients was displayed by heatmap. The
risk scores of patients in the training group were also ranked, and
survival status (alive/dead) was plotted for each patient on a dot
plot (Figure 5B). The area under the ROC curve (AUC) for the
six-DEMFGs was 0.621, the age-dependent AUC (AUC = 0.632)
indicated that the age score was a strong prognostic indicator
for GBM patients (Figure 5C). The pathological stage, and age
of these 6-DEMFGs were collected to build a nomogram with
the aim of creating a quantitative method for the possibility
prediction of OS at 1, 3, and 5 years for GBM patients
(Figure 5D). We found that “cell adhesion molecules cams,” “cell
cycle,” “chemokine signaling pathway,” “dilated cardiomyopathy,”
“lysosome,” “ribosome,” “RNA degradation,” and “spliceosome”
were significantly enriched in GSEA enrichment analysis (q-
value < 0.05) to identify the potential pathways that differentiate
the high-/low-risk groups, suggesting that these 6-DEMFGs may
influence these pathways and thus influence the survival of GBM
patients (Figure 5E).

Validation of Prognostic-Related Genes
in Oncomine and CGGA Databases
Through the analysis of GBM vs normal tissues by Oncomine,
we found that these prognostic-related genes were over-expressed
not only in brain and CNS cancer but also in many other types
of cancers (Figure 6). A total of 389, 336, 442, 334, 389, and
379 unique analyses for these six prognostic-related genes were
found in the Oncomine database, respectively. There were one,

five and four studies showing a statistically significant increase in
the mRNA expression level of TUBB6, RAB5, and SLC25A22 in
brain and CNS cancer tissues, in comparison with normal tissues.
As for TUBB6 and MTHFD2, two and seven unique analyses of
data with statistical significance revealed higher expression levels
in cancer tissues than in normal tissues. This data suggested that
the expression of TUBB6 and MTHFD2 was markedly higher
in brain and CNS cancer samples than in normal tissues. Only
TUBB6 was listed among the top 1% in GENE RANK of brain
and CNS cancer, and we selected TUBB6 as the key prognostic
gene for the following analysis.

We further tested GBM patient data from CGGA, and
the TUBB6 expression of codel/non-codel (Figure 7A), IDH-
mutant/IDH-wildtype (Figure 7B) and the survival probability
of primary GBM (Figure 7C) were found to show significant
differences (p-value < 0.001), whereas, the survival probability of
recurrent GBM was not significantly different, which shows that
TUBB6 may be a reliable biomarker for primary GBM prognosis.

We used cBioPortal to test the frequency of changes in TUBB6
mutations in GBM. The frequency of mutation was very low,
only 0.01% (35182 unique samples, 286 unique samples with
mutations) (Figure 8A). We analyzed the mutations of TUBB6 in
GBM using the COSMIC database. The pie chart detailed the kind
of mutations, including missense mutations and synonymous
substitutions, the largest proportion of which were missense
mutations, up to 6.99%. Nucleotide changes involved A > C, G,
T; C > A, T, G; G > A, C, T, and T > A, C, G mutations, with the
largest proportion being G > A and G > T (Figure 8B).

TUBB6 Co-expression mRNAs in GBM
The Oncomine database was used to identify the top 233
co-expressed genes of TUBB6 (correlation ≥ 0.50), and the
GEPIA2 database was applied to gain top 199 co-expressed
genes for GBM. Forty common co-expressed genes were found
in the two databases (Figure 9A). To analyze the biological
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FIGURE 5 | Screening and identification of DEMFGs. (A) Kaplan-Meier survival curves of the six-gene risk signature for TCGA-GBM dataset. (B) Heatmap of the
six-DEMFGs in the high-risk and low-risk subgroups for the training set. The six-DEMFGs-based risk score distribution, patient survival status. (C) ROC risk six-gene
risk signature distinguished the clinicopathological features of GBM. (D) Prognostic nomograms predicting the probability of 1-, 3-, and 5-years. (E) GSEA of KEGG
pathways (MsigDB) significantly regulated in DEMFGs, q-value < 0.05 was chosen as cutoff for exploratory data analysis.

