
1

Edited by: 
Barbara Karen Dunn, 

National Institutes of Health (NIH), 
United States

Reviewed by: 
Howard Donninger, 

University of Louisville, 
United States 

Zeyi Liu, 
Soochow University, China  

Yadi Zhou, 
Cleveland Clinic, United States

*Correspondence: 
Jun Huang 

xyyyhj@csu.edu.cn

†These authors share authorship

Specialty section: 
This article was submitted to 

 Cancer Genetics, 
 a section of the journal 

 Frontiers in Genetics

Received: 01 February 2019
Accepted: 27 August 2019

Published: 01 October 2019

Citation: 
Cheng Q, Huang C, Cao H, Lin J, 

Gong X, Li J, Chen Y, Tian Z, 
Fang Z and Huang J (2019) A Novel 

Prognostic Signature of Transcription 
Factors for the Prediction in Patients 

With GBM. 
 Front. Genet. 10:906. 

 doi: 10.3389/fgene.2019.00906

A Novel Prognostic Signature 
of Transcription Factors for the 
Prediction in Patients With GBM
Quan Cheng 1†, Chunhai Huang 2†, Hui Cao 3, Jinhu Lin 1, Xuan Gong 1, Jian Li 1, 
Yuanbing Chen 1, Zhi Tian 2, Zhenyu Fang 1 and Jun Huang 1*

1 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China, 2 Department of Neurosurgery, 
First Affiliated Hospital of Jishou University, Jishou, China, 3 Clinical Medical Research Center of Hunan Provincial Mental 
Behavioral Disorder, Clinical Medical School of Hunan University of Chinese Medicine, Hunan Provincial Brain Hospital, 
Changsha, China

Background: Although the diagnosis and treatment of glioblastoma (GBM) is significantly 
improved with recent progresses, there is still a large heterogeneity in therapeutic effects 
and overall survival. The aim of this study is to analyze gene expressions of transcription 
factors (TFs) in GBM so as to discover new tumor markers.

Methods: Differentially expressed TFs are identified by data mining using public databases. 
The GBM transcriptome profile is downloaded from The Cancer Genome Atlas (TCGA). 
The nonnegative matrix factorization (NMF) method is used to cluster the differentially 
expressed genes to discover hub genes and signal pathways. The TFs affecting the 
prognosis of GBM are screened by univariate and multivariate COX regression analysis, 
and the receiver operating characteristic (ROC) curve is determined. The GBM hazard 
model and nomogram map are constructed by integrating the clinical data. Finally, the 
TFs involving potential signaling pathways in GBM are screened by Gene Set Enrichment 
Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis.

Results: There are 68 differentially expressed TFs in GBM, of which 43 genes are 
upregulated and 25 genes are downregulated. NMF clustering analysis suggested that 
GBM patients are divided into three groups: Clusters A, B, and C. LHX2, MEOX2, SNAI2, 
and ZNF22 are identified from the above differential genes by univariate/multivariate 
regression analysis. The risk score of those four genes are calculated based on the beta 
coefficient of each gene, and we found that the predictive ability of the risk score gradually 
increased with the prolonged predicted termination time by time-dependent ROC curve 
analysis. The nomogram results have showed that the integration of risk score, age, 
gender, chemotherapy, radiotherapy, and 1p/19q can further improve predictive ability 
towards the survival of GBM. The pathways in cancer, phosphoinositide 3-kinases 
(PI3K)–Akt signaling, Hippo signaling, and proteoglycans, are highly enriched in high-
risk groups by GSEA. These genes are mainly involved in cell migration, cell adhesion, 
epithelial–mesenchymal transition (EMT), cell cycle, and other signaling pathways by GO 
and KEGG analysis.
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conclusion: The four-factor combined scoring model of LHX2, MEOX2, SNAI2, and 
ZNF22 can precisely predict the prognosis of patients with GBM.

