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Abstract The well-known formula for the final size of an epidemic was pub-
lished by Kermack and McKendrick in 1927. Their analysis was based on a
simple susceptible-infected-recovered (SIR) model that assumes exponentially
distributed infectious periods. More recent analyses have established that the stan-
dard final size formula is valid regardless of the distribution of infectious periods,
but that it fails to be correct in the presence of certain kinds of heterogeneous mix-
ing (e.g., if there is a core group, as for sexually transmitted diseases). We review
previous work and establish more general conditions under which Kermack and
McKendrick’s formula is valid. We show that the final size formula is unchanged
if there is a latent stage, any number of distinct infectious stages and/or a stage
during which infectives are isolated (the durations of each stage can be drawn from
any integrable distribution). We also consider the possibility that the transmission
rates of infectious individuals are arbitrarily distributed—allowing, in particular,
for the existence of super-spreaders—and prove that this potential complexity has
no impact on the final size formula. Finally, we show that the final size formula
is unchanged even for a general class of spatial contact structures. We conclude
that whenever a new respiratory pathogen emerges, an estimate of the expected
magnitude of the epidemic can be made as soon the basic reproduction number
R0 can be approximated, and this estimate is likely to be improved only by more
accurate estimates of R0, not by knowledge of any other epidemiological details.

Keywords Epidemic models · Final size · Arbitrary stage
durations · Integro-differential equations 1991 MSC:92D30

1. Introduction

Whenever a serious infectious disease emerges or re-emerges in a human popula-
tion, a matter of immediate interest is the likely magnitude of the outbreak. This
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is often called the expected final size of the epidemic (Bailey, 1975; Anderson and
Watsons, 1980; Anderson and May, 1991; Andersson and Britton, 2000; Diekmann
and Heesterbeek, 2000), which we denote Z. Of course, if the emergent pathogen
becomes endemic in the population then there will never really be a “final” size,
but in that case the matter at issue is the likely magnitude of the first major wave
of cases.

To our knowledge, a formal, mathematical argument leading to an estimate of
an epidemic’s expected final size Z was first published in the landmark 1927 pa-
per by Kermack and McKendrick (1927). The formula for Z that Kermack and
McKendrick obtained [Eq. (5) below] depends only on the basic reproduction
number, R0 (the expected number of secondary cases caused by a typical pri-
mary case in a fully susceptible population). However, without further analysis, it
is unclear to what extent this formula depends on the particular assumptions that
Kermack and McKendrick made in constructing their model, and hence whether
it bears a strong relationship to the final size in realistic situations.

One implicit assumption of the Kermack and McKendrick (1927) analysis is that
infectious periods are exponentially distributed. Anderson and Watsons (1980)
showed that the final size formula remains valid if infectious periods follow a
Gamma distribution. In Section 1.3 of their book, Diekmann and Heesterbeek
(2000) generalized this statement to cover an arbitrary distribution of infectious
periods.

Another key assumption of the Kermack and McKendrick (1927) analysis is that
the host population is homogeneously mixed. It is well known that if this assump-
tion is dropped then the final size will not necessarily be given by the standard
formula. In particular, the existence of a core group, as for sexually transmitted
diseases, gives rise to a different formula for the final size (Anderson and May,
1991; Diekmann and Heesterbeek, 2000).

In this paper, we explore the generality of the standard Kermack-McKendrick
final size formula (5). We begin with a pedagogical review of the main results
that have been obtained previously, adding model structure in steps. We then pro-
ceed to generalize these results in three new directions, showing that the standard
formula remains valid (i) regardless of the number of distinct infectious stages,
(ii) if the mean contact rate is itself arbitrarily distributed and (iii) for a large
class of spatially heterogeneous contact structures. We conclude that the Kermack-
McKendrick formula (5) applies in great generality, making it an extremely useful
relationship in practice.

2. The final size in the standard SIR model

The standard SIR model (Anderson and May, 1991; Diekmann and Heesterbeek,
2000; Brauer and Castillo-Chavez, 2001) is represented by a system of three ordi-
nary differential equations,

dS
dt

= −βSI, (1a)

dI
dt

= βSI − γ I, (1b)
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dR
dt

= γ I. (1c)

Here, S, I, and R denote the proportions of the population that are susceptible, in-
fectious and recovered, respectively. Recovered individuals are assumed to be im-
mune to reinfection. Since S + I + R = 1, one of the three equations is redundant.
The two parameters in the model are the transmission rate (β) and the recovery
rate (γ ). The mean infectious period is T = 1/γ . The basic reproduction number
is R0 = βT. The proportion of the population that is infected can increase, and
hence an epidemic can occur, if and only if R0 > 1.

In Eqs. (1), recruitment of new susceptibles through birth or immigration is ig-
nored, as is loss of individuals through mortality or emmigration. This approxima-
tion is reasonable provided the timescale of the epidemic is much shorter than the
timescale over which demographic turnover occurs.

No recruitment ensures that the disease will eventually burn out, i.e., I(∞) =
0. To see formally that we must have I(∞) = 0, note that the positive orthant is
invariant so all solutions of Eqs. (1) lie in the non-negative, bounded set defined
by S, I, R ≥ 0 and S + I + R = 1. Observing that

d
dt

(S + I) = −γ I, (2)

we see that S + I is decreasing whenever I > 0. However, S + I is bounded below
by 0; hence it has a limit. Moreover, Eq. (2) implies that d

dt (S + I) is bounded
because I is bounded. Hence limt→∞ d

dt (S + I) = 0, so Eq. (2) yields I(∞) = 0.
This model (1) is sufficiently simple that an exact solution can be obtained for

the phase portrait. Forming dI/dS and integrating yields

I = I(0) + S(0) − S + 1
R0

ln [S/S(0)]. (3)

An epidemic ends when no infectives remain. Consequently, we can find the final
size Z by setting I = 0 in Eq. (3) and solving for Z = S(0) − S. This yields the
implicit relation

Z = S(0)
(
1 − e−R0[Z+I(0)]) (4)

(an explicit form is given in Appendix A).
The general formula (4) applies regardless of the proportions of the population

that are susceptible and infective initially. A less than fully susceptible population
must be taken into account if some individuals have been vaccinated or retain
immunity from previous exposures. However, in the important special case where
a new pathogen enters a fully susceptible population, we have both I(0) � 1 and
S(0) ∼ 1. In the limit I(0) → 0, S(0) → 1,

Z = 1 − e−R0 Z, (5)

which is the usual final size formula.
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The practical utility of the final size formula would appear to be limited by the
fact that it is derived from the overly simplistic standard SIR model. In the re-
mainder of this paper we show that, in fact, the formula is valid under very gen-
eral circumstances. We generalize the model in several steps, in order to explain
the ideas clearly and to avoid exposing the reader to a notational burden at the
outset.