characterization of co-expressed genes, we used the ClueGO
method for functional enrichment analysis. The notable
exceptions included prostaglandin synthesis regulation and
dissolution of fibrin clots in pathway enrichment analysis

(q-value < 0.05) (Figure 9B). GO enrichment (q-value)
analysis showed that the biological processes including negative
regulation of coagulation, membrane biogenesis, positive
regulation of fibroblast proliferation were significantly affected
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FIGURE 6 | The mRNA expression patterns of prognostic-related genes in overall cancers. The mRNA expression difference between tumors and normal tissues
were analyzed in Oncomine database. The number in the colored cell represents the number of analyses meeting these thresholds. The color depth was determined
by the gene rank. The red cells indicated that the mRNA levels of target genes were higher in tumor tissues than in normal tissues, while blue cells indicated that the
mRNA levels of target genes are lower in tumor tissues than in normal tissues.

(Figure 9C), consistent with S100 protein binding in the
cellular component (Figure 9D), and osteoclast development
and differentiation, T cell proliferation in immune system
processes (Figure 9E). Collectively, these data indicated an
essential role of TUBB6 in affecting cell development and
proliferation in GBM.

TUBB6 PPI Network Construction and
Analysis of 10 Hub Genes
Using the STRING database, the 40 co-expressed genes were
constructed into a protein-protein interaction network, and
we extracted the most important module using Cytoscape
(CytoHubba plug-in) (Figure 10A). The top ten genes included

ANXA2, LGALS1, LGALS3, S100A6, S100A11, CD44, VIM,
S100A10, FLNA, and MSN. The biological process analysis of hub
genes was further performed by ClueGO plug-in. Particularly,
S100 protein binding was altered, annexins and S100 proteins
are two large but distinct calcium−binding protein families
(Figure 10B). We performed hierarchical clustering of the hub
genes using UCSC Cancer Genomics Browser (Figure 10C),
detecting the concordant expression pattern across 10 genes.
The OS of hub genes was analyzed using the Kaplan-Meier
curve by the CGGA database (mRNA 325). Only four hub
genes exhibited a poorer OS rate in higher expression groups
(p-value < 0.05) (Figure 10D).

To identify the gene association and its co-associated
genes with TUBB6, we performed a correlation analysis
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FIGURE 7 | Prognostic value of TUBB6 for GBM patients in CGGA. TUBB6 expression in different types – codeletion status (A), IDH mutant status (B), and survival
probability (C).

(Supplementary Figure S1). S100A11 and ANXA2
(correlation = 0.75) showed a positive correlation with TUBB6
(correlation > 0.40).

The Importance of TUBB6 and
Co-expressed Genes in Pan-Cancer
The proportions of stromal score, immune score and immune-
infiltrating cells in pan-cancers are shown in Supplementary

Table S1. TUBB6 was significantly correlated with stromal
score in 18 cancer types and with immune score in 17 cancer
types (Supplementary Figure S2). Interestingly, TUBB6 was
significantly correlated with the stromal score in GBM samples
(p-value = 6.99E-04), whereas it was not significantly correlated
with immune score. TUBB6 in ten cancer types was correlated
with M0 macrophages, especially in LGG (p-value = 4.92E-
06) (Supplementary Table S1). TUBB6 in HNSC (head and
neck squamous cell carcinoma) was significantly correlated
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FIGURE 8 | TUBB6 mutations in GBM. (A) Schematic representation of TUBB6 mutations (TCGA) using the cBioportal. (B) The percentages of mutation types of
TUBB6 in GBM were indicated in a pie chart generated from COSMIC database.