Keywords: glioblastoma, transcription factors, prognostic signature, lhX2, MeOX2, SNAi2, ZNF22

iNTRODUcTiON

Glioblastomas (GBMs) are the most common malignant 
tumors in the central nervous system (CNS), which accounts 
for 14.9% of primary CNS and 47.1% of primary brain 
tumors. The incidence of GBM increases with age, being most 
common during 75–84 years of age. It is generally associated 
with a poor prognosis, in which median overall survival (OS) 
is 15 months and 5-year survival is only about 5.5% (Ostrom 
et al., 2017). However, studies have shown that the prognosis 
varies widely among individuals. The histopathology which 
is commonly used in the clinic is not an ideal prognosis 
marker and can even lead to erroneous judgement. For the 
past 10 years, rapid advancement in bioinformatics has 
provided better tools to explore the molecular characteristics 
of cancer. This way, many molecular markers and molecular 
characterizing systems of GBM have been identified, which 
offers novel insights into the better understanding of 
progression mechanisms, diagnosis, and treatment of GBM 
(Lee et al., 2018). For instance, the prognostic and predictive 
significance of isocitrate dehydrogenase (IDH)1/2 mutation 
has been validated by many studies. In these studies, GBM 
patients with IDH1/2 mutations have notably longer OS 
compared with patients without (Yan et al., 2009; Beiko et al., 
2014). In addition, O6-methylguanine DNA methyltransferase 
(MGMT) methylation status is another important molecular 
marker, predicting the therapeutic effects of temozolomide 
(TMZ) in GBM patients (Hegi et al., 2005).

Transcription factor (TF), also known as trans-acting factor, 
is a protein with a unique structure that controls the rate of 
transcription or the production of messenger RNA (mRNA).
TF can act as an activator or repressor by interacting with cis-
acting elements. During eukaryotic transcription initiation, RNA 
polymerase II binds to TFs to form a transcription initiation 
complex. Transcription is a very complex process which is 
operated by synchronized multi-protein complexes including 
TFs. According to the functional characteristics of the TFs, 
they can be divided into two types; the first type is general TFs 
such as TFII family proteins which are ubiquitous and bring the 
RNA polymerase through binding to the promoter region near 
the transcription start site to turn on genes (Kadonaga, 2004). 
The second type is sequence-specific TFs that bind upstream of 
the transcription start site to promote or inhibit the expression 
of a particular gene. The sequence-specific TFs contain one or 
more DNA-binding domains and recognize specific DNA motifs 
near the gene to initiate their functions. TFs are involved in 
different biological processes such as cell proliferation, growth, 
differentiation, and apoptosis. Dysfunction of TFs can lead to 
imbalance in homeostasis, leading to a variety of diseases. Due to 

the complexity of transcriptional regulation, there are not many 
systematic studies on transcriptional regulation of GBM. This 
study mainly focuses on changes of transcriptome profiling in 
GBM, with the intention to discover key regulatory molecules 
which can be developed as new markers.

In this study, we have identified, established, and evaluated 
a scoring system with a combination of four TFs (LHX2, 
MEOX2, SNAI2, and ZNF22) to assess the prognosis of GBM. 
To achieve this, we have integrated the analysis of GBM patients’ 
expression profiles or sequencing data from Oncomine, Gene 
Expression Omnibus (GEO), TCGA, and Chinese Glioma 
Genome Atlas (CGGA) databases. We also provide an evidence 
that the expression levels of SNAI and MEOX2 are significantly 
associated with histopathological grade and survival time in 
glioma patients, indicating that these two transcriptional factors 
play a crucial role in the malignancy of glioma.

MATeRiAlS AND MeThODS

identification of the Differentially 
expressed TFs
Gene expression profile data of the SUN brain, Murat brain, 
GBM, and normal brain tissue in TCGA were obtained from 
the Oncomine (https://www.oncomine.org/resource/) database. 
The statistically significant differentially expressed TFs (DETFs) 
were identified with a fold change larger than 2. The candidate 
cell-specific TF markers per tissue were derived from the 
molecular signature database [http://software.broadinstitute.org/
gsea/msigdb/gene_families.jsp, Molecular Signatures Database 
(MSigDB) V6.0]. The overlapped upregulated or downregulated 
TFs of four groups were defined as the most widely and 
significantly DETFs.

Datasets
The genome-wide mRNA array expression profile of GBM 
patients and their corresponding clinical information, 
including histology, gender, age, survival information 
and IDH1 gene mutation status, 1p/19q codelet, GeneExp 
subtype, and others, were downloaded from TCGA (https://
xenabrowser.net) (Goldman et al., 2019). These clinical 
features and mRNA expression profile of TCGA GBM array 
are utilized as the training dataset which includes 524 patient 
samples. As for the validation dataset, there are 60 samples 
from GSE74187, 215 samples from the CGGA GBM RNA-Seq 
dataset, and 157 samples from the TCGA GBM-seq dataset, 
which are an independent human glioma gene expression 
profile. The CGGA GBM RNA-Seq dataset is downloaded 
from the CGGA (http://cgga.org.cn/index.jsp). The GBM 
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mRNA-seq dataset was also gained from TCGA (https://
xenabrowser.net) (Goldman et al., 2019).