3. Latency and multiple infectious stages

The standard SIR model ignores any delay between the time an individual is in-
fected and the onset of infectiousness. This latent period is often substantial com-
pared with the infectious period (Anderson and May, 1991). In addition, some
pathogens (notably HIV) give rise to a sequence of distinct stages of infection,
each yielding a different transmission rate (Redfield et al., 1986; Seligmann et al.,
1987).

It is common to incorporate latency by including an “exposed” class (E), yield-
ing an SEIR model (Schwartz and Smith, 1983; Earn et al., 2000a). However, not-
ing that the exposed stage can be regarded as an infectious stage during which the
transmission rate happens to be zero, we lose no generality by restricting attention
to multiple infectious stage models, which we refer to as SInR models if there are
n infectious stages.

Generalizing the SIR model (1) to include multiple infectious stages, the equa-
tions for an SInR are

Ṡ = −S
n∑

j=1

β j Ij , (6a)

İ1 = S
n∑

j=1

β j Ij − γ1 I1, (6b)

İi = γi−1 Ii−1 − γi Ii , i = 2, . . . , n, (6c)

Ṙ = γn In, (6d)

where Ii is the density of individuals in the ith infectious stage, βi is the transmis-
sion rate for contact with individuals in this stage, and 1

γi
is the mean duration of

this stage.
The sum of Eqs. (6) is zero, implying that S + ∑n

i=1 Ii + R is invariant (and
hence that Eq. (6d) is superfluous, as in the basic SIR model). To see that the
final size is well-defined in this model, we generalize the argument given for
the simple SIR model in Section 2. Let Jk = S + ∑k

i=1 Ii . Then d
dt Jk = −γkIk,

so Ik > 0 implies Jk is decreasing and limt→∞ d
dt Jk = 0. Hence Ik(∞) = 0 for

all k.
Before a new disease is introduced into a population, everyone is suscep-

tible, i.e., S = 1, I1 = · · · = In = 0 and R = 0, which is known as the disease
free equilibrium (DFE). The stability of the DFE determines whether the
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new disease can cause an epidemic. Hyman et al. (1999) proved that the
quantity

R0 =
n∑

i=0

βi

γi
, (7)

determines the stability of the DFE, i.e., the DFE is locally stable if R0 < 1 and
unstable if R0 > 1. Note R0 as defined by (7) is the sum of the products of the
transmission rate and mean duration in each infectious stage, i.e., it is the basic
reproduction number for this model.

We now proceed to show that Eqs. (6) yield the same final size formula as (5).
Anderson and Watsons (1980) established this for the special case in which each
stage has the same transmission rate and duration (βi = β and γi = γ for all i).
Their method can easily be generalized to arbitrary βi and γi as follows:

Let Gk = ∑n
i=k+1 Ii + R, k = 1, . . . , n − 1 and Gn = R. Then Eqs. (6c) and (6d)

imply d
dt Gk = γkIk for each k = 1, . . . , n. Consequently, Eq. (6a) implies that the

function

F(t) = log S(t) +
n∑

k=1

βk

γk
Gk(t) (8)

is a constant of the motion. For a newly invading disease, S(0) → 1, Ik(0) → 0 and
R(0) → 0, so F(0) = 0. On the other hand, Ik(∞) = 0 implies Gk(∞) = R(∞) for
all k. Hence,

F(∞) = log S(∞) +
n∑

k=1

βk

γk
R(∞) = F(0) = 0. (9)

Recalling that Z = R(∞) = 1 − S(∞), and Eq. (7), the final size formula Eq. (5)
immediately follows.

4. Gamma-distributed stage durations

Consideration of a special case of the model in the previous section allows us to
infer that the distribution of stage durations in any infectious stage need not be ex-
ponentially distributed. The final size formula (5) holds true if the stage durations
follow a Gamma distribution, which has probability density

gk,φ(t) = φk

�(k)
e−φt tk−1, t > 0. (10)

Here, the shape parameter k is a positive integer and the scale parameter φ > 0.
The mean is k/φ and the variance is k/φ2. This family of distributions includes
the exponential distribution (k = 1), nearly normal distributions (k large) and the
Delta distribution, which yields a fixed duration (k → ∞).
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The term −γ I in Eq. (1b) for the simple SIR model implies that the dura-
tions of infectious periods are exponentially distributed with mean 1/γ (Brauer
and Castillo-Chavez, 2001). Since the sum of exponentially distributed random
variables is Gamma distributed, a standard trick (Anderson and Watsons, 1980;
Lloyd, 2001a,b) enables us to replace an exponential distribution with mean 1/γ

by a Gamma distribution gk,kγ (which also has mean 1/γ ). The trick is to replace a
single infectious stage with k identical exponentially distributed substages of mean
duration 1/(kγ ). The model then has precisely the form the SInR model (6), but
with the sequence of infectious stages being mathematical artefacts rather than
biologically meaningful.

Since this substage trick can be applied equally well to any infectious stage,
Anderson and Watson’s (1980) conclusion that the final size in an SIR model with
Gamma distributed infectious periods is given by the usual formula (5) now gen-
eralizes to an arbitrary number of stages, each with Gamma distributed durations.

