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Abstract

Copy number variations associate with different developmental phenotypes and represent a major 

cause of congenital anomalies of the kidney and urinary tract (CAKUT). Because rare pathogenic 

copy number variations are often large and contain multiple genes, identification of the underlying 

genetic drivers has proven to be difficult. Here we studied the role of rare copy number variations 
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in 80 patients from the KIMONO-study cohort for which pathogenic mutations in three genes 

commonly implicated in CAKUT were excluded. In total, 13 known or novel genomic imbalances 

in 11 of 80 patients were absent or extremely rare in 23,362 population controls. To identify the 

most likely genetic drivers for the CAKUT phenotype underlying these rare copy number 

variations, we used a systematic in silico approach based on frequency in a large dataset of 

controls, annotation with publicly available databases for developmental diseases, tolerance and 

haploinsufficiency scores, and gene expression profile in the developing kidney and urinary tract. 

Five novel candidate genes for CAKUT were identified that showed specific expression in the 

human and mouse developing urinary tract. Among these genes, DLG1 and KIF12 are likely novel 

susceptibility genes for CAKUT in humans. Thus, there is a significant role of genomic imbalance 

in the determination of kidney developmental phenotypes. Additionally, we defined a systematic 

strategy to identify genetic drivers underlying rare copy number variations.
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INTRODUCTION

Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of end-

stage renal disease in childhood.
1
 A solitary functioning kidney represents a frequent 

phenotype among the spectrum of CAKUT, and may profoundly impact long-term clinical 

outcome.
2,3 Phenotypes underlying a solitary functioning kidney of congenital origin 

include conditions causing the primary absence of normally developed unilateral renal 

parenchyma,
4
 such as unilateral renal agenesis (URA), multicystic dysplastic kidney 

(MCDK), and renal hypodysplasia (RHD), or conditions leading to recurrent infections or 

severe hydronephrosis that require nephrectomy in childhood, such as vesicoureteral reflux 

(VUR), ureteropelvic junction obstruction (UPJO) and congenital megaureter.
5

Genetic factors play a major role in the pathogenesis of CAKUT in mammals.
6–9

 Familial 

aggregation is identified in approximately 14% of cases,
10

 with different modes of 

inheritance.
11–14

 Both point mutations and structural variants are implicated in disease 

determination.
7,15,16

 Approximately 6–20% of isolated CAKUT-phenotypes underlying a 

solitary functioning kidney are caused by single-gene defects
12,17–19

 with pathogenic 

mutations in HNF1B (MIM189907),
20

 PAX2 (MIM167409),
21

 and DSTYK 
(MIM612666)

22
 among the most frequently implicated. Copy number variations (CNVs), 

defined as gain or loss of germ line DNA of the size ranging from 1 kilobase (Kb) to several 

megabases (Mb),
23

 have been associated with multiple human phenotypes, including 

neurodevelopmental diseases (intellectual disability, autism, schizophrenia, epilepsy), 

cardiac defects, lung disease, craniofacial malformations, and others.
24–28

 We recently 

demonstrated that rare genic CNVs represent a major molecular determinant of kidney 

malformations, accounting for up to 17% of patients with RHD.
15

 The identification of rare 

recurrent gene-disrupting deletions or duplications can establish a genetic diagnosis, 

therefore improving patient care and genetic counseling. Nevertheless, given that CNVs 
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usually affect the dosage of multiple genes at the same time, the identification of the major 

genetic drivers underlying such events has proven to be difficult.
29

In this study, we investigated the role of rare CNVs in patients with a solitary functioning 

kidney from the KIMONO (KIdney of MONofunctional Origin)-study. Here, patients 

carrying pathogenic point mutations in HNF1B, PAX2, and DSTYK were excluded before 

analysis of structural variants. CNV detection was performed using high-density single 

nucleotide polymorphisms microarrays in 80 patients and compared to over 23,000 

population controls. To identify the most likely drivers for the CAKUT phenotype in carriers 

of pathogenic CNVs, we performed a systematic in silico approach using bioinformatic 

resources and expression profiling in the developing human and mouse kidney. By using this 

approach, we identified five high-priority genetic drivers and we propose DLG1 and KIF12 
as novel candidate susceptibility genes for human kidney and urinary tract malformations. 

This study presents an analytical pipeline to help interpret the functional consequence of 

CNVs and provides a list of novel candidate CAKUT susceptibility genes for follow-up 

validation and functional studies.

RESULTS

Patient characteristics

The KIMONO-GENE cohort included 80 patients (Supplementary Table 1), of whom 54 

(68%) patients were males. The vast majority of subjects were White. Primary kidney 

parenchyma defects (URA, MCDK, and RHD) were present in 66 (83%) patients. Thirty-

seven (46%) patients had a solitary functioning kidney with additional CAKUT such as 

VUR, UPJO or a megaureter. A non-isolated CAKUT phenotype was identified in 26 (30%) 

patients, in whom neurocognitive (n=7, 9%), cardiac (n=4, 5%), and gastrointestinal defects 

(n=4, 5%) were most frequently noted. Additional clinical parameters are presented in 

Supplementary Table 2. DNA of family members was not available for genetic analysis.