Risk Model establishment Analysis of the 
Detfs and Prognosis Survival of GBM
We employed the nonnegative matrix factorization (NMF) 
method to find the key genes and signal pathways by clustering 
the DETFs, which were identified in a previous step. The gene 
function and pathway annotation were performed using the 
clusterProfiler package in R (Yu et al., 2012). Univariate Cox 
hazard analysis was used to identify individual single genes 
that affect the survival of TCGA GBM patients. And then 
multivariate Cox regression analysis was used to establish a 
linear joint risk score of gene expression level (expr) using 
regression coefficient β. The risk score for each sample was 
calculated as follows: risk score = exprgene1 × βgene1 + exprgene2 
× βgene2 + ··· + exprgenen × βgenen. The area under the receiver 
operating characteristic (ROC) curve (AUC) of the time-
dependent risk score was calculated using the survivalROC 
package of R. The samples were then divided into high- and 
low-risk groups based on the median or the best cutoff of risk 
scores, for survival analysis. Next, we randomly selected half 
of the samples from TCGA GBM array training set to validate 
the efficacy of our model. After that, we conduct the external 
validation with the GSE74187 dataset, the CGGA dataset, 
and TCGA GBM RNA-Seq dataset. The correlation analysis 
between high- and low-risk groups towards clinical features 
was performed in the training set. The multivariate Cox model 
was constructed using the survival package for the risk score 
and clinical features with a P value < 0.05 as cutoff, and the 
Nomogram chart was drawn using the regplot package. The 
risk model was assessed by the calibration curve and AUC.

Gene Set enrichment Analysis
The GSEA was performed via the clusterProfiler package of R. 
The GBM samples in TCGA were divided into downregulated 
and upregulated groups based on the median of the risk score 
of the TFs. The absolute value of normalized enrichment score 
(NES) > 1, P value < 0.05, and false discovery rate (FDR) q 
value < 0.25 were defined as the statistically significant criteria. 
The co-expressed genes of the prognostic-related TFs identified 
in TCGA dataset were identified (|Spearman’s r|  ≥ 0.4). The 
genes were then subjected to the clusterProfiler package for GO 
(biological process) and KEGG enrichment analysis, with P < 
0.05 as the cutoff.

Statistical Analysis
All statistical analyses were performed using SPSS 22.0 or R 
software. Two groups’ statistical significance was calculated using 
the t-test or non-parametric t-test. The chi-square test was used 
to analyze the correlation of the classified data. In this study,  
P < 0.05 was defined as a statistically significant cutoff. For the 
Cox regression analysis, the time-dependent Cox model variable 
test was verified using the proportional hazard hypothesis 
(PH hypothesis).

ReSUlTS

identification of the DeTFs
A total of 68 significantly DETFs were identified from TCGA/SUN 
brain/Murat brain database, of which 43 were upregulated and 25 
were downregulated (Table 1 and Figures 1A, B). Furthermore, 
we have obtained the gene expression profile matrix of TCGA 
GBM patients and have found that GBM patients can be divided 
into three categories using the NMF clustering method (Figure 
1C). Representative genes of each group are shown in Table 1. 
Among them, the proneural patients in the Cluster A group 
were the most (56%) accounted for. Mesenchymal and classical 
patients were mostly in the Cluster C group, accounting for 44% 
and 48%, respectively. The proportions of three subtypes in the 

TABle 1 | Differentially expressed transcription factors (TFs).

