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An integrative analysis of genomic 
and exposomic data for complex 
traits and phenotypic prediction
Xuan Zhou1,2,3 & S. Hong Lee1,2,3*

Complementary to the genome, the concept of exposome has been proposed to capture the totality 
of human environmental exposures. While there has been some recent progress on the construction 
of the exposome, few tools exist that can integrate the genome and exposome for complex trait 
analyses. Here we propose a linear mixed model approach to bridge this gap, which jointly models the 
random effects of the two omics layers on phenotypes of complex traits. We illustrate our approach 
using traits from the UK Biobank (e.g., BMI and height for N ~ 35,000) with a small fraction of the 
exposome that comprises 28 lifestyle factors. The joint model of the genome and exposome explains 
substantially more phenotypic variance and significantly improves phenotypic prediction accuracy, 
compared to the model based on the genome alone. The additional phenotypic variance captured by 
the exposome includes its additive effects as well as non-additive effects such as genome–exposome 
(gxe) and exposome–exposome (exe) interactions. For example, 19% of variation in BMI is explained 
by additive effects of the genome, while additional 7.2% by additive effects of the exposome, 1.9% 
by exe interactions and 4.5% by gxe interactions. Correspondingly, the prediction accuracy for BMI, 
computed using Pearson’s correlation between the observed and predicted phenotypes, improves 
from 0.15 (based on the genome alone) to 0.35 (based on the genome and exposome). We also show, 
using established theories, that integrating genomic and exposomic data can be an effective way 
of attaining a clinically meaningful level of prediction accuracy for disease traits. In conclusion, the 
genomic and exposomic effects can contribute to phenotypic variation via their latent relationships, 
i.e. genome-exposome correlation, and gxe and exe interactions, and modelling these effects has a 
potential to improve phenotypic prediction accuracy and thus holds a great promise for future clinical 
practice.

Both genetic and environmental factors underlie phenotypic variance of complex traits. Understanding the 
influences of these factors not only helps explain why individuals differ from one another in phenotypes but also 
helps predict future phenotypes, such as disease diagnoses. The proliferation of genotypic data in the past dec-
ades, along with developments in relevant analytic tools, have already contributed a great deal to understanding 
phenotypic variations of complex traits1–9, and enabled phenotypic predictions at a level of accuracy for potential 
use in clinical settings10–12. However, these understandings and predictions are bounded by the heritability of 
the traits, and for many complex traits, large phenotypic variation remains unexplained, suggesting substantial 
environmental contributions to phenotypic variance.

Complementary to the genome, the concept of exposome has been proposed to capture the totality of human 
environmental exposures, encompassing external as well as internal environments over the lifetime of a given 
individual13–15. Similar to genotypes, exposomic variables are standardised across cohorts16. Since the inception 
of the concept, considerable efforts have been made to assess and characterise the exposome17. For example, the 
Human Early-Life Exposome project is a European collaborative effort established to characterize the early-life 
exposome which includes all environmental hazards that mothers and children are exposed to18. Despite the 
progress in the construction of the exposome, few analytic tools exist to date that can integrate genomic and 
exposomic data for complex trait analyses. We hypothesize that exposomic variables do not only affect pheno-
types on their own but also interact among each other19,20 and with genotypes20,21. In addition, the estimation 
of exposomic effects and genomic effects on phenotypes could be biased, if these effects are correlated but the 
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estimation model assumes otherwise22. Hence, tools that integrate genomic and exposomic data are required to 
capture variance as well as covariance components of phenotypes.

Here we propose a versatile linear mixed model that fulfils these requirements. The proposed approach jointly 
models the random effects of the genome and exposome and can be extended to capture genome-exposome and 
exposome-exposome interactions and genome-exposome correlations in the phenotypic analysis of a complex 
trait. It also allows us to model exposomic effects modulated by one or a few specific environmental variables. 
We demonstrate the proposed approach using traits from the UK biobank with 11 complex traits and 28 lifestyle 
exposures that were measured using a standard protocol.

Results
Method overview.  We used a novel linear mixed model (LMM) to jointly model the effects of the genome 
and exposome on the phenotypes of a complex trait. The exposome here is restricted to 28 lifestyle exposures 
that were measured using a standard protocol (see “Methods”). Our model has three key features. First, it allows 
estimation of the correlation between genomic and exposomic effects, relaxing the assumption of independence 
between those effects as in a conventional LMM22. Second, the model can capture both additive and non-addi-
tive effects of the exposome and genome, i.e. pairwise interactions between exposomic variables (exe interac-
tions; e.g.19) and interactions between exposomic variables and genotypes (i.e., gxe interactions; e.g.21). Third, 
the model can handle correlated exposomic variables (see Simulations in “Methods”) that may cause biased 
variance estimations of exposomic variables (e.g.20).

To illustrate the use of the model with real data, we selected 11 complex traits from the UK Biobank with 
heritability estimates above 0.05, including BMI, sitting height and years of education etc. (https://​neale​lab.​github.​
io/​UKBB_​ldsc/), along with 28 lifestyle variables, including alcohol use, smoking, physical activity and dietary 
composition (see “Methods” for a detailed description). We performed the following analyses. First, for each 
trait, we used various models to estimate variance components of the additive and non-additive effects of the 
exposome and genome, including exe interactions and gxe interactions. The significance of the variance com-
ponents was determined through a series of model comparisons using likelihood ratio tests (Table 1). Second, 
we extended the proposed model to examine the extent to which exposomic effects are modulated by covariates 
such as age, sex and socio-economic status (i.e., exc interactions). Third, we used fivefold cross validation to 
show that the prediction accuracy increased significantly after accounting for the exposomic effects and exe 
interactions. Finally, we explored the potential clinical use of the proposed integrative analysis of genomic and 

Table 1.   P-values for estimated variance components of  selected traits. Significant estimates are orange-
coloured after applying Bonferroni corrected alpha level for each model comparison = 0.05/66 = 7.6E−04. See 
Table 2 for details of statistical models.

● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●
Trait N
BMI 35,431 <1.0E-324 0.94 7.0E-07 4.7E-60 1.2E-05 7.4E-59

Standing Height 35,806 5.8E-132 0.07 1.8E-02 4.9E-01 2.0E-02 5.8E-01

Sitting Height 35,553 7.7E-64 0.19 2.4E-03 5.6E-01 2.7E-03 7.0E-01

Heel Bone Mineral Density 16,441 1.5E-33 0.56 2.3E-02 1.2E-01 3.3E-02 1.8E-01

Weight 35,503 <1.0E-324 0.53 3.0E-05 5.7E-47 3.2E-04 5.3E-46

Fluid Intelligence 16,917 4.1E-67 0.32 2.5E-01 8.6E-10 4.3E-01 1.2E-09

Years of Education 35,890 <1.0E-324 0.04 1.0E-17 5.1E-29 1.6E-16 8.0E-28

Waist Circumference 35,589 <1.0E-324 0.69 3.3E-02 3.1E-52 1.7E-01 1.2E-51

Hip Circumference 35,479 <1.0E-324 0.44 8.0E-01 2.5E-32 5.1E-01 2.1E-32

Waist to Hip Ratio 35,759 <1.0E-324 0.56 6.2E-01 1.2E-20 3.3E-01 8.6E-21

Diastolic Blood Pressure 34,100 1.6E-108 0.97 6.2E-02 2.1E-01 6.9E-02 2.4E-01
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exposomic data, by projecting its prediction accuracy for a disease trait in terms of the area under the receiver 
operating characteristic curve (AUC). The projection was based on well-established theories23–30 that express 
AUC as a function of sample size, proportions of variance explained by genomic and exposomic effects and the 
population prevalence of the disease.

Exposomic effects on phenotypes.  In line with previous estimation (https://​neale​lab.​github.​io/​UKBB_​
ldsc/), we found significant SNP-based heritability for all selected traits, with estimates ranging between 0.08 
(years of education) and 0.52 (standing height; Fig. 1). We detected significant additive effects of the lifestyle-
exposome on phenotypes of all traits (see Fig. 1 for e and Table 1 for p-values under H0 σ2e = 0 ). The magnitude 
of these additive effects, however, varied across traits. For example, the exposome accounted for 8.5% of the 
phenotypic variance of waist circumference, but less than 2.5% for height, standing height, heel bone mineral 
density and fluid intelligence. Importantly, the additive exposomic effects were mostly uncorrelated with the 
genetic effects (see Table 1 for p-values under H0 σge = 0 ; see Supplementary Table 1 for covariance estimates), 
which was notably different from the genome-transcriptome correlation22.

The estimated variance component of non-additive effects of the lifestyle-exposome (exe) was highly signifi-
cant for 7 out 11 traits (Table 1), although they only account for ~ 1% to 2% of phenotypic variance (See Fig. 1 & 
Supplementary Table 2). By contrast, significant gxe interactions are only evident for BMI, weight and years of 
education (Table 1), but they could account for up to 9% of total phenotypic variance (years of education; Fig. 1 
and Supplementary Table 2). The low presence of gxe signals is probably due to relatively low power of detecting 
gxe interactions, which is caused by a large number of pairs of gxe interaction terms to be estimated in the model, 
i.e. 28 (number of exposomic variables) × 1.3 million (number of SNPs) in this study. In addition, the identi-
fied gxe and exe interactions are largely independent to each other. This is evidenced by that both gxe and exe 
remained significant when being jointly modelled (see p-values under H0 σgxe|exe = 0 and under H0 σexe|gxe = 0).

By extending the proposed model to a reaction norm model (RNM; see “Methods”), we examined whether 
the additive exposomic effects on phenotype vary depending on specific covariates, which would be evidenced 
by the presence of significant exc interactions. Using single-covariate RNMs, we identified several significant 
exc interactions (Supplementary Table 3), noting that most covariates are lifestyle related, which are in line with 
the exe interactions found above. For each trait, we then fitted an RNM model that simultaneously includes all 
significant exc interactions identified from single-covariate RNM analyses. The variance estimates of exc interac-
tions from the joint analyses are presented in Supplementary Table 4.

It is important to note that the estimation of exposomic effects is sensitive to the correlation structure of 
exposomic variables. Specifically, multicollinearity between exposomic variables would bias the estimate of σ2e 
(see simulations in “Methods”); and by extension, correlated exe interaction terms and gxe interaction terms 
(model equations iv and v in Table 2) could bias the estimates of σ2exe and σ2gxe , as empirically observed in the 
simulations (see “Methods”). Without knowing the true values of variance components, transforming exposomic 
variables and interaction terms using a principal component analysis (see “Methods”) seems necessary prior 
to model fitting in order to avoid estimation bias due to multicollinearity. While transforming the exposomic 
variables and the exe interaction terms are computationally trivial, transforming the gxe interaction terms is 
computationally infeasible (28 × 1.3 million variables). Nonetheless, the variance of gxe interactions is small in 
general, suggesting that using the gxe interaction terms without the transformation (i.e., derived from G⊙ E in 

Figure 1.   Breakdown of phenotypic variance by the model with the best fit. The best model for each trait is 
derived from model comparisons shown in Table 1. g: additive genetic effects on phenotypes, e: additive effects 
of exposomic variables, exe: interaction effects between exposomic variables, gxe: interaction effects between 
genotypes and exposomic variables. Variance components are expressed as percentage of total phenotypic 
variance.
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Model equation Matrix notation Sample variance–covariance matrix

For individual i = 1, 2, …., n, For y = (y1, y2, …., yn),

(i)

yi = μ + ∑ aijαj

m1

j=1

+ εi

gi

where yi is the phenotype, μ is the grand mean, aij is the 
standardized SNP genotype at locus j, m1 is the total 
number of SNPs, αj is the random effect of the SNP that 
is assumed to be normal with mean zero and variance 
σ
2
g/m1 , and εi is the residual assumed to be normal with 

mean zero and variance σ2
ε
.
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Where A is a n x m1 matrix that contains column-stand-
ardized genotypes (see the Matrix Notation), and I is the 
n x n identity matrix

(ii)

yi = μ + gi + ∑ bikβk

m2

k=1

+ εi

ei

where bk is the kth exposomic variable, m2 is the total 
number of exposomic variables, and βk is the random 
effect of the exposomic variable that is assumed to 
be normal with mean zero and variance σ2e/m2. To 
avoid estimation bias due to multicollinearity, bk is 
transformed using a principal component analysis (see 
“Methods”)

y = µ1n + g + e + ε

where e = �βt =


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Where � is a n x m2 column-orthogonal and column-
standardised matrix that contains the transformed 
exposomic variables multiplied by their right singular 
vectors (see ‘Principal component-based transformed 
variables for E’ in “Methods”)