Exclusion of mutations in HNF1B, PAX2, and DSTYK

Prior to microarray analysis for CNVs, individuals were screened for point mutations in the 

coding regions of HNF1B, PAX2 and DSTYK by Sanger sequencing.
18,22

 No pathogenic 

mutations were identified. An overview of all single nucleotide variants identified in this 

cohort is presented in Supplementary Table 3.

Genomic disorders are frequent in the KIMONO-GENE cohort

CNV analysis in the 80 patients from the KIMONO-GENE cohort identified 118 large 

CNVs (defined as CNV size >100 Kb; 1.48 CNVs per patient; Supplementary Table 4). 

Median large CNV-size was 174,888 bp [IQR 136,364–263,382 bp]. The majority of these 

large CNVs were duplications (n=68, 58% versus deletions: n=50, 42%). Annotation of 

large (≥100 Kb) rare (<1:1,000) CNVs identified 5/80 patients (6%), compared to 0.5% of 

our 23,362 controls (OR = 16.1 [95% CI 6.9 – 37.8]; Fisher’s exact test: P = 4.0 × 10−6).
30 

These patients carried 6 genomic imbalances with significant overlap with known genomic 

disorders (Table 1). As expected, a substantial proportion (50%) of these patients had a non-

isolated CAKUT phenotype. Among the pathogenic CNVs, one patient harbored the 3q29 
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microdeletion syndrome that has been associated with CAKUT in animal studies,
31,32

 while 

another patient carried a 570 Kb duplication at the PKD1 locus on chromosome 16p13.3. 

Importantly, the 16p13.11 duplication overlaps with a duplication identified by our previous 

study in a different patient affected by RHD, thus representing a recurrent genomic 

disorder.
15

 Interestingly, none of the patients had a deletion affecting the HNF1B locus on 

chromosome 17q12.

We next restricted our search for pathogenic CNVs to very rare events (frequency <1:4,000) 

and identified seven independent novel rare CNVs in 7/80 patients (9%; Table 2), including 

three single gene deletions on chromosome 10q21.1, 13q21.32, and Xq12. The Xq12 

deletion was found in a male patient, indicating a complete loss-of-function mechanism. 

Consistent with prior reports,
15,33

 2/80 patients (2.5%) were found to carry more than one 

large rare CNV. Both patients were affected by a non-isolated CAKUT phenotype.

Analysis of the non-coding portion of the genome identified two large intergenic CNVs that 

were absent in our 23,362 controls, flank additional potential candidate genes for CAKUT, 

and affect regions with high conservation across mammals (Supplementary Table 5, 

Supplementary Figure 2).

In total, we identified 13 known or novel genomic disorders in 11 patients (14%), and two 

unique non-coding CNVs of unknown functional significance.

Systematic in silico approach identifies potential genetic drivers for 6 CNV phenotypes

To define the candidate genetic drivers of the CNV phenotype for the 13 known or novel 

genomic disorders, we established a systematic in silico approach by using publicly 

available databases and bioinformatic resources (Figure 1, methods, and supplementary 

methods). The 13 identified large, rare, genic CNVs included a total of 151 genes. All genes 

underlying the CNVs overlapping with known genomic disorders were retained (n=119). 

Novel rare CNVs were annotated against the International Standards for Cytogenomic 

Arrays Consortium (ISCA) database and Database of Chromosomal Imbalance and 

Phenotype in Humans Using Ensembl Resources Consortium (DECIPHER) to select CNVs 

that overlapped with variants of likely pathogenic significance (Supplementary Table 6 and 

Supplemental Figure 1). After alignment, we discarded the deletion on chromosome 1q44 

and the duplication on chromosome 3p26 from our gene prioritization pipeline, as both 

CNVs showed significant overlap with benign ISCA variants (Supplementary Figure 1). In 

total, 137 genes were assessed for their potential pathogenic role. We cross-annotated our 

genes with the Exome Variant Server (EVS) and included all deleted genes that carry 

truncating mutations in <1:1,000 individuals and all duplicated genes that carry deleterious 

missense variants in <5:1,000 individuals (Supplementary Table 7 and 8, respectively). We 

chose these criteria to eliminate genes that harbor an excessive burden of rare deleterious 

variants. The resulting 32 genes were then interrogated for the haploinsufficiency logarithm 

of the odds (HI-LOD) score
34

 (only the genes underlying deletions) and the residual 

variation intolerance (RVI)-score
35

 (Supplementary Tables 9 [whole deletions] and 10–11 

[prioritized genes], respectively). We defined a HI-LOD score ≥2 or the 10th percentile of 