GBM vs normal braint Representative genes

Up Down cluster A cluster B cluster c

ASCL1 ARNT2 ARNT2 CBX6 HIF1A
BAZ1A BCL11A ASCL1 CBX7 MEF2A
CBX3 CBX6 ETV1 CHD5 MEOX2
ETV1 CBX7 HEY1 FEZF2 PDLIM5
EZH2 CHD5 LHX2 HIVEP2 PRRX1
FOXM1 FEZF2 LIMA1 HLF RELA
HEY1 HIVEP2 RNF41 LDB2 RUNX1
HIF1A HLF SOX11 LDOC1 SHOX2
HMGB2 LDB2 SOX2 LMO3 SMAD1
HOXA10 LDOC1 TRIM24 MEF2C SNAI2
HOXA5 LHX2 ZNF207 MYT1L SNAPC1
HOXA7 LMO3 ZNF22 OPTN TBX2
HOXB2 MED14 BAZ1A PRDM2 TGFB1I1
HOXC10 MEF2A BCL11A RIMS3 TGIF1
HOXC6 MEF2C CBX3 RUNX1T1 ZNF217
ILF3 MYT1L EZH2 STON1
LIMA1 NFYB FOXM1 ULK2
MBD2 OPTN HMGB2 ZMYND11
MEOX2 PRDM2 ILF3
PDLIM5 PSIP1 MBD2
PRRX1 RIMS3 MED14
RARA RNF41 NFYB
RELA RUNX1T1 PSIP1
RUNX1 ULK2 RARA
SHOX2 ZMYND11 SOX4
SMAD1 TCF3
SNAI2 TFAP2A
SNAPC1 WHSC1
SOX11 HOXA10
SOX2 HOXA5
SOX4 HOXA7
STON1 HOXB2
TBX2 HOXC10
TCF3 HOXC6
TFAP2A
TGFB1I1
TGIF1
TRIM24
WHSC1
ZFAND6
ZNF207
ZNF217
ZNF22

GBM, glioblastoma.
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Cluster B group were very close, and the neural type accounted 
for a large proportion (38%) (Figures 1D, E, F). Correlation 
analysis between the 68 identified TFs has revealed that the 
genetic correlation among three clusters was quite good (Figure 
2A). Patients in the Cluster A group had the best prognosis, 

with a median OS of 493 days. Patients in the Cluster B group 
had a median OS of 457 days; while patients in the Cluster C 
group had the worst prognosis with a median OS of 419 days 
(Figure 2B).The gene function and pathway annotation analysis 
by the clusterProfiler package have revealed that the most 

FiGURe 1 | Identification of differentially expressed transcription factors (DETFs). (A) total of 43 significantly upregulated transcription factors were screened from 
the three databases of The Cancer Genome Atlas (TCGA)/SUN brain/Murat brain. (B) A total of 25 significantly downregulated transcription factors were screened 
from the three databases of TCGA/SUN brain/Murat brain. (c) Clusters A–C of glioblastoma (GBM) patients through 68 transcription factors using the nonnegative 
matrix factorization (NMF) clustering method. (D–F) Proportions of proneural, mesenchymal, classical, and neural in Clusters A–C.
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enriched pathways of the 68 TFs were chromatin remodeling, 
glial cell differentiation, regulation of transcription regulatory 
region DNA binding, and regulation of gliogenesis (Figure 
2C). The most enriched pathways of Cluster A were gliogenesis, 
chromatin remodeling, regulation of transcription regulatory 
region DNA binding, glial cell proliferation, and regulation of 
G0-to-G1 transition (Figure 2D). The most enriched pathways 
of Cluster B were cell fate commitment, negative regulation of 
1-kappa B kinase/nuclear factor (NF)-kappa B signaling, histone 
lysine methylation, and histone methylation (Figure 2E). The 
most enriched pathways of Cluster C were cell fate commitment, 
regulation of angiogenesis, stem cell proliferation, negative 
regulation of apoptotic pathway, and positive regulation of 
vasculature development (Figure 2F).

construction of Prognostic classifier 
From the Training Sets and Validation
The GBM expression profile of TCGA was used as a train dataset 
to screen the DETFs. Univariate Cox hazard analysis was used 
to identify individual single genes from 68 TFs that affect the 
survival of TCGA GBM patients, in which we obtained 12 
statistically significant genes: ASCL1, HOXB, HOXC1, LHX2, 
MEOX2, RARA, RUNX1, SNAI2, SOX4, TCF3, TGIF1, and 
ZNF22. The 12 TFs were entered into the multivariate regression 
analysis. The four TFs (LHX2, MEOX2, SNAI2, and ZNF22) 
were inputted to the final equation, and the results indicated that 
these four TFs can be used as independent predictors for the 
prognosis of GBM. The β-cofactors of LHX2, MEOX2, SNAI2, 
and ZNF22 were 0.318, 0.264, 0.332, and -0.349, respectively. 