5. Kermack and McKendrick’s special case

Although expressed differently, in their original paper Kermack and McKendrick
(1927) studied a particular limit of the Gamma distributed multiple stage model
described in the previous section.

Suppose we have a sequence of n infectious stages, each with the same, fixed
stage duration τ . Thus, this is the limit k → ∞ in the Gamma distribution (10),
with φ = 1/τ . During stage i , the transmission rate is βi (i = 1, . . . , n). If we now let
the number of infectious stages increase (n → ∞) and the length of each stage de-
crease (τ → 0), keeping the total infectious period (T = nτ ) constant, then we ar-
rive at a model in which the transmission rate (β) varies continuously through the
infectious period. In such a model, an individual’s infectivity depends on his/her
stage-age, i.e., the amount of time since initial infection.

Using a stage-age SIR formulation, Kermack and McKendrick (1927) derived
the final size formula (5) and showed that its form is independent of how the trans-
mission rate depends on stage-age.

6. Arbitrarily distributed stage durations

We have seen that the final size formula (5) is the same if stage durations are
distributed according to any member of the family of the Gamma distributions
(10). This suggests that any distribution of stage durations will yield the same final
size.

Unlike the situation for Gamma distributed infectious periods, with an arbitrary
distribution the time-evolution of the infectious class can no longer be expressed
using ordinary differential equations (ODEs). Instead, we must construct a system
of integro-differential equations (Feng and Thieme, 2000). Let U(t) be the rate at
which individuals become infectious (enter class I) at time t ≥ 0, i.e.,

U(t) = βS(t)I(t). (11a)
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The equation for the susceptible class is the same as in the standard SIR model,

dS
dt

= −βSI. (11b)

We also define U(t) for t < 0 since this will allow us to specify the initial conditions.
For t < 0, U(t) is the rate at which individuals who were still infectious at the
initial time (time 0) became infectious at time t . Hence, the number of infectious
individuals at time t = 0 is

I(0) =
∫ 0

−∞
U(t) dt. (11c)

Let f (t) be the probability density of the infectious period (so, for the special case
of a Gamma distribution, f (t) is given by gk,φ(t) in Eq. 10). For an individual who
becomes infectious at time τ ≥ 0, the probability density that s/he recovers (leaves
the I class) at time t > τ is

l(τ, t) = f (t − τ ), if τ ≥ 0. (11d)

However, for individuals who became infectious at time τ < 0, the probability den-
sity to leave class I at time t must be conditioned by still being infectious at time 0,

l(τ, t) = f (t − τ )∫ ∞
−τ

f (s) ds
, if τ < 0. (11e)

Hence, the rate of change of the number of infectious individuals at time t is

dI
dt

= U(t) −
∫ t

0
f (t − τ )U(τ ) dτ −

∫ 0

−∞
U(τ )l(τ, t) dτ. (11f)

Those who leave class I enter class R, hence

dR
dt

=
∫ t

0
f (t − τ )U(τ ) dτ +

∫ 0

−∞
U(τ )l(τ, t) dτ. (11g)

In Appendix B, we show that if the infectious period is exponentially distributed
then Eqs. (11) reduce to the the standard SIR model (1).

As in the standard SIR model (1), the population size is invariant (S + I + R =
1), S ≥ 0, and S(∞) exists. Establishing that I(∞) = 0 (so the disease will burn
out regardless of the infectious period distribution) requires a little more work.
Since f (t) and l(τ, t) are probability densities,

∫ ∞
0 f (t) dt = ∫ ∞

0 l(τ, t) dt = 1; con-
sequently, switching the order of integrations, we find

∫ ∞

0

∫ t

0
f (t − τ )U(τ ) dτ dt =

∫ ∞

0
U(t) dt
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and

∫ ∞

0

∫ 0

−∞
l(τ, t)U(τ ) dτ dt =

∫ 0

−∞
U(τ ) dτ = I(0).

Next, integrating from 0 to ∞ on both sides of Eq. (11f), we have I(∞) = 0.
To relate the final size in the present model to the usual formula (5), we need an

expression for the basic reproduction number R0. Feng and Thieme (2000) have
shown that R0 = βT, where T = ∫ ∞

0 t f (t) dt is the mean infectious period.
We now divide Eq. (11b) by S and integrate, yielding

log
S(∞)
S(0)

= −β

∫ ∞

0
I(t) dt. (12)

Therefore, the usual final size formula (5) will follow if
∫ ∞

0 I(t) dt = TZ. This is
plausible, intuitively, since the integral

∫ ∞
0 I(t) dt sums all infectious individuals,

weighted by the time they are infectious; this must also equal the mean infectious
period T times the number of individuals infected over the course of the entire
epidemic (the final size Z). More rigorously, in Appendix B we prove

Lemma 6.1. For the model specified by Eqs. (11), in the limit I(0) → 0,

∫ ∞

0
I(t) dt = T

∫ ∞

0
U(t) dt.

Noting now that

∫ ∞

0
U(t) dt =

∫ ∞

0
βS(t)I(t) dt = S(0) − S(∞) = Z,

we have
∫ ∞

0 I(t) dt = TZ, as required. Thus, we have

Theorem 6.1. Consider the SIR model with arbitrary infectious period distribu-
tion, specified by Eqs. (11). If the initial number of infectious individuals is small
(I(0) → 0), then the final size of the epidemic (Z) is given by the classical formula
(5). In this formula, the basic reproduction number is R0 = βT, where T is the mean
infectious period.

7. Arbitrarily distributed durations in multiple stages

With modest additional effort, we can generalize Theorem 6.1 to the multiple stage
SInR model, i.e., the usual final size formula (5) is still valid if there are multiple
infectious stages and the durations of each stage are arbitrarily distributed. Recall
that latent stages can be considered infectious stages with zero transmission rate, so
we do not make any explicit reference to latency. As in all the situations considered
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above, we assume that vital dynamics (births and deaths) can be ignored and that
recovery entails lifelong immunity.