(iii) yi = µ+ gi + ei + εi y = µ1n + g + e + ε

σ
2
gG+ σ

2
eE +

[

√
G+

√
Et +

(√
G+

√
Et
)t
]

σge + σ
2
ε
I

where 
√
G and 

√
Et  are the Cholesky decompositions of 

G and Et , respectively, and σge is the covariance between 
g and e

(iv)

yi = μ + gi + ei + ∑ ciq γq

Q

q=1

+ εi

g × ei

where cq is the qth pairwise interaction term between 
SNP genotypes and exposomic variables, and γq is 
the effect of the qth interaction term.γq is assumed to 
be normally distributed with mean zero and variance 
σ
2
g×e/Q , and Q is the total number of interaction terms 

( Q = m1m2)

y = µ1n + g + e + g × e + ε

where g × e = Cγt =
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C can be derived using the following pseudo-code

with A =
[

a1 · · · am1

]

; � =
[

b1 · · · bm2

]

; 

C =
[

c1 · · · cQ
]

 , and q = 1, 2 … Q
for i = 1 to m1 {
for j = 1 to m2 {
cq = ai ⊙ bj } }

σ
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2
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where Ŵ is a n x n matrix derived by the Hadamard 
product of G and E ,i.e., Ŵ = G⊙ E = CCt/(m1 ∗m2)

(v)

yi = μ + gi + ei + ∑ xip θp

P

p=1

+ εi

e × ei

where xp is the pth pairwise interaction term between 
exposomic variables, and when the two exposomic 
variables are identical, the interaction term becomes the 
quadratic term of the exposomic variable; θp is the effect 
of the pth interaction term and is assumed to be nor-
mally distributed with mean zero and variance σ2e×e/P , 
and P is the total number of interaction terms (P = m2 
(m2 + 1)/2). To avoid estimation bias due to multicol-
linearity, xp is transformed using a principal component 
analysis (see “Methods”)
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Continued
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model equation iv of Table 2) is generally free from the estimation bias due to multicollinearity. Note that the 
largest variance estimate of gxe interactions in this study is ~ 0.09.

Validation of exposomic effects.  Figure 2a shows the phenotypic prediction accuracy based on genetic 
data alone. Using fivefold cross-validation, we found that including additive (e) and non-additive effects (exe) of 
the exposome, which were significant in the discovery dataset, could improve the phenotypic prediction accu-
racy in the target dataset. In general, the larger the variance estimates, the greater the prediction improvements 
(Fig. 2b,c), which indicates that the additive effects of the exposomic variables and exe interactions are genuine. 
Similarly, we also validated the exposomic effects modulated by specific covariates, by showing that the larger 
the total variance estimates of exc interactions, the greater the improvement of predication accuracy (Fig. 3). The 
validated exc interactions would in part explain the phenotypic variance due to residual x covariate interactions 
found in our previous studies31–33.

Table 2.   Model equations and their assumed sample variance–covariance matrices.

Model equation Matrix notation Sample variance–covariance matrix
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Figure 2.   Exposomic variables contribute to phenotypic variance and improve phenotypic prediction accuracy. 
The prediction accuracy of a given model was computed using the Pearson’s correlation coefficient between 
the observed and the predicted by the model. For all panels, the least squares line with 95% confidence band is 
based on a linear model that regressed either prediction accuracies (a) or predication accuracy improvements 
(b,c) by a model on variance component estimates of the model. The p-value is for the t-test statistic (df = 7) 
under the null hypothesis that the slope of the regression line is zero. σ2g = phenotypic variance explained by 
additive effects of the genome; σ2e = phenotypic variance explained by additive effects of the exposome; σ2exe = 
phenotypic variance explained by exposome-by-exposome interactions; and σ2y = total phenotypic variance. 
(a) Phenotypic prediction accuracies by the baseline model that uses genomic data alone, i.e., y = g + ε, where 
g = phenotypic effects of the genome and ε = residuals. The larger the genetic variance, the greater the prediction 
accuracy. (b) Additive effects of the exposomic variables (i.e., e) contribute to phenotypic variance and improve 
phenotypic prediction accuracy. The greater the additive effects, the larger the gain in phenotypic prediction 
accuracy. A prediction accuracy improvement (on the y-axis) was derived by subtracting the prediction 
accuracy of the model y = g + ε from that of the model y = g + e + ε. (c) Exposome-by-exposome interactions 
(i.e., exe interactions) contribute to phenotypic variance and further improve phenotypic prediction accuracy. 
The greater the variance estimate of exe interactions, the larger the gain in phenotypic prediction accuracy. A 
prediction accuracy improvement (on the y-axis) was derived by subtracting the prediction accuracy of the 
model y = g + e + ε from that of the model y = g + e + exe + ε.
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By contrast, although gxe interactions contribute to the phenotypic variance of BMI, weight and years of 
education (Table 1), the contribution did not lead to significant gains in phenotypic prediction accuracy (Sup-
plementary Fig. 1). This was most likely due to a lack of power. i.e. the size of discovery samples was insufficient 
to accurately estimate an extremely large number of parameters, i.e., best linear unbiased prediction (BLUPs) 
of gxe interaction effects23,27,28,34. This is further verified using simulations (see Simulations in “Methods” and 
Supplementary Fig. 2).

Given the sample sizes of the discovery data sets (~ 28,000), the prediction accuracies of the model y = g + ε 
for the selected traits are only between 1/3 and 1/2 of the theoretical maximums (i.e., square root of heritability; 
Supplementary Fig. 3). They can improve, in theory, by increasing the sample size of discovery sets (Supplemen-
tary Fig. 3); or, as shown in the above, by accounting for the additive effects of the exposome and exe interac-
tions (Fig. 2b,c). To examine prediction efficiency of the latter, we projected the observed prediction accuracies 
of the models y = g + e + ε and y = g + e + exe + ε onto the theoretical trajectory of prediction accuracies of the 
model y = g + ε as a function of the sample sizes of discovery datasets (Supplementary Fig.  3). As such, the use 
of exposomic information could improve phenotypic prediction accuracy to the same extent as a 1.2 to 14-fold 
increase in sample size, depending on the significance of the exposomic effects and their interactions (Fig. 4). 
Given the substantial costs and efforts associated with increasing sample size, the improved predictive accuracy 
by the models y = g + e + ε and y = g + e + exe + ε are considerable, despite the fact that the proportion of phenotypic 
variance explained by the exposome is small (see the x-axis of Fig. 2b,c).