FiGURe 2 | Survival analysis and gene function enrichment of Clusters A–C. (A) Gene expression correlation of Clusters A–C in The Cancer Genome Atlas (TCGA) 
glioblastoma (GBM) data. (B) Survival analysis of the three groups, Clusters A–C: the patients in Cluster A had the best prognosis, while those in Cluster C had the 
worst prognosis. (c) Gene Ontology (GO) (biological process) enrichment results of 68 transcription factors. (D–F) GO (biological process) enrichment results of 
Clusters A–C.
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The joint risk score of the four TFs was calculated by substituting 
the coefficient into the formula. The median value was 3.3361 
by ranking the risk score from low to high, which was used to 
divide the samples into low- and high-risk groups (Figure 3A). 
Through time-dependent ROC curve analysis, it was found that 
the predictive ability of the joint risk score of the four TFs for 
the patients’ survival prognosis gradually increased with the 
predicted termination time (Figure 3B), and the AUC of the risk 
score ROC curve at the predicted termination time of 3 years 
was 0.735 (Figure 3C). GBM patients were divided into high- 
and low-risk groups by the median value of the risk score, and 
the results showed that the OS time between the low- and high-
risk groups was very significant (P = 0.0052) (Figure 3D). While 
the results of twice internal validations and the ROC curve are 
satisfied (Figures S1A–D), to validate the risk model with the 
external dataset, the GSE74187 dataset, the CGGA dataset, and 
TCGA dataset, we used the β-cooperative coefficient to calculate 
the joint risk score of the four TFs in each dataset that will predict 
the prognosis of GBM patients. With these taken together, these 

results manifested that the OS of GBM patients in the high- 
and low-risk groups was significantly different (GSE74187 P = 
0.0024, the CGGA dataset P < 0.0001, and TCGA dataset P = 
0.0055). The ROC curve also corresponds with our expectation 
(Figures 3E and S1E–H).

Prognostic Value of the integrated 
classifier is independent of the 
clinical Feature
To assess whether the prognostic classifier was an independent 
indicator in GBM patients, we analyzed the effect of each 
clinicopathological feature towards survival by using the 
Cox regression model. The multivariate regression analysis, 
the risk score based on TFs, age, gender, chemotherapy, 
radiotherapy, and 1p/19q codelet were entered into the final 
equation of the Cox regression model (Table 2). We found that 
the risk score based on TFs was strong and an independent 
predictive factor in the GBM data of TCGA (Table 2). Next, 

FiGURe 3 | Construction and verification of the hazard assessment system. (A) The distribution of risk score, patient survival time and status in The Cancer 
Genome Atlas (TCGA) set, and heatmap of the gene risk assessment model in TCGA dataset. (B, c) The area under the curve (AUC) for the risk assessment model 
in TCGA set and time-dependent receiver operating characteristic (ROC) for predicting the 3-year survival. (D, e) Kaplan–Meier curves of the high-risk group and 
low-risk group of TCGA dataset and GSE74187 dataset.
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we constructed a nomogram that integrated TF classifiers and 
clinicopathological features to predict the 1-year and 3-year 
survival of GBM patients (Figure 4A). The calibration curve 
showed that the predicted 1-year and 3-year survival rates were 
closely related to the actual observed ratio (Figure 4B). GBM 
patients were divided into high- and low-risk groups by the 
median value of the new classifier based on the TF risk score 
and the clinical features. The outcome of this analysis shows that 
the OS of GBM patients in the high- and low-risk groups was 
significantly different (P < 0.0001) (Figure 4C). By calculating 
the AUC of the new classifier, we found that the AUC value 
was 0.819 at the predicted 3-year end time and 0.734 at 1-year 
end time (Figure 4D), which was higher than that using the TF 
classifier alone. By calculating ROC values of different times, 
the ROC value of the new classifier was significantly higher 
than that using the TF classifier only (Figure 4E). These results 
demonstrated the robust and predictive power of the new 
classifier based on the TF risk score and the clinical features 
performed better.