Suppose the ith infectious stage has duration distribution with probability den-
sity fi (t) and mean Ti . Thus, in the special case that durations in each stage follow
Gamma distributions (10), we have fi (t) = gki φi (t) and Ti = 1/φi .

The the rate of change of the susceptible class is given by Eq. (6a), as when all
stage durations are exponentially distributed. Similar to Section 6, the equation for
each infectious stage can be written

İi = Ui (t) −
∫ t

−∞
li (τ, t)Ui (τ ) dτ, i = 1, 2, . . . , n, (13a)

where Ui (t) is the number of individuals entering class Ii at time t , and

li (τ, t) =
{

fi (t − τ ), if τ ≥ 0,
fi (t−τ )∫ ∞

−τ
fi (s) ds

, if τ < 0.
(13b)

Similar to Eq. (11a),

U1(t) = S
n∑

i=1

βi Ii . (13c)

Individuals who leave infectious stage i , i < n, enter stage i + 1, hence

Ui+1(t) =
∫ t

−∞
li (τ, t)Ui (τ ). (13d)

The initial conditions are specified by

Ii (0) =
∫ 0

−∞
Ui (t) dt. (13e)

Individuals who leave the last infectious stage recover (into class R), hence

Ṙ = Un+1. (13f)

When the infectious periods and the latent period are exponentially distributed,
i.e., fi (t) = γi e−γi t , the technique introduced in Appendix B can be applied to
show that the model (13) is indeed the standard multiple-stage SIR model.

In their analysis of the SInR model with arbitrarily distributed stage durations
(13), Feng and Thieme (2000) have shown that the basic reproduction number is

R0 =
n∑

i=1

βi Ti (14)

and that the disease free equilibrium is unstable if and only if R0 > 1.
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Similar to previous sections, we find that S + ∑
i Ii + R = 1 is invariant, S ≥ 0,

and S(∞) exists. Integrating Eq. (13a) from 0 to t and and switching the order of
integrations, we have I(t) ≥ 0; similarly, integrating from 0 to ∞, we have I(∞) =
0. Thus, the disease will also eventually burn out.

Theorem 7.1. Consider the multiple stage SInR epidemic model with arbitrarily
distributed stage durations, specified by Eqs. (13). If the initial number of infectious
individuals is suffciently small, i.e., in the limit

∑
i Ii (0) → 0, the final size Z is given

by the unique solution of Eq. (5), or explicitly by Eq. (A.2), in which R0 is given by
Eq. (14).

Proof. To prove this, we divide by S on both sides of (6a) and integrate with
respect to time,

log
S(∞)
S(0)

= −
∑

i

βi

∫ ∞

0
Ii dt. (15)

Using Lemma 6.1, Eq. (15) becomes

log
S(∞)
S(0)

= −
∑

i

βi Ti

∫ ∞

0
Ui (t) dt. (16)

Suppose Ii (0) = εi � 1. Switching the order of integration,

∫ ∞

0

∫ 0

−∞
Ui (τ )l(τ, t) dτ dt =

∫ 0

−∞
Ui (τ ) dτ = Ii (0) = εi � 1.

Also, integrating Eq. (13d) and switching the order of integrations, we have

∫ ∞

0
Ui+1(t) dt =

∫ ∞

0

∫ t

0
fi (t − τ )Ui (τ ) dτ dt, (17)

=
∫ ∞

0
Ui (τ )

∫ ∞

τ

fi (t − τ ) dt dτ, (18)

=
∫ ∞

0
Ui (τ ) dτ, (19)

i.e., summed over all time, the number of individuals who enter the (i + 1)th stage
is the same as the number who enter the ith stage. We then integrate Eq. (6a).
From the definition of U1(t) in Eq. (13c), we have

S(∞) − S(0) = −
∫ ∞

0
U1(t) dt = −

∫ ∞

0
Ui (t) dt
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for all i = 1, . . . , n. Notice that the final size Z = S(0) − S(∞), so Eq. (16) becomes

log
(

1 − Z
S(0)

)
= −

∑
i

βi Ti Z.

Finally, since R0 = ∑
i βi Ti [Eq. (14)], we have

log
(

1 − Z
S(0)

)
= −R0 Z.

8. Super-spreaders

During the epidemic of severe acute respiratory syndrome (SARS) in 2003
(Poutanen et al., 2003; Low and McGeer, 2003), one aspect of observed transmis-
sion that received a great deal of attention was the existence of super-spreaders
(WHO SARS Update 27, 2003), i.e., individuals who infect many more peo-
ple than the average (e.g., at least an order of magnitude greater than R0).
In this section, we prove that the existence of the type of super-spreaders that
occurred during the SARS outbreak in 2003 has no effect on the final size
formula.

One mechanism for the generation of super-spreaders is that the infectious pe-
riod distribution could be bimodal, such that a small proportion of individuals are
infectious much longer than average. This situation is already covered by Theorem
7.1, which deals with arbitrary distributions of stage durations.

In this section, we consider a different type of generalization of the SIR model.
In all of the models we have considered thus far, it has been assumed implic-
itly that all infectious individuals have the same transmission rate. If some in-
dividuals actually have a much higher than average transmission rate then they
will be super-spreaders. This could arise, for example, because of individual
variation in viral load (reflecting variation in immune response) or as the re-
sult of chance occurence of environmental circumstances that promote disease
spread (as apparently occurred during the SARS epidemic (WHO SARS Up-
date 33, 2003)). Whatever the origin, we focus here on variation in transmission
rate that is manifested only after an individual is infected. In the following sec-
tions we consider the effects of intrinsic variation in contact rates among indi-
viduals, which results from inhomogeneous contact network structure in the host
population.

We now proceed to develop and analyze an SIR model with a distribu-
tion of transmission rates and show that the usual final size formula (5) ap-
plies. Extension of our results to a multiple stage SInR model is straightfoward
and similar to the way we generalized our results for the SIR with arbitrary
infectious period distribution to an SInR model with arbitrary stage duration
distributions.