Quantification of clinical relevance.  We quantified the clinical relevance of the proposed model by 
exploring its prediction accuracy for quantitative traits and disease traits. For quantitative traits, we expressed 
the prediction accuracy of the model y = g + e + ε (i.e., correlation coefficient between the true and predicted 
phenotypes) as a function of the sample size of the discovery dataset, variances explained by the genome and 
exposome, and effective numbers of (independent) SNPs and exposomic variables (see “Methods”), using previ-
ous theoretical derivations27–30,34. Based on the derived expression [Eq. (6)], we computed the expected predic-
tion accuracies for the quantitative traits used in this study and found that they agreed well with the observed 
prediction accuracies from the fivefold cross validation (Supplementary Fig. 4). We then extended the derived 
expression to disease traits in terms of the area under the operative characteristic curve [AUC; see Eq. (10) in 
“Methods”  for details] using well-established theories23–26. AUC is a gold-standard measure used to evaluate 
how well a prediction model discriminates diseased from non-diseased individuals. An AUC between 0.7 and 
0.8 is considered acceptable, 0.8 to 0.9 excellent, and above 0.9 outstanding35. Figure 5 shows the expected AUC 

Figure 3.   Positive relationship between phenotypic variance explained by exposome-by-covariate (exc) 
interaction effects and prediction accuracy improvement. Prediction accuracy improvement is computed by 
subtracting the prediction accuracy of the model y = g + e + ε from that of a model with multiple covariates 
(see model equation vii in Table 2) that are shown to interact with the exposome in univariate exc interaction 
analyses. The least squares line with 95% confidence band is based on a linear model that regressed prediction 
accuracy improvement on phenotypic variance explained by exc interactions. The p-value is for the t-test 
statistic (df = 7) under the null hypothesis that the slope of the regression line is zero. Significant covariates 
included for each trait can be found in Supplementary Table 3.
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Figure 4.   Additional sample size required for the model y = g + ε to achieve the same level of prediction 
accuracy as y = g + e + ε (blue) and y = g + e + exe + ε (red). nt = sample size of training (or discovery) datasets.

Figure 5.   Expected prediction accuracy of the proposed integrative analysis of genetic and exposomic data 
for disease traits of different prevalence (k) and heritability (h2) at varying levels of total variance explained 
by the exposome ( σ2e.tot ) and sample size of the discovery dataset (N). Diseases are assumed to have a liability 
of mean zero and variance 1, and both h2 and σ2e.tot are on the disease liability scale. Prediction accuracy is 
measured using the area under the receiver operating characteristic (ROC) curve, with 0.7 to 0.8 generally 
being considered acceptable, 0.8 to 0.9 excellent, and above 0.9 outstanding. The assumed effective number of 
chromosome segments and the number of exposomic variables are 50,000 and 28, respectively, which are based 
on the genomic and exposomic data used in this study. However, varying the number of exposomic variables 
from 28 to 100 does not have a notable effect on the expected area under the ROC curve.
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of the proposed integrative analysis of genomic and exposomic data for disease traits of different values of popu-
lation prevalence (k), assuming different amounts of variance (on the liability scale) explained by the genome 
and exposome and discovery sample sizes. For simplicity, we use σ2e.tot to denote the total variance in disease 
liability explained by additive effects of the exposome and exe interactions as a whole.

When setting σ2e.tot to 0—that is, using no exposomic information at all—varying the heritability of disease 
liability h2 from 0 to 0.3 improves AUC from 0.5 to ~ 0.6 when the sample size of the discovery set is 50 k. This 
is in contrast to a twofold improvement, from 0.5 to ~ 0.7, when the sample size is 500 k. Thus, genomic predic-
tion accuracy heavily relies on sample size, such that for a disease trait with a moderate heritability, a clinically 
meaningful level of accuracy (AUC ≥ 0.7) may not be attainable unless the sample size of the discovery dataset 
is substantially large (≥ 500 k). On the other hand, the benefit of using exposomic information to disease predic-
tion can be realised with a relatively small discovery sample. This is evidenced by that when setting h2 to 0 (i.e., 
using no genomic information at all), increasing the value of σ2e.tot has the same effects on AUC whether using 
a discovery sample of 50 k or 500 k individuals. Importantly, AUC consistently improves with increasing σ2e.tot 
in all scenarios (Fig. 5). Thus, incorporating exposomic data is not only an efficient but also an effective way of 
improving prediction accuracy based on genomic data alone. Taken together, genomic prediction accuracy for 
disease traits is constrained by sample size; with a relatively small sample at hand, a desired level of prediction 
accuracy may only be achieved by combining genomic and exposomic information.

Comparison with existing models.  The key model parameters of the proposed integrative analysis of 
genomic and exposomic data (IGE) compared to existing linear mixed models that incorporate genetic and 
environmental effects on phenotypes are outlined in Table 3. In general, IGE offers thus far the most detailed 
partition of phenotypic variance.

Both IGE and GxEMM36 are whole-genome approaches to the estimation of heritability and gxe interactions, 
although IGE is considered more comprehensive and versatile, which models variances explained by additive 
effects of exposomic variables, by exposome × exposome interactions, and by exposome × covariate (such as 
demographics) interactions; and covariance between genetic effects and exposomic effects (Table 3). Further, 
bivariate or multivariate IGE (i.e., simultaneously including two or more traits) can be feasibly performed using 
mtg2 version 2.18 (https://​sites.​google.​com/​site/​hongl​ee0707/​mtg2).