Functional Analysis for the Prognostic 
classifier of Genes
To identify the potential functional mechanisms that led to 
different prognosis in high- and low-risk groups, we applied 
functional enrichment analysis (GSEA) on identified TFs. The 
top 30 pathways were shown in Figure 5A where |NES| > 1, P 
value < 0.05, and FDR q value < 0.25 were used as the cutoff 
for identifying differentially enriched signal pathways. Pathways 
in cancer such as the phosphoinositide 3-kinases (PI3K)–Akt 
signaling pathway, hippo signaling pathway, proteoglycans 
in cancer, and other signaling pathways (Figures 5B–E) were 
significantly enriched in high-risk groups, which may partly 
explain the reason for poor prognosis in high-risk group 
patients. The co-expressed genes of LHX2 were mainly involved 
in pathways such as glial cell differentiation and cell adhesion. 
The co-expressed genes of MEOX2 were mainly related to the 
glial cell differentiation, extracellular matrix composition, 
cell adhesion, PI3K–Akt pathway, and other functional and 

pathways. The co-expressed genes of SNAI2 were mainly 
involved in extracellular matrix, cell invasion, cell adhesion, 
PI3K–Akt pathway, and NF-kappa B pathway. The co-expressed 
genes of SNAI2 were mainly involved in mRNA processing, 
histone modification, chromosome segregation, cell cycle, and 
Notch signaling pathway.

DiScUSSiON

Glioma is the most common type of tumor in the brain, and its 
OS is still not satisfactory. In particular, the GBM patients with 
high-grade malignancy still have a high mortality rate (Ostrom 
et al., 2017). New studies are focusing on better classification, 
prognosis prediction, molecular mechanism, and targeted drug 
therapy for GBM (Touat et al., 2017). TFs play an important role 
in turning genes “on” and “off,” yet there are few systematic studies 
focusing on their roles in gliomas. By analyzing the DETFs in 
GBM using TCGA, SUN brain, and Murat brain datasets, we 
identified 68 TFs that were differentially expressed in GBM 
patients compared to the normal brain tissues. Using TCGA 
dataset as a training dataset, we found that GBM patients can be 
divided into three distinct subpopulations based on 68 TFs. It is 
well known that there is a significant heterogeneity within the 
malignant tumor, which leads to a large difference in its prognosis 
and response to various treatments. From the perspective of TFs’ 
expression profile, we elucidated the intrinsic differences in GBM 
patients, which indicated the underlining mechanisms of tumor 
development in different subtypes of GBM that are regulated 
by different signaling pathways. Our analysis showed that 
gliogenesis, chromatin remodeling, regulation of transcription 
regulatory region DNA binding, glial cell proliferation, and 
regulation of G0-to-G1 transition may play a major role in 
cancer progression in Cluster A. Cell fate commitment, negative 
regulation of 1-kappa B kinase/NF-kappa B signaling, histone 
lysine methylation, histone methylation, and so on were mainly 
involved in Cluster B. In the subtype of Cluster C, cell fate 
commitment, regulation of angiogenesis, stem cell proliferation, 
negative regulation of the apoptotic pathway, positive regulation 

TABle 2 | Univariate and multivariate Cox regression analysis of factors affecting overall survival of patients in The Cancer Genome Atlas (TCGA) glioblastoma (GBM) 
cohort.

Univariate analysis Multivariate analysis

P hR 95%ci P hR 95%ci

Risk score <0.001 1.37 1.20–1.57 0.005 1.23 1.06–1.43
Age group (> 45) <0.001 2.291 1.632–3.216 <0.001 2.01 1.39–2.91
Gender (Female) 0.094 0.810 0.634–1.036 0.001 0.64 0.50–0.84
Subtype
Proneural 0.118 0.769 0.552–1.069
Mesenchymal 0.267 1.193 0.874–1.629
Neural 0.588 1.101 0.778–1.558
Chemotherapy (Yes) <0.001 0.378 0.283–0.505 <0.001 0.48 0.33–0.69
Radiotherapy (Yes) <0.001 0.131 0.094–0.183 <0.001 0.19 0.130–0.28
IDH status (WT) <0.001 0.321 0.196–0.524
1p/19q codelet 
(non-codel)

0.046 4.24 1.026–17.52 0.005 8.54 1.89–38.5

HR, hazard ratio; IDH, isocitrate dehydrogenase; WT, wild type.
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of vasculature development, and so on played a more critical role. 
These different mechanisms of tumor progression of GBM can 
also explain the complex heterogeneity and differences in the 
prognosis. According to the subtypes of Verhaak et al. (2010), 
Cluster A contained more proneural subtypes, and its prognosis 
was better. The proportions of subtypes in Cluster B were roughly 

the same, while Cluster C had the most mesenchymal and 
classical subtypes, which may cause poor prognosis.

In order to find out which of these factors plays a key role in 
the prognosis of GBM, we used the Cox hazard ratio model to 
analyze and finally determined four independent factors (LHX2, 
MEOX2, SNAI2, and ZNF22) as predictors of GBM prognosis. 