Let I(β, t) be the distribution (at time t) of infectious individuals that have
transmission rate β. Note that we assume implicitly that a given individual retains
the same transmission rate throughout his/her infectious period, and hence that
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this transmission rate is determined as soon as infection occurs. Let q(β) be the
probability that a newly infectious individual has transmission rate β. Thus, the
mean transmission rate is

〈β〉 =
∫ ∞

0
q(β) dβ. (20)

The rate of change of the proportion of the population that is susceptible is

Ṡ = −S
∫ ∞

0
β I(β, t) dβ. (21a)

Upon infection, individuals leave the susceptible class S and enter the infectious
class I, a proportion q(β) of them having a transmission rate β. Upon recovery,
they leave the infectious class at rate γ . Thus,

İ(β, t) = q(β)S
∫ ∞

0
β I(β, t) dβ − γ I(β, t). (21b)

Ṙ = γ

∫ ∞

0
I(β, t) dβ. (21c)

In order to ensure that the model is well posed, we must establish that if I(β, 0) > 0
then I(β, t) > 0 for all time. Suppose this is not true. Then there exists β̃ and T
such that

∫ ∞
0 I(β, T) dβ > 0, I(β̃, t) > 0 for t < T, but I(β̃, T) = 0. Substituting

these conditions into Eq. (21b), we obtain İ(β̃, T) > 0. But this contradicts the
hypothesis that I(β̃, t) decreases from I(β̃, 0) > 0 to I(β̃, T) = 0. Hence I(β, t) >

0 for all t ≥ 0.
We now check that the disease will always burn out in this model, as expected.

Denoting Itot(t) = ∫ ∞
0 I(β, t) dβ, Eqs. (21) imply

d
dt

(S + Itot) = −γ Itot, (22)

which is strictly negative. Hence, S + Itot is decreasing and bounded below by zero.
Hence limt→∞ d

dt (S + Itot) = 0, i.e., Itot(∞) = 0.
For the model specified by Eqs. (21), the basic reproduction number is

R0 =
∫ ∞

0

β

γ
q(β) dβ = 〈β〉

γ
. (23)

In Appendix B,we prove that the disease free equilibrium (DFE) is unstable if and
only if R0 > 1.

To find the final size, we divide by S on both sides of (21a) and integrate,

log
S(∞)
S(0)

=
∫ ∞

0

∫ ∞

0
β I(β, t) dβ dt =

∫ ∞

0
β

∫ ∞

0
I(β, t) dt dβ. (24)
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Substituting Eq. (21a) in Eq. (21b) we can write

İ(β, t) = −q(β)Ṡ − γ I(β, t).

Integrating this we obtain

I(β,∞) − I(β, 0) = −q(β)[S(∞) − S(0)] − γ

∫ ∞

0
I(β, t) dt.

Since we have established that I(β,∞) = 0, we can write

γ

∫ ∞

0
I(β, t) dt = −q(β)[S(∞) − S(0)] + I(β, 0). (25)

Substituting (25) into (24) and using (23), we obtain

log
S(∞)
S(0)

= −[S(∞) − S(0)]R0 + 1
γ

∫ ∞

0
β I(β, 0) dβ.

Hence, since the final size Z = S(0) − S(∞), we have

Theorem 8.1. Consider the SIR model with arbitrarily distributed transmission
rates, as specified by Eqs. (21). In the limit that the initial proportion of individuals
that are infectious is small, i.e.,

∫ ∞
0 β I(β, 0) dβ → 0, the final size of the epidemic is

given by the usual formula (5) with R0 given by Eq. (23).

It is possible to generalize this theorem for an SInR model with arbitrarily dis-
tributed stage durations and arbitrarily distributed transmission rates in each stage.
We do not go through the details because no new ideas are required. With Theo-
rems 7.1 and 8.1 in hand, the extra effort required for the generalization is merely
one of keeping track of notation.

9. Spatial structure

In all of the models that we have discussed so far, we have assumed that the pop-
ulation is homogeneously mixed. In the remainder of this paper, we explore the
significance of heterogeneous mixing for the final size formula. In the present sec-
tion we identify an important class of spatially structured models for which the
standard formula (5) remains valid.

A simple but important example of heterogenous mixing occurs if the popu-
lation is divided into a number of spatially isolated patches (e.g., cities), often
called a metapopulation (Hanski and Gilpin, 1997). In ecological models, coupling
among patches in a metapopulation usually occurs as a result of migration (Earn
et al., 2000b). In the present context, inter-patch coupling occurs because individ-
uals travel temporarily from their home patch to other patches. On such journeys,
susceptible individuals might contact infectious individuals and become infected,
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and infectious individuals might contact susceptibles and infect them. If we restrict
attention to a single infectious stage with exponentially distributed infectious pe-
riod then the model is specified as follows.

Ṡi = −Si

n∑
j=1

βi j Ij , (26a)

İi = Si

n∑
j=1

βi j Ij − γ Ii , (26b)

Ṙi = γ Ii . (26c)

Here, Si , Ii , and Ri (i = 1, . . . , n) are the proportions of the population in patch
i that are susceptible, infectious recovered, respectively. Summing Eqs. (26), we
see that Si (t) + Ii (t) + Ri (t) = 1 is invariant in all patches. We denote by Ni the
number of individuals in patch i , so the total population size is N = ∑

i Ni . It is
also convenient to use B = (βi j ) to denote the n × n transmission matrix.

Similar to our analysis of other models in previous sections, it is straightfor-
ward to prove that Si (∞), Ri (∞), Ii (∞) exist, that Si (∞) + Ri (∞) = 1 and that
Ii (∞) = 0. Since βi j ≥ 0, the dominant eigenvalue λ of B is real and positive (Horn
and Johnson, 1985). If we linearize the model (26) at the disease free equilibrium
(DFE) (Si = 1, Ii = 0, Ri = 0), we see that the stability of the DFE is determined
by λ. If λ/γ > 1, then the DFE is unstable, otherwise it is stable. Thus, the thresh-
old for exponential growth of cases (an epidemic) is determined by the value of
R0 = λ/γ , which can be interpreted as the basic reproduction number (van den
Driessche and Watmough, 2002).