with ten immune-infiltrating cells, such as CD8 + T cells
(p-value = 1.42E-07) (Supplementary Table S1). To better
understand the differences in function, GSEA was used to
evaluate TUBB6 in GBM (Supplementary Figure S3). TUBB6
was significantly enriched in the azurophil granule lumen and the
B cell receptor signaling pathway. Next, the heatmap is visually
analyzed the correlation of TUBB6 co-expressed genes in pan-
cancer (Figure 11). DLBC (correlation = 0.61, p-value = 3.96E-
06) and THYM (correlation = 0.61, p-value = 1.65E-13)
were significantly positively correlated with ELF4. TGCT
(correlation = −0.61, p-value = 5.85E-17) was significantly
negatively correlated with EFEMP2.

DISCUSSION

GBM is an aggressive brain tumor with a need for deeper
understanding and new therapeutic approaches in adults and
children. The treatment of GBM is also a formidable challenge,
which is correlated with poor patient prognosis (Meneceur
et al., 2020). Despite the many in-depth studies of GBM
treatment, however, the morbidity and mortality of GBM
remain high (Zhao et al., 2020), and a better understanding
of the tumor genetics of GBM is essential. Thus, finding key
genes and understanding their function in controlling GBM
development are pivotal to successfully curing GBM patients.
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FIGURE 9 | TUBB6 co-expression genes. (A) Venn plot for TUBB6 co-expressed genes between Oncomine (correlation >0.50) and GEPIA2 (top 199).
(B) Reactome and wiki pathway of TUBB6 co-expression genes (the interact 40 genes). (C) Biological process, (D) cellular component, (E) immune system process
of GO enrichment analysis (q-value < 0.05).

This requires the development of suitable GBM biomarkers,
which properly represent the aggressiveness of GBM, can be
detected in the clinics and recapitulate the key characteristics of
the disease.

Significant differences in gene expression associated with
mitochondrial metabolism may show the potential involvement
of mitochondria in GBM-treatment susceptibility. Previous
studies showed that metabolic and mitochondrial genes were
highly correlated with PGC1α in GBM cells (Wong et al.,
2020). Mitochondrial metabolic inhibitors have been reported
to activate a mitochondrion-to-nucleus stress signaling network
that leads to alterations in gene expression, which affects a wide

variety of cellular processes. Mitochondria are key organelles
for cellular bioenergetics and constantly undergo dynamic
remodeling processes, and increased production of reactive
oxygen products is associated with a variety of human disorders
(Goubert et al., 2017). Moreover, there is a lack of research on
mitochondrial metabolism in GBM.

A sufficient supply of energy is essential for the proper
function of the brain, and mitochondria have a pivotal role in
preserving energy homeostasis (Goubert et al., 2017). Therefore,
we linked potential mitochondrial metabolism genes to GBM.
We detected 33 DEMFGs and compared them in GBM tissues
and normal tissues. To better study the biological function, we
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FIGURE 10 | Construction of TUBB6 co-expression genes and analysis of
hub genes. (A) The hub genes of TUBB6 co-expressed genes were
characterized using cytoHubba. (B) The biological process analysis of hub
genes was performed using ClueGO (q-value < 0.05). (C) The hierarchical
clustering of hub genes was constructed using the UCSC online database.
(D) Over survival analysis of hub genes in GBM which is derived on CGGA
database (p-value < 0.05).

performed GO enrichment and KEGG pathway analysis of these
33 DEMFGs. The biological processes of blood vessels were
significantly enriched, such as “blood microparticle,” “endocytic
vesicle,” and “neuron projection terminus”, which may well be
related to tumor angiogenesis. According to the analysis of
univariate cox regression, we evaluated the six genes (TUBB6,
MTHFD2, LYZ, FABP3, SLC25A22, and RAB15) as prognostic-
related genes. MTHFD2 can be targeted by miR-940 to inhibit
glioma progression via inhibition of mitochondrial metabolism
(Xu et al., 2019), and is highly expressed in GBM patients