In contrast, StructLMM has been developed primarily for a genome-wide by environment interaction study 
(GWEIS)20 that examines one SNP at a time with a focus on association tests (providing p-values) for G × E 
interactions between the SNP genotypes and multiple exposomic variables. Using the well-established SNP 
BLUP method2,37,38, IGE can also provide GWEIS summary statistics, including estimated allele substitution 
effects of all SNPs across environments, their standard errors and p-values. Note that SNP BLUP implemented 
in IGE can model all SNP jointly (a whole-genome approach). Nonetheless, one of the main scopes of this study 
is to provide unbiased estimates of exposomic variances, e.g., σ2e that is common to both StructLMM and IGE 
(Table 3 and Supplmentary Note 1). Importantly, correlated exposomic variables would cause biased estimation 
of σ2e (Supplementary Table 5) unless they are transformed to independent variables via a principal component 
analysis (“Methods”). To our knowledge, this transformation has not yet been implemented in any existing 
methods including StructLMM. Using results from simulations, we show that σ2e estimates by StructLMM are 

Table 3.   Comparisons of methods (software packages) on the genomic and exposomic analysis of complex 
traits. IGE (proposed method): integrative analysis of genomic and exposomic data. StructLMM & GxEMM are 
existing linear mixed models that incorporate genetic and exposomic effects on phenotypes. ●: the parameter is 
included in the model, but the parameter estimate is not provided by the software package. ●●: the parameter 
is included in the model, and the parameter estimate is provided by the software package. v(g): additive genetic 
variance due to either a single SNP or all common SNPs (i.e., whole genome). v(gxe): GxE variance due to either 
interactions of a single SNP or all common SNPs with multiple exposomic variables. GWEIS: Genome-wide by 
environment interaction study. Using the SNP BLUP method, the software for IGE (mtg2 v2.18) provides allele 
substitution effects of SNPs across environments, their standard errors and p-values. The StructLMM software 
provides allele substitution effects and p-values for GxE interactions. cov(g,e): covariance between genomic and 
exposomic effects on phenotypes. v(e): variance due to additive effects of exposomic variables. v(exe): variance 
due to exposome x exposome interactions. v(exc): variance due to exposome x covariate (e.g., demographics) 
interactions. bivariate or multivariate analyses: analyses that simultaneously involve two or more traits.

https://sites.google.com/site/honglee0707/mtg2
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prone to bias due to correlated environments (Supplementary Table 5). The other model parameters such as σ2exe , 
σ
2
exc , and σg,e cannot be estimated by StructLMM (Table 3).

Discussion
Using our approach, we demonstrate the importance of the exposome for understanding individual differences 
in phenotypes. Although the ‘exposome’ constructed in this study comprises only 28 lifestyle factors, when 
integrated with genomic data, it explained between 2 to 10% additional phenotypic variance and significantly 
improved phenotypic prediction accuracy to a level equivalent to a 1.2 to 14-fold increase in sample size. The 
additional phenotypic variance is not only from additive effects of the exposome but also from its non-additive 
effects (exe) and genome–exposome interactions (gxe). We expect that as the construction of the exposome 
continues to progress, more phenotypic variance will be explained and greater improvements in phenotypic 
prediction accuracy will be gained. This would be particularly promising for phenotypic analysis and prediction 
of traits with small to little heritability component, such as ovarian and colorectal cancer39.

We noted that when exposomic variables are correlated, the variance estimate of additive effects of exposomic 
variables is biased unless these variables are transformed using a principal component analysis (i.e. E in Table 2 
should be based on transformed variables). By extension, this would apply to exe interaction terms and gxe 
interactions terms, unless the proportions of phenotypic variance explained by these interaction effects are small 
(< 10%), as shown in our simulations. These observations have important implications for modelling environ-
mental effects in LMMs. Recently, Moore et al.20 proposed the structured linear mixed model (StructLMM) that 
incorporates random effects of multiple environments in order to study the interactions between these environ-
ments and genotypes of a single SNP (i.e., gxe interactions). However, the environmental variables in StructLMM 
are not transformed, even though they are very likely correlated, which would have biased the variance estimate 
of environmental effects. Consequently, it remains uncertain the extent to which the estimation bias affects the 
StructLMM-based test statistics for detecting gxe interactions.

Depending on the research question at hand, the construction of the exposome may be guided by causal 
analyses. A meaningful exposome may only contain causal information. Examples may include lifestyles that 
potentially alter the molecular pathways or the pathogenesis of the main trait, or biomarkers that potentially 
explain possible molecular pathways underlying the phenotypes. As a contrast, in our BMI analysis, for example, 
it is not useful to include weight and height as part of the exposome, even though they would explain a large 
amount of phenotypic variance. This is because variations in these traits inform nothing other than the fact that 
they are correlated with the trait.

Heritability estimates were slightly reduced after including more variance components (result not shown). 
We considered two possibilities. First, the exposome may mediate part of additive genetic effects on phenotypes. 
For example, some SNPs affect smoking status, which in turn affect BMI. A model that simultaneously includes 
genetic and exposomic data would account for smoking status and their genetic effects, and hence gives arise to 
reduced heritability estimates. Second, there is a genuine correlation between exposomic and genomic effects 
in some latent mechanism. It is noted that there are marginally significant correlation estimates, which were not 
significant after Bonferroni correction. Such correlation may be because people who have similar genotypes may 
somehow share similar exposures i.e. genotype-environment correlation40.

In conclusion, the genomic and exposomic effects can contribute to phenotypic variation via their latent 
relationships, i.e. genome-exposome correlation, and gxe and exe interactions, for which our proposed method 
can provide reliable estimates. We show that the integrative analysis of genomic and exposomic data has a great 
potential for understanding genetic and environmental contributions to complex traits and for improving phe-
notypic prediction accuracy, and thus holds a great promise for future clinical practice.

Methods
Ethics statement.  We used data from the UK Biobank (http://​www.​ukbio​bank.​ac.​uk/) for our analyses. 
The UK Biobank’s scientific protocol has been reviewed and approved by the North West Multi-centre Research 
Ethics Committee (MREC), National Information Governance Board for Health & Social Care (NIGB), and 
Community Health Index Advisory Group (CHIAG). UK Biobank has obtained informed consent from all 
participants. Our access to the UK Biobank data was under the reference number 14575. The research ethics 
approval of the current study was obtained from the University of South Australia Human Research Ethics Com-
mittee. All methods were performed in accordance with the relevant guidelines and regulations.