The final size in patch i is Zi = Si (0) − Si (∞). We can obtain a system of n cou-
pled algebraic equations for the Zi if we divide by Si on both sides of Eq. (26a)
and integrate from 0 to ∞. These algebraic equations contain

∫ ∞
0 Ii dt , which can

be eliminated by integrating Eq. (26c) and noting that Zi = Ri (∞) − Ri (0). In the
limit Ii (0) → 0, Si (0) → 1, we obtain

log(1 − Zi ) = −
∑

j

βi j

γ
Zj , i = 1, . . . , n. (27)

These equations form a special case of a more general final size formula discussed
by Diekmann and Heesterbeek (2000) (exercises 6.17 and 6.19). In their solution
to exercise 6.19, Diekmann and Heesterbeek (2000) sketch an argument that im-
plies that if R0 > 1 then there is a unique non-trivial (i.e., non-zero) solution to
Eqs. (27).

The final size for the whole metapopulation, Z, is not in general the simple av-
erage of the Zi ’s in Eq. (27). Rather, each Zi must be weighted by the population
size Ni of patch i , i.e.,

Z =
n∑

i=1

Ni

N
Zi . (28)
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Consequently, there will always be particular values of the Ni that make Z in
Eq. (28) equal to the solution of the standard formula (5). However, since pop-
ulation sizes are given a priori, the problem of interest is to find necessary and
sufficient conditions on the transmission matrix (B) that ensure that the sum in
Eq. (28) is equal to the final size obtained from the standard formula (5), regard-
less of the values of the Ni .

In Eq. (28), Z will have no dependence on the patch population sizes if and and
only if

Z1 = Z2 = · · · = Zn = Z. (29)

Given this, Eq. (27) implies

n∑
j=1

βi j = β = constant, (30)

i.e., the transmission rate is the same in all patches. If, on the other hand, we start
with Eq. (30) as an assumption, then inserting Eq. (29) in Eq. (27) yields the stan-
dard final size formula (5). Thus, Eq. (27) and Eq. (5) yield the same final size Z
for the population as a whole if and only if Eq. (30) is satisfied.

Restricting attention to situations in which the transmission rate is the same
in every patch may seem to be an extremely stringent constraint. In fact, this
is often the situation of interest. For example, individuals who normally reside
in Boston, Philadelphia or New York can expect to contact similar numbers of
people each day, even though the New York metropolitan area has a popula-
tion that is several times larger than the other two. More generally, if patches
represent large cities in a given country, then it is reasonable to expect that the
number of contacts an individual has will not depend strongly on the size of the
city.

Given Eq. (30), we can write

βi j = β Pi j , (31)

where Pi j is the probability, for an individual in patch i , that a given contact is with
an individual in patch j , and β is the transmission rate (the product of the number
of contacts per unit time and the probability that a contact between a susceptible
and an infectious individual leads to transmission). Note that since the rows of the
matrix P are probability distributions, it follows that

n∑
j=1

Pi j = 1, i = 1, . . . , n, (32)

i.e., P is a stochastic matrix (Horn and Johnson, 1985).
For convenience, we make the mild assumption that Pi j > 0 for all i and j , i.e.,

for any pair of patches, there is a non-zero probability that residents of the two
patches will come into contact. It then follows that if the final size Z is positive
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then the final size Zi is strictly positive in every patch. To see this, note that if
Zi = 0 for some i then Eq. (27) implies

∑
j 
=i

βi j Zj = − log(1 − Zi ) = 0. (33)

Since Pi j > 0 implies βi j > 0, Eq. (33) implies Zj = 0 for all j .
Since P is a positive, stochastic matrix, its largest eigenvalue is 1 (Horn and

Johnson, 1985). Consequently, the largest eigenvalue of B = β P is β and the basic
reproduction number is R0 = β

γ
.

Therefore, we have

Theorem 9.1. Consider the multi-patch SIR epidemic model specified by Eqs. (26).
Suppose the transmission rate in each patch is the same, i.e.,

∑n
j=1 βi j = β, for each

i . Then, in the limit that the initial proportion of individuals that are infectious is
small, i.e., Ii (0) → 0 for each i , the final size Z of an epidemic is given implicitly by
Eq. (5), or explicitly by Eq. (A.2), where R0 = β

γ
.

At this point, it will come as no surprise that with some effort in keeping track
of notation, Theorem 9.1 can be generalized to a multi-patch SInR model with ar-
bitrarily distributed stage durations and arbitrarily distributed transmission rates.

Theorem 9.2. For a multi-patch SInR model with arbitrarily distributed stage du-
rations, if susceptible recruitment and mortality are negligible, the distributions of
stage durations are the same in each patch, and the transmission matrix Bi for each
stage i is proportional to a stochastic matrix, then the final size of the epidemic Zi

in each patch i is given by the unique solution to the standard final size formula (5)
where R0 = ∑

i βi/γ , with βi being the dominant eigenvalue of Bi .

10. Social heterogeneities that affect the final size formula

Equations (26), which specify the spatially heterogeneous model we analyzed in
the previous section, can be interpretted as representing other types of social het-
erogeneities, which are known to yield different final size formulae (Gart, 1968;
Dwyer et al., 2000; Diekmann and Heesterbeek, 2000; Andreasen, 2003). In this
section, we briefly discuss two other interpretations, which lead to a transmision
matrix that is not proportional to a stochastic matrix and will not yield the usual
final size formula (5).