FiGURe 4 | Prognostic value of the integrated classifier is independent of clinical feature. (A) Prognostic nomogram for glioblastoma (GBM) patients with six chief 
characteristics. (B) The calibration curve of overall survival (OS) at 1/3 year. Nomogram-predicted probability of the OS is plotted on the x-axis, and the observed 
OS is plotted on the y-axis. (c) Comparison of OS between high-risk-score group and low-risk-score group. *P < 0.05, **P < 0.01, ***P < 0.001. (D, e) The time-
dependent receiver operating characteristic (ROC) for predicting the 1/3-year survival and area under the curve (AUC) for the risk assessment model in The Cancer 
Genome Atlas (TCGA) set.
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Time-dependent ROC analysis and survival analysis found that 
the joint risk score based on the four TFs can accurately predict 
the survival prognosis. LHX2 is the major “cortical selection 
gene” in the cerebral cortex and plays multiple roles in different 
organs including the development of CNS (Chou and Tole, 2018). 
The relationship between LHX2 and tumor development has 
not yet been identified. It has been recently found that miR-124 
can inhibit the migration and invasiveness of lung cancer cells 
by inhibiting LHX2 expression (Yang et al., 2017). Zakrzewski 
et al. (2015) discovered that LHX2 expressed differentially in 
different regions that were associated with disease progression 
in the underlying fibroma astrocytoma by bioinformatics, and 
studies have shown that this factor may play an important 
regulatory role in the development of tumors. The mesenchymal 
homeobox (MEOX) family includes two homeodomain 

protein+s, MEOX1 and MEOX2, with 95% sequence identity 
in the homologous domain, which are required for proper bone 
and muscle development in mouse embryos. MEOX2 is also 
known as a growth arrest 65-specific homeobox protein (Gax) 
(Northcott et al., 2017). Abnormal gene expression of MEOX2 
has been found in a variety of diseases, including hepatic portal 
hypertension, Alzheimer disease, and cancer (Wu et al., 2005; 
Zeng et al., 2006). Additionally, in these diseases, MEOX2 has 
also been found to be associated with vascular dysfunction. 
MEOX2 inhibits cell proliferation and epithelial–mesenchymal 
transition (EMT) of vascular smooth muscle and endothelial 
cells (Valcourt et al., 2007). Tachon et al. (2019) demonstrated 
that MEOX2 expression was associated with IDH1/2 wild-type 
molecular subtype and was significantly correlated with the OS 
of all gliomas, especially in lower-grade gliomas. The Snail family 

FiGURe 5 | Functional analysis for the prognostic classifier of genes. (A) Gene Set Enrichment Analysis (GSEA) based on risk score of transcription factors is 
performed to identify associated pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets. (B–e) Gene Ontology (GO) (biological process) terms 
and KEGG pathway related to co-expressed genes of LHX2, MEOX2, SNAI2, and ZNF22 in The Cancer Genome Atlas (TCGA) dataset.
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of zinc finger transcriptional repressors includes three members: 
snai1/snail, snai2/slug, and snai3/smuc, which play key roles 
in EMT (Nieto, 2002; Strobl-Mazzulla and Bronner, 2012; Liu 
et al., 2014; Liu et al., 2017). It has been found that mRNA 
expression of SNAI2 was associated with histological grade and 
invasive phenotype in primary human glioma specimens and 
can be induced by epidermal growth factor receptor (EGFR) 
activation in human GBM cells. The overexpression of SNAI2/
Slug increased the proliferation and invasion of GBM cells in 
vitro and promoted angiogenesis and tumor growth in vivo. 
Importantly, knockdown of endogenous SNAI2/Slug in GBM 
cells reduced invasion and increased survival in the mouse 
intracranial human GBM xenograft model (Yang et al., 2010). 
Liao et al. (2015) found that miR-203 can target SNAI2 to inhibit 
EMT and promote drug sensitivity and implied that targeting 
SNAI2 may be a potential therapeutic approach to overcome 
chemoresistance in GBM. In this study, we found that SNAI2 
was overexpressed, and SNAI2 overexpression is characteristic 
for interstitial transformation, of Cluster C, proving the 
precision of cluster classification. ZNF22 is thought to be 
involved in the development of teeth (Gao et al., 2003), and its 
role in tumors has not been studied thoroughly. In this study, 
GO and KEGG analysis of DETFs revealed that these genes were 
mainly enriched in signal pathways such as cell migration, cell 
adhesion, EMT, and cell cycle, which are consistent with the 
studies mentioned above.