with a long survival time. LYZ is marked as the aging-related
gene which is controlled by NLRP3 in glioma progression
(Li and Liu, 2015). HIF1A induces FABP3 to facilitate FA
uptake in GBM cell lines (Chen and Li, 2016). SLC25A22
is important as principal gate for glutamate homeostasis in
astrocytes (Goubert et al., 2017). RAB15 interacts with FGFR1
involved in the recycling of glioma cell receptors and can
be used as a pharmacological target to inhibit or down-
regulate the proliferation of tumors by stimulating degradation
(Giulietti et al., 2017). These results show that this model
has considerable robustness in determining the prognosis
of GBM patients.

The key prognostic gene TUBB6 (Tubulin Beta 6 Class V)
is mapped on chr18:12,307,669-12,344,320 and is listed among
the top 1% in GENE RANK of brain and CNS cancer. ROC
curves of 1-, 3-, and 5-years survival rates of glioma patients
show the accuracy of TUBB6 in the prognostic prediction of
glioma patients. TUBB6 is used as a prognostic biomarker in
many cancers, such as gastric cancer (Bai et al., 2020), ovarian
cancer (Li et al., 2017), prostate cancer (Lin et al., 2019) and
triple-negative breast cancer (Chung et al., 2017). However,
the key role of TUBB6 in GBM has not been investigated
yet. We validated TUBB6 with pathological features in GBM.
As IDH mutation preceded 1p/19q codeletion, IDH1/2-mutant
tumors are presented with or without 1p/19q codeletion (Arita
et al., 2018). Primary GBM is the most frequently occurring
GBM (90–95%) that occurs de novo without the IDH1mt, while
secondary GBM has the IDH1mt (5–10%) and originates from
glioma stage II and III (Molenaar et al., 2018). In this study,
highly expressed TUBB6 with 1p/19q non-codeletion and IDH
wild-type was found in GBM patients in the CGGA database.
Interestingly, the expression of TUBB6 was higher in IDH wild-
type GBM than IDH mutant GBM. The survival probability
of primary GBM is significantly different (p-value < 0.001)
compared to recurrent GBM. It is possible that in recurrent
GBM patients TUBB6 is not a risk assessment indicator,
which shows that TUBB6 may be a reliable biomarker for
primary GBM prognosis.

We found 40 TUBB6 co-expressed genes in two databases.
MSN may be the most favorable target in cell proliferation among
these hub genes. ANXA2 plays key roles in the development
of many malignancies and was shown in our study to be
essential for GBM development (Tu et al., 2019). Humans
and mice ANXA2 proteins are 97.6% identical. A previous
study reported that S100A11 participates with ANXA2 to
facilitate progression of GBM and to stabilize ANXA2 in GBM
cells (Tu et al., 2019). ANXA2 is marked as core TUBB6
co-expressed gene in this study. On the basis of functional
enrichment analysis, we found that ANXA2 was associated
with regulating cell development, fibroblast proliferation and
coagulation. ANXA2-S100A10 complex plays a key role in the
progression of angiogenesis (Tantyo et al., 2019). ANXA2 and
S100A11 may serve as prognostic markers in the validation
of the CGGA database for survival in GBM. The correlation
between TUBB6 and ANXA2/S100A11 was over 0.4, the
higher correlation was S100A11-ANXA2 (correlation = 0.75).
More studies are needed to identify the mechanism by which
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FIGURE 11 | The heatmap of TUBB6 coexpression across cancer types.

TUBB6 can be used as a therapeutic target in GBM and
to find out how TUBB6 can affect the function of S100A11
and ANXA2 in GBM.

CONCLUSION

In summary, we have confirmed the up-regulation of the
expression of TUBB6 and its partners, ANXA2 and S100A11 in
GBM and validated their importance as prognostic factors in
primary GBM. We speculate that TUBB6 is a viable molecular
target for the diagnosis and treatment of GBM.
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