Genotype data.  The UK Biobank contains health-related data from ~ 500,000 participants aged between 40 
and 69, who were recruited throughout the UK between 2006 and 201041. Prior to data analysis, we applied strin-
gent quality control to exclude unreliable genotypic data. We filtered SNPs with an INFO score (used to indicate 
the quality of genotype imputation) < 0.6, a MAF < 0.01, a Hardy–Weinberg equilibrium p-value < 1e−4, or a call 
rate < 0.95. We then selected HapMap phase III SNPs, which are known to yield reliable estimates of SNP-based 
heritability42–44, for downstream analyses. We filtered individuals who had a genotype-missing rate > 0.05, were 
non-white British ancestry, or had the first or second ancestry principal components outside six standard devia-
tions of the population mean. We also applied quality control on the degree of relatedness between individuals 
by excluding one of any pair of individuals with a genomic relationship > 0.025. From the remaining individuals, 
we selected those who were included in both the first and second release of UK Biobank genotype data. Eventu-
ally, 288,837 individuals and 1,133,273 SNPs passed the quality control of genotype data. Among these, 38,921 
individuals had no missing data for any of the exposomic variables used in the present study, which were used 
in the main analysis. Depending on the missingness of the main phenotypic data, sample size varies across traits 
(see Table 1 for N).

http://www.ukbiobank.ac.uk/
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Phenotype data.  We chose eleven UK Biobank traits available to us that have a heritability estimate (by an 
independent open source; https://​neale​lab.​github.​io/​UKBB_​ldsc/) greater than 0.05. These traits are standing 
height, sitting height, body mass index, heel bone mineral density, fluid intelligence, weight, waist circumfer-
ence, hip circumference, waist-to-hip ratio, diastolic blood pressure and years of education.

Prior to model fitting, phenotypic data were prepared using R (v3.4.3) in three sequential steps: (1) adjustment 
for confounders such as age, sex, birth year, social economic status (by Townsend Deprivation Index), popula-
tion structure (by the first ten principal components of the genomic relationship matrix estimated using PLINK 
v1.9), assessment centre, and genotype batch using linear regression; (2) standardization; and (3) removal of 
data points outside  ± 3 standard deviations from the mean.

Exposomic variables.  We deliberately selected lifestyle-related variables that are known to affect some 
of the selected traits to construct the exposome in this study. These variables include smoking, alcohol intake, 
physical activity, and dietary composition. Details of these variables are listed in Supplementary Table 6. Our 
aim here is not to cover a comprehensive set of exposomic variables, but to demonstrate the potential use of the 
proposed integrative analysis of genomic and exposomic data for partitioning phenotypic variance and pheno-
typic prediction.

Statistical models.  We used multiple random-effects LMMs to simultaneously model the effects of the 
genome and the exposome (model equation ii in Table 2). Genome-exposome correlation was also modelled 
(model equation iii in Table 2) where the kernel matrix for genome-exposome correlation was explicitly con-
structed using Cholesky decompositions of g and e22. In these models, a genomic relationship matrix (G) was 
constructed using an n x m1 genotype coefficient matrix (A) as G = AAt/m1 , where n is the number of partici-
pants and m1 is the number of SNPs. Similarly, an exposomic relationship matrix (E) was estimated using an n 
x m2 exposomic variable matrix (B) as E=��

t/m2 where m2 is the number of exposomic variables (Table 2). 
These relationship matrices were used to estimate the additive effects of the genome and the exposome. In 
addition, interaction effects, including gxe, exe and exc, were also considered in these multiple random-effects 
models (Table 2). The kernel matrices for the interaction terms were derived by the Hadamard product of g and 
e or e and e (model equations iv, v and vi in Table 2). Reaction norm model31,32 was used to estimate exc. (model 
equation v in Table 2). All variance components were estimated using restricted maximum likelihood (REML)3.

Simulations.  Using simulations, we identified two conditions that can cause biased variance estimates of 
additive effects of exposomic variables and exe interactions, which are correlations between exposomic variables 
and skewed distributions of exposomic variables. To show the impact of the correlation structure of exposomic 
variables on variance estimates of exposomic effects, we simulated, for 5,000 individuals, a set of ten orthogonal 
exposomic variables and another set of ten correlated exposomic variables, each from a multivariate normal dis-
tribution. Based on each set of exposomic variables, we then simulated phenotypes using the model y = e + exe + ε 
with σ2e , σ2exe , and σ2

ε
 being set to 0.4, 0.5, and 0.1 respectively. The simulated exe effect was based on all possible 

interaction terms between exposomic variables (as specified in model v of Table 2). The simulation was repeated 
100 times, resulting in 100 replicates, each with phenotypes for 5,000 individuals. For each replicate, we fitted the 
model y = e + exe + ε and averaged variance component estimates across replicates.

Variance estimates of phenotypes that were simulated using correlated and uncorrelated exposomic variables 
are summarized in Supplementary Table 5. When exposomic variables are orthogonal, all variance-component 
estimates are unbiased. By contrast, when exposomic variables are correlated, σ2e is over estimated, although the 
estimate of σ2exe is unbiased. To remedy the effect of correlated exposomic variables on σ2e estimate, we used all 
principal components (PCs) of the correlated exposomic variables to construct the kernel matrix for estimat-
ing σ2e , and used all pair-wise interaction terms of these PCs to construct the kernel matrix for estimating σ2exe . 
Importantly, while retaining all information of the original exposomic variables, the PCs are orthogonal to each 
other (Jolliffe, 1982). We found that variance estimation based on the PCs of the correlated exposomic variables 
are unbiased (last column of Supplementary Table 5).

To show the impact of skewness of the distributions of exposomic variables on variance component esti-
mation, we repeated the above simulations using 10 exposomic variables from the UK biobank with skewed 
distributions. We also noted that these exposomic variables are correlated. Results are presented in Supplemen-
tary Table 7. Estimation based on these exposomic variables is biased for both σ2e and σ2exe . Using the PCs of 
these exposomic variables did not completely eliminate the bias, indicating that skewness of the distributions 
of exposomic variables affects variance estimation independently from the correlation structure of exposomic 
variables. As a remedy, we reduced the skewness by removing outliers outside 3 standard deviations from the 
mean. We found that after this quality control procedure the estimate of σ2exe became unbiased; but the estimate 
of σ2e remained biased. These results indicate that the estimation of σ2e is sensitive to the correlation structure of 
exposomic variables, while the estimation of σ2exe is sensitive to the skewness of the distributions of exposomic 
variables. When using all principal components of the skewness-corrected exposomic variables, all variance 
estimates became unbiased. Taken together, to avoid biased variance estimation of exposomic effects, it is nec-
essary to (1) conduct quality control on the exposomic variables where values outside 3 standard deviations 
from the mean should be removed; and (2) transform quality-controlled exposomic variables using a principal 
component analysis.