Rather than specifying heterogeneities of transmission resulting from spatial
structure, as in the previous section, suppose that heterogeneities arise from
age-structured mixing patterns. One possible formulation is to categorize the
population by discrete age cohorts, which is typically motivated by mixing pat-
terns of children in schools. If we consider a time-scale short enough that trans-
fer from one cohort to the next can be ignored, then the standard “realistic age-
structured model” (Schenzle, 1984) reduces to Eqs. (26), where the transmission



Bulletin of Mathematical Biology (2006) 68: 679–702 695

matrix B now refers to contact patterns among different age cohorts. As in the case
of the spatial patch interpretation, it might be reasonable to assume that there is a
stochastic matrix P such that

βi j = βi Pi j , (34)

where the interpretation is that individuals in cohort i have a proportion Pi j of
their contacts with individuals in cohort j , and βi is the transmission rate for in-
dividuals in cohort i . Unlike the spatial interpretation, however, it would be hard
to justify taking βi to be the same for each i . In particular, young children tend
to come into much closer contact with their classmates than teenagers or adults
do with members of their cohorts. As a result, Theorem 9.1 will not apply and the
final size will not be given by the usual formula (5).

In Section 8 where we discussed super-spreaders, we specifically excluded the
types of super-spreaders that occur for sexually transmitted diseases, namely indi-
viduals who always have a higher rate of contact with others, regardless of whether
they happen to be infected. When such “core groups” (Yorke and Hethcote, 1984;
Anderson et al., 1986) exist, Eqs. (26) can still be used, with the interpretation that
the stratification of the population is by social group rather than spatial region or
age cohort. Like the age-structured situation, we can safely assume that Eq. (34)
holds but not that βi is the same for every i as in Eq. (30). Indeed, a large difference
in βi is precisely what defines the core groups. Again, we have a situation where
the usual final size formula will not apply. Core groups are well known to have a
critical role in the transmission dynamics of sexually transmitted diseases, so it is
not surprising that they will affect the final size of epidemics.

11. Discussion

The well-known formula (5) for the expected final size of an epidemic is valid in
remarkably general circumstances. Previous work (e.g., Kermack and McKendrick
(1927); Anderson and Watsons (1980); Diekmann and Heesterbeek (2000)) estab-
lished that the formula is valid in an SIR model with an arbitrarily distributed
infectious period (Theorem 6.1). Here we have shown, in addition, that the stan-
dard formula (5) is invariant to the number of latent and infectious stages of dis-
ease (Theorem 7.1), the distributions of transmission rates within stages (Theorem
8.1), and even to common spatial contact heterogeneities (Theorem 9.1).

The invariance of the final size formula has important practical implications.
Typically, the time at which one wishes to estimate the expected final size of an
epidemic is long before enough information has been gathered to estimate the
distributions of latent and infectious periods or other epidemiological details. Our
theorems provide rigorous support for estimates of the expected magnitude of epi-
demics based solely on estimates of the basic reproduction number R0, which is the
only parameter that appears in the final size formula (5).

It should be noted that the final size formula refers only to the ensemble av-
erage size of an epidemic for a disease with a given R0. Different stochastic re-
alizations of the same process will lead to different final sizes and our analysis
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says nothing about the variance or higher moments of the final size distribution.
Kurtz (1980) proved that in the limit that the population size goes to infinity, the
ensemble mean of the stochastic SIR model with arbitrarily distributed infectious
period converges to the solutions of the integro-differential equation model spec-
ified in our Eqs. (11). Hence, the standard final size formula gives the mean final
size of the stochastic SIR model. However, it is difficult to deduce the distribution
of the final size, and this remains an open problem for stochastic SIR models with
arbitrarily distributed infectious periods. For stochastic SEIR models with Gamma
distributed latent and infectious periods, Anderson and Watsons (1980) derived a
normal approximation to the final size distribution that is valid in the limit of large
population size.

If there is little variation in the length of the latent period, and the infectious
period is short, the stochastic SEIR model can be approximated by a chain bi-
nomial model (Bailey, 1975), which is a discrete time Markov chain. The time
step for this chain is equal to the fixed-length latent period, since the infectious
period is presumed infinitesimal (all contacts occur instantaneously at the end
of the latent period). For such models, the only parameter is the probability q
that a contact between an infectious individual and a susceptible individual leads
to infection. With the assumption that q = 1 − e−R0 , Von Bahr and Martin-Lof
(1980) and Scalia-Tomba (1985) showed that final size distribution for the tradi-
tional chain binomial model is asymptotically normal in the limit of large popula-
tion size. Scalia-Tomba (1986) and Andersson (1999) studied more general chain
binomial models (with heterogeneous contact structures equivalent to those we
discussed in Sections 9 and 10) and found asymptotic final size distributions. Their
results imply that if q = 1 − e−R0 then the ensemble mean final size in these chain
binomial models is the solution of our Eqs. (27).

We emphasized two circumstances under which the usual final size formula will
not apply. One was the case of age-structured heterogeneity of transmission; while
this would influence the final size, it is unlikely that we would be able to param-
eterize the age-structured contact patterns sufficiently well to improve on the fi-
nal size estimate generated with the assumption of homogeneous mixing. The
other case we discussed was the existence of social core groups, which are ex-
tremely important in the epidemiological dynamics of sexually transmitted dis-
eases; in this case, some estimate of the difference in transmission rates in dif-
ferent social groups would likely be needed to obtain a useful estimate of the
final size.

In computing the final size, we have always assumed that there are no temporal
changes in the transmission rate β. Temporal variations in β could result from in-
trinsic seasonality of contact rates, imposition of control measures, or behavioral
change in response to epidemic alerts. Small seasonal variations in β cause only
small perturbations to the final size formula, and substantial seasonality is gen-
erally associated with school-age children (London and Yorke, 1973) who form
a small fraction of the susceptible pool when a new infection enters a population.
Infection control measures, such as those adopted during the 2003 SARS epidemic
(Lipsitch et al., 2003; Wallinga and Teunis, 2004), could have a dramatic effect on
the final size; in this case, rather than R0, the reproduction number that is rele-
vant for the final size formula must be calculated after sustainable precautionary
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measures have been put into place. Individual behavioral change could alter the
transmission rate through time-dependence (β = β(t), as in the case of imposed
control measures) or through density-dependence (β = β(I), with β decreasing as
I increases, which would arise if people tend to be more careful when they are
aware of more cases). In either case, the standard final size formula might yield a
poor approximation of the true final size.