By dividing the GBM patients into high- and low-risk 
groups based on the four-factor joint risk score, we found that 
the signal pathways involved in different groups were quite 
different. Pathways in cancer, PI3K–Akt signaling pathway, 
hippo signaling pathway, and proteoglycans in cancer signaling 
pathways were mainly enriched in high-risk patients. These 
enriched malignant pathways can lead to significantly greater 
tumor proliferation and invasion in the high-risk group than 
in the low-risk group. PI3K is responsible for the conversion of 
PIP2 to PIP3, which activates the downstream target PKB/Akt 
(Chang et al., 2017; Fu et al., 2017). The PI3K pathway is usually 
activated by EGFR and other growth factor receptors (Zoncu 
et al., 2011). It was shown that the PI3K pathway was activated 
in almost all GBM, although only less than 15% of GBM 
showed activating mutations in the PI3K gene. The activation 
of the PI3K/Akt/mTOR pathway led to the development of 
GBM resistance, thereby inhibiting the therapeutic effect 
of chemotherapy (Li et al., 2016). The prognosis of GBM 
patients with activation of the PI3K–Akt pathway was terribly 
poor (Chakravarti et al., 2004). The hedgehog (Hh) signaling 
pathway, also known as hedgehog-patched (Hh-Ptch), 
hedgehog-Gli (Hh-Gli), or hedgehog-patched-smoothened 
(Hh-Ptch-Smo), is an evolutionarily conservative signaling 
pathway from the cell membrane to the nucleus (Skoda et al., 
2018). Dysfunction or abnormal activation of the Hh signaling 
pathway is associated with developmental malformations 
and cancer, such as basal cell nevus syndrome (BCNS), 
sporadic basal cell carcinoma (BCC), medulloblastoma (MB), 
rhabdomyosarcoma, meningioma, and glioma (Taipale and 
Beachy, 2001; Xu et al., 2012; Skoda et al., 2018). Xu et al. (2010) 
found that CD44 promoted the resistance of glioma cells to 

reactive oxygen species-induced and cytotoxic agent-induced 
stress by attenuating the activation of the hippo signaling 
pathway. Lu et al. (2017) found that IKBKE regulated cell 
proliferation, invasion, and EMT of malignant glioma cells in 
vitro and in vivo by affecting the hippo pathway. Proteoglycans, 
including heparan sulfate and chondroitin sulfate proteoglycans 
(HSPG and CSPG, respectively), regulate the activity of many 
signaling pathways as well as cellular–microenvironment 
interactions (Nagarajan et al., 2018). Proteoglycans are the 
main component of the extracellular environment of the brain 
and regulate cell signaling and cell migration. The abnormality 
of proteoglycans and their modification enzymes in GBM leads 
to the changes of EGFR or PDGFRα signaling pathways (Wade 
et al., 2013). Proteoglycans are very critical for the mechanistic 
understanding of proteoglycan function in carcinogenic 
signaling and tumor microenvironment interactions in 
GBM and can be used to identify the new tumor biomarkers 
and druggable targets. These genes involved functions and 
pathways that are coincident with the results we found.

We analyzed the effect of each clinicopathological feature 
and TF risk model affecting survival by using the Cox regression 
model. In the multivariate regression analysis, the risk score 
based on TFs, age, gender, chemotherapy, radiotherapy, and 
1p/19q codelet was entered into the final equation of the Cox 
regression model. The calibration curve of this model and AUC 
values indicate that the model has satisfactory accuracy. Next, 
we constructed a nomogram that integrated TF classifiers and 
clinicopathological features to predict the 1-year and 3-year 
survival of GBM patients. This nomogram can be used to guide 
doctors in judging the prognosis of GBM patients and to help 
them better communicate with patients.

In summary, the significantly DETFs in GBM that promote 
malignant progression of the tumors are mainly involved in 
the PI3K-Akt signaling pathway, hippo signaling pathway, 
proteoglycans in cancer, and other related signaling pathways. 
We believe that these pathways lead to poor prognosis and 
resistance to treatment in GBM. We have established a four-
factor predictive joint risk score model that can be used to 
predict the prognosis of patients with GBM effectively. Based 
on this, two TFs closely related to the malignant progression of 
glioma are identified, which will provide a foundation to develop 
new biomarkers and targeted therapies in GBM.
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