We also tested the effect of the correlation structure of exposomic variables on σ2gxe estimate. To do so, we 
simulated phenotypes based on ten correlated (but quality-controlled) exposomic variables for 5,000 individu-
als using the model y = g + e + gxe + ε with σ2g , σ2e , σ2gxe , and σ2

ε
 being set to 0.3, 0.3, 0.3, and 0.1 respectively. The 

simulated genetic effect was based on 10 K SNPs that were selected randomly from the 1.1 M Hapmap3 SNPs 

https://nealelab.github.io/UKBB_ldsc/
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used for real data analyses, and the simulated gxe effect was based on all possible pairwise interactions between 
causal SNPs and exposomic variables (as specified in model iv of Table 2). We repeated the simulation 100 times, 
resulting in 100 replicates. For each replicated, we fitted the model y = g + e + gxe + ε to the genetic data (i.e., 1.1 M 
Hadmap3 SNPs) and the exposomic data selected for the simulation to estimate variance components, and aver-
aged variance estimates across replicates.

Similar to σ2e , the estimation of σ2gxe is affected by the correlation structure of exposomic variables. As shown 
in Supplementary Table 8, all variance components are biased when the estimation is based on the correlated 
exposomic variables. Using PCs of the correlated variables corrected the bias for σ2e and σ2gxe (see ‘pc1’ in Supple-
mentary Table 8). This observation holds for simulations under a different parameter setting (see Supplementary 
Table 9) and for simulations based on 10 correlated exposomic variables whose values were simulated from a 
multivariate normal distribution with a variance–covariance matrix that contains non-zero off-diagonal entries 
(see Supplementary Table 10 for results).

In Results, we reported for the real data that accounting for significant gxe interactions did not lead to phe-
notypic prediction accuracy improvements. We hypothesized that the power of phenotypic prediction based 
on gxe interactions is low; subsequently we used simulations to investigate the power of gxe-based phenotypic 
prediction. Specifically, we examined, for a sample of 10,000 individuals, of which 80% serves as the training 
set and 20% as the target set, the extent to which varying effect size of gxe interactions can improve phenotypic 
prediction accuracy. To do so, we simulated phenotypes using the model y = g + e + gxe + ε with σ2gxe set to 0.2, 
0.05, and 0.025, respectively. Each setting has 100 replicates, and each replicate contains phenotypes of 10,000 
individuals. We randomly divided each replicate into a training set (n = 8000) and a target set (n = 2000) and 
subsequently computed the phenotypic prediction accuracy of two estimation models, y = g + e + ε (i.e., null 
model) and y = g + e + gxe + ε (i.e., full model) for each replicate.

Supplementary Fig. 2 presents the prediction accuracies of the two models by simulation setting (2a) and 
changes in prediction accuracy from the null model to the full model (2b). Despite the presence of genuine gxe 
interactions, little prediction accuracy is gained from accounting for these interactions, and this observation 
holds even under the setting with the largest gxe interactions (i.e., σ2gxe = 0.2). This observation aligns with our 
results from real data analyses (Supplementary Fig. 1) and indicates that the power of phenotypic predictions 
based on gxe interactions is low.

Principal component‑based transformed variables for E.  If the degree of correlation among vari-
ables is high, it can cause biased estimates when the variables are fitted in a model, i.e. multicollinearity problem. 
Such bias is also problematic when using correlated exposomic variables to construct E to be fitted in an LMM 
to estimate the proportion of the variance explained by the variables (R2 = σ2e when phenotypes are standard-
ised with mean zero and variance one). The R2 can also be obtained from a linear model, i.e., the coefficients of 
determination. For problematically correlated variables, principal component regression has been introduced45.

A linear model can be written as

where y is a n vector of phenotypes, W is a column-standardised n x m matrix containing correlated exposomic 
variables, β is their effects and ε is a vector of residuals.

When exposomic variables in W are highly correlated, estimated exposomic effects (β-hat) are inflated due 
to multicollinearity problem.

From the singular value decomposition, W can be expressed as

where U is a matrix whose columns contain the left singular vectors of W, D is a diagonal matrix having a vector 
containing the singular values of W and V is a unitary matrix (i.e. VVt = I45) whose columns contain the right 
singular vectors of W.

V can be also obtained from the eigen decomposition of the covariance matrix of the variables, i.e. WtW.
The principal component regression approach45 proposes to transform W to a column-orthogonal matrix, 

Ω, multiplied by V, which can be written as

Now, we can replace W with Ω in the model as

T h e  e s t i m a t e d  r e g r e s s i o n  c o e f f i c i e n t s  f r o m  t h e  m o d e l  ( 2 )  a r e 
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̂β , where V is a unitary matrix such that 

VVt = I (identity matrix) can be cancelled out45.
Therefore, R2 values obtained from models (1) and (2) are equivalent as.

However, Eq. (2) can avoid a collinearity issue among the variables. Therefore, model (2) can be extended 
to a linear mixed model, i.e. the covariance structure can be constructed based on Ω, i.e. ΩΩt/m where Ω is 
column-standardised.

(1)y = Wβ+ ε

W = UDVt

� = WV

(2)y = �γ+ ε

R2 =

∑

[y − ŷi]
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Suppose a LMM of the form

where y is a vector of phenotypes for n individuals; W is a n x m2 matrix that contains m exposomic variables; 
β is a vector of random exposomic effects, each assumed normal with mean zero and variance σ2e/m2 ; and ε is a 
vector of residuals, each assumed normal with mean zero and variance σ2

ε
.

Under this model, phenotypic variance is partitioned as

where I is the n × n identify matrix.
When exposomic variables are highly correlated, a transformed W, denoted as Ω, should be used, to avoid 

biased σ̂2e.
In a similar manner to the linear models (1) and (2), LMM (3) can be rewritten as

Since VtV = I

Then

Therefore, using column-standardized principal components of exposomic variables as W for Eq. (3) can 
avoid biased σ̂2e . This is further verified using simulations.

Estimation of exc interactions.  We extend the proposed model to a reaction norm model (RNM31–33,46) 
by introducing exc interaction terms, where e is the additive effects of exposomic variables and c is a covariate. 
Given the significant additive effects found in the above, the interest of fitting RNMs is determine whether these 
effects vary depending on covariates, which would be evidenced by the presence of significant exc interactions.