All of our analysis is predicated on the assumption that vital dynamics (births
and deaths), and more generally any source of new susceptible individuals, can be
ignored. This approximation is not valid in circumstances where infectious periods
are substantial compared with life expectancy or where immunity decays rapidly. It
will, however, typically be relevant whenever a new respiratory pathogen emerges,
as in the case of the SARS outbreak in 2003 (Donnelly et al., 2003) or the emer-
gence of a new subtype of influenza (Earn et al., 2002).

Appendix A: Explicit form of the final size formula

An explicit solution for Z expressed in terms of elementary functions is not possi-
ble, but Eq. (4) can be solved explicitly for Z in terms of the Lambert W function
(Weisstein),

Z = S(0) + 1
R0

W
[ − R0S(0) e−R0(I(0)+S(0))]. (A.1)

Here, W(x) is the unique solution of the transcendental equation x = W eW, for
x ∈ [− 1

e , 0]. Note that since R0, S(0), I(0) ≥ 0, the argument of W in this formula
lies in the interval [− 1

e , 0].
For a newly invading pathogen, Eq. (5) becomes

Z(R0) = 1 + 1
R0

W[−R0 e−R0 ]. (A.2)

Appendix B: Proof that model (11) with exponentially distributed
infectious periods yield the standard SIR model

When the infectious period is exponentially distributed, i.e., f (t) = γ e−γ t , we
have l(τ, t) = f (t). Thus Eq. (11f) can be written

dI
dt

= βS(t)I(t) −
∫ t

0
f (t − τ )U(τ ) dτ − I(0) f (t).

Let

x(t) = 1
γ

[∫ t

0
f (t − τ )βS(τ )I(τ ) dτ − I(0) f (t)

]
,
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so

ẋ = S(t)I(t) − 1
γ

∫ t

0
γ 2e−γ (t−τ )βS(τ )I(τ ) dτ − I(0)γ 2e−γ t ,

= βS(t)I(t) − γ x.

Equation (11f) can also be written as

İ = βS(t)I(t) − γ x,

Thus, d
dt (I(t) − x(t)) = 0, so if we let xi (0) = Ii (0), then I(t) ≡ x(t). In other

words, system (11) becomes

Ṡ = −βSx,

ẋ = βSx − γ x,

Ṙ = γ x,

which is indeed the standard SIR model (1).

Appendix C: Proof of Lemma 6.1

Integrating Eq. (11f) we obtain

I(t) − I(0) =
∫ t

0
U(τ ) dτ −

∫ t

0

∫ τ

0
f (τ − s)U(s) ds dτ

−
∫ t

0

∫ 0

−∞
U(τ )l(τ, t) dτ. (C.1)

Since I(0) = ∫ 0
−∞ U(τ ) dτ � 1, we can drop the rightmost term on both sides of

Eq. (C.1), yielding

I(t) =
∫ t

0
U(τ ) dτ −

∫ t

0

∫ τ

0
f (τ − s)U(s) ds dτ.

Switching the order of integration in the second term above, we have

∫ t

0

∫ τ

0
f (τ − s)U(s) ds dτ =

∫ t

0

∫ t

s
f (τ − s) dτU(s) ds,

=
∫ t

0

∫ t−s

0
f (τ ) dτU(s) ds.
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Hence, if we let F(t) = ∫ t
0 f (τ ) dτ , we can write

I(t) =
∫ ∞

t
U(τ ) dτ −

∫ t

0

∫ t−s

0
f (τ ) dτU(s) ds,

=
∫ t

0
[1 − F(t − s)]U(s) ds.

Integrating this from 0 to ∞, we obtain

∫ ∞

0
I(t) dt =

∫ ∞

0

∫ t

0
[1 − F(t − s)]U(s) ds dt.

Next, switching the order of the integration, we have

∫ ∞

0
I(t) dt =

∫ ∞

0

∫ ∞

s
[1 − F(t − s)] dtU(s) ds,

=
∫ ∞

0
[1 − F(t)] dt

∫ ∞

0
U(s) ds.

Noting now that

∫ ∞

0
[1 − F(t)] dt =

∫ ∞

0
t f (t) dt = T,

we have, finally,

∫ ∞

0
I(t) dt = T

∫ ∞

0
U(s) ds,

as required.

Appendix D: Stability of the disease free equilibrium in the model
(21) with arbitrarily distributed transmission rate

The local stability of the DFE (S = 1, I(β, ) = 0 ∀β, R = 0) of the model (21) is
determined by its linearization,

Ṡ = −
∫ ∞

0
β I(β, t) dβ, (D.1a)

İ(β, t) = q(β)
∫ ∞

0
β I(β, t) dβ − γ I(β, t). (D.1b)
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We are interested in growth or decay of I(β, ), which is determined only by
Eq. (D.1b). Defining X(t) = ∫ ∞

0 β I(β, t) dβ, multiplying both sides of Eq. (D.1b)
by β, and integrating with respect to β, we find

d
dt

X =
(∫ ∞

0
βq(β) dβ − γ

)
X.

On the other hand, recall that I(t) = ∫ ∞
0 I(β, t) dt (the total number of infectious

individuals at time t). Therefore, integrating Eq. (B.2b) with respect to β, noting
that q(β) is a probability density function so

∫ ∞
0 q(β) dβ = 1, we obtain

d
dt

I = X − γ I.

Thus,

d
dt

[
X

I

]
=

[∫ ∞
0 βq(β) dβ − γ 0

1 −γ

][
X

I

]
.

The origin of this system of two ordinary differential equations is locally stable if
and only if

∫ ∞
0 βq(β) dβ − γ < 0 or, equivalently, R0 < 1. Thus, the DFE is stable

if R0 < 1 and unstable if R0 > 1.
We can expand model (21) to include multiple stages. Using the same tech-

niques, we find that the conclusion that the epidemic threshold is given by R0 = 1
remains valid.
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