While estimates of σ2exe inform the phenotypic variance explained by the sum of all possible combinations of 
pairwise interactions between lifestyle-exposomic variables, it may also be of interest to estimate the modulated 
exposomic effects specific to particular covariates, using the RNM31–33,46. The covariates include alcohol intake, 
smoking, energy intake, physical activity, sex, socio-economic status (indexed by Townsend deprivation index), 
age and ethnicity measured using the first two ancestry principal components. For each covariate, we fitted the 
RNM that allows the covariate to interact with exposomic effects and compared the fit of this model with a null 
model that assumes no exc interactions (see Supplementary Table 3 for p-values). Significant covariates were 
then included in a subsequent analysis of RNM that fit multiple covariates simultaneously. We reported the total 
variance of exc interaction effects in Supplementary Table 4.

Five‑fold cross‑validation.  Using fivefold cross validation, we (1) validate significant variance compo-
nents identified above (Table 1) and (2) evaluate the extent to which the inclusion of these variance components 
improves phenotypic prediction. For every trait, we randomly split the sample into a discovery set (~ 80%) and 
a target set (~ 20%) and iterated this process five times in a manner such that target sets did not overlap across 
iterations (see Fig. 6 for an outline). We derived the prediction accuracy of each model by averaging the Pearson’s 
correlation coefficients between the observed and predicted phenotypes across target sets; then compared pre-
diction accuracies between models (e.g., y = g + ε vs. y = g + e + ε) to determine phenotypic prediction improve-
ments gained by the inclusion of a given variance component [e.g., var(e)]. For each variance component, we 
regressed prediction accuracy improvements on estimates of the variance component and declared the variance 
component valid if the slope differs from zero.

Theoretical prediction accuracy for quantitative traits.  Suppose we predict phenotypes of a quan-
titative trait (e.g., BMI) with SNP-based heritability h2 using a discovery dataset of N individuals. Following 
previous theoretical derivations23,27–30,34, the genomic prediction accuracy based on the model y = g + ε can be 
written as

where M1 is the effective number of chromosome segments, which is a function of the effective number of popula-
tion size and can be estimated using the inverse of the variance of off-diagonal elements of genomic relationships 
(i.e., G in Table 2) between the discovery and target samples27–30.

Assuming that phenotypes are standardized to have mean zero and variance one, if the total amount of 
phenotypic variance explained by the exposome is σ2e , Eq. 4 can be adapted to describe the prediction accuracy 
of the model y = e + ε in the form
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where M2 is analogous to M1 and can be thought of as the effective number of (independent) exposomic variables. 
Similar to M1, M2 can be estimated using the inverse of the variance of the off-diagonal elements of exposomic 
relationships (E in Table 2) between the discovery and target samples.

Upon establishing an agreement between expected accuracies, based on Eqs. (4) and (5), and observed 
accuracies for the 11 traits in this study (Supplementary Fig. 4), we proceeded to the prediction accuracy of the 
proposed integrative analysis of genomic and exposomic data.

Assuming that the genomic and exposomic effects on phenotypes are uncorrelated, the prediction accuracy 
of the model y = g + e + ε can be written as

Equation (6) is verified by an agreement between the expected and observed prediction accuracies for the 11 
traits in this study (Supplementary Fig. 4).

Theoretical prediction accuracy for disease traits.  Considering a disease trait with a population prev-
alence k, we derived the expected prediction accuracy of the model y = g + e + ε for the disease in terms of the 
correlation coefficient between the true underlying disease liability and predicted values from the model23,28,34,47, 
which can then be converted to an AUC value23–25.

Similar to rg and re, the expected prediction accuracies for the disease on the liability scale, denoted as r′g (for 
y = g + ε) and r′e (for y = e + ε), can be computed using previous derivations23,28,34,47 as the followings.

where h2 is the SNP-based heritability on the liability scale, N is the discovery sample size, k is the population 
prevalence, p is the ratio of cases in the discovery sample, and z is the density at the threshold on the standard 
normal distribution curve.

(5)re =

√

σ
2
e ·

σ
2
e

σ
2
e +M2/N

(6)r =
√

r2g + r2e

(7)r
′

g =

√

h2 ·
h2z2

h2z2 + [k(1− k)]2 ·M1/[p(1− p) ·N]

Figure 6.   A schematic showing fivefold cross-validation procedures. (i) Randomly assign individuals to 5 
groups of an equal size. (ii) Choose one group as the target dataset and the remaining four as the discovery 
dataset. Iterate the selection process five times in such a way that target datasets do not overlap across iterations. 
Fit 4 models to each discovery dataset. (iii) For each model, generate the best linear unbiased predictions from 
discovery datasets and project them onto their corresponding target datasets to derive predicted phenotypes. 
Compute the phenotypic prediction accuracy for each model by averaging Pearson’s correlation coefficients 
between the predicted and the observed phenotypes across target datasets.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21495  | https://doi.org/10.1038/s41598-021-00427-y

www.nature.com/scientificreports/

where σ2e.tot is the total amount of variance explained by the exposome on the liability scale (i.e., σ2e+σ2exe ). Note 
σ
2
e.tot = σ

2
e when σ2exe = 0.

As in Eq. (6), we combined r′g and r′e to derive the expected prediction accuracy on the liability scale for the 
disease, denoted as r′ , under the assumption that the genetic effects and exposomic effects are uncorrelated.

Following a well-established theory23–25,28 that has been verified by a comprehensive analysis of real data26, 
we converted r′ to the area under the receiver operating characteristic curve (AUC) as

where i (= z/k) is the mean liability for diseased individuals, i2 (= − ik/(1 − k)) is the mean liability for non-
diseased individuals, t is the threshold on the normal distribution that truncates the proportion of disease 
prevalence k and Ф is the cumulative density function of the normal distribution.

To derive the AUC values shown in Fig. 5, we set p = k, M1 to 50,000 and M2 to 28. M1 (50,000) was estimated 
from the inverse of the variance of genomic relationships (G) between the discovery and target samples27,29,30. 
Similarly, M2 (28) was estimated from the inverse of the variance of exposomic relationships (E) between the 
discovery and target samples, which agrees with the number of transformed exposomic variables by a principal 
component analysis in this study (see the correlated exposomic variables section in “Methods”). Note that setting 
M2 up to 100 would not yield expected prediction accuracies that notably differ from those from setting M2 = 28.

Code availability
The source code for MTG2 v2.18 and example code along with related files for fitting IGE model can be accessed 
without any restrictions from https://​sites.​google.​com/​site/​hongl​ee0707/​mtg2 or from https://​github.​com/​hongl​
ee0707/​IGE.
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