the calculated RVI-score as threshold values for genes that are more likely to result in a 

phenotype when mutated. Using these criteria we identified two genes. We next included all 
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single-gene CNVs in our systematic approach, as these variants may directly point to the 

genetic defect (n=2). Finally, we included all genes that are implicated in renal disease and 

genes for which mutations in murine orthologs lead to abnormal kidney and urinary tract 

development (n=2, from which 1 overlapped [DLG1] with our previous criteria). The 

resulting list included five high-priority candidate genes: DLG1 (MIM601014), EDA2R 
(MIM300276), KIF12 (MIM611278), PCDH9 (MIM605514), and TRAF7 (MIM606692) 

(Table 3). Consistent with the results from our filtering pipeline, truncating variants are 

extremely rare in these genes according to the EVS database (Supplementary Table 12), 

suggesting that deleterious mutations have been eliminated by purifying selection.

Expression profiles of candidate genes for CAKUT

We evaluated gene expression profiles for all high-priority genes in the developing mouse 

kidney by using GUDMAP (https://www.gudmap.org/) and GenePaint (www.genepaint.org/) 

databases. According to these databases, all five genes were expressed in the developing 

mouse kidney and urinary tract. We subsequently performed localization studies using 

immunofluorescence antibody staining in the developing embryonic human and mouse 

kidney at the 6th gestational week and at embryonic day E14.5, respectively. As predicted 

from data implicating Dlg1 in urinary tract malformations in mice,
31

 this gene was 

specifically expressed in the human ureteric bud (UB) (Figure 2) and showed moderate 

expression in the mouse UB and metanephric mesenchyme (MM) structures (Supplementary 

Figure 3D). Figure 2A demonstrates strong and specific expression of KIF12 in the human 

UB stalk at 6th week of gestation and, to a lesser extent, in the mouse MM and developing 

nephrons at E14.5 (Supplementary Figure 3D). EDA2R, PCDH9, and TRAF7 showed also 

specific expression in human UB compartment at the 6th week of gestation (Supplementary 

Figure 3E, G and I) and, to a lesser extent, in the E14.5 mouse embryonic kidney 

(Supplementary Figure 3F, H and J).

DISCUSSION

CAKUT has an overall prevalence of about 1%
36,37

 and accounts for 40–50% of pediatric 

cases of chronic kidney disease.
38,39

 Establishing an early molecular diagnosis in such 

patients may therefore significantly affect therapeutic trajectories, risk stratification for 

complications that develop later in life, and clinical outcome. In this study we identified rare 

known or new genomic imbalances in 14% of patients affected by solitary kidney but 

without point mutations in common CAKUT susceptibility genes. Although our study 

cohort includes patients with different developmental causes of solitary kidney, our results, 

together with recent data published by our group and others
15,40

 highlights that, overall, 

human kidney and urinary tract development is particularly sensitive to gene dosage.

Our understanding on the role of structural variations in the determination of both 

Mendelian and complex diseases has tremendously improved in the recent decade. In fact, 

genomic disorders have been implicated in a wide variety of developmental phenotypes such 

as schizophrenia, autism, epilepsy, intellectual disability, cardiac malformations, craniofacial 

malformations, CAKUT, and others.
15,24–28

 While these studies are fundamental in helping 

to explain a large fraction of the heritability for these traits, in formulating accurate 
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diagnoses, in improving counseling, and in personalizing therapeutic strategies, CNVs offer 

major hurdles in their functional interpretation and in the identification of the underlying 

molecular defect that drives the phenotype(s) observed in patients. When a CNV harbors 

multiple genes, different simplified scenarios can present: a) only one gene is the major 

driver for the phenotype, with the others having no or negligible effect; b) one gene is the 

main driver for the phenotype but the other genes act in an interactive manner to modify its 

penetrance and expressivity; finally, c) multiple genes may act as drivers with reciprocal 

interaction effects, making CNV dissection extremely difficult.
29

 The identification of 

genetic drivers for CNVs requires identification of independent mutations and functional 

proof of causation in animal models. When the single genetic driver model holds true, 

identification of independent coding point mutations and validation in genetically 

engineered mice can be cumbersome but relatively straightforward. However, as soon as the 

genetic architecture underlying the CNV becomes more complex,
41

 this approach is likely to 

become inadequate. Investigators leading this field have optimized assays to model loss- and 

gain-of-function mutations in a time- and cost-effective manner using zebrafish mutants,
41 

which also allow testing for interaction. By using this approach, KCTD13 has been 

identified as the major driver for the neuroanatomical phenotypes of loss or gain in copy 

number on chromosome 16p11.2.
41

 More recently, the same group was able to solve the 

molecular defects underlying the chromosome 8q24.3 duplication syndrome and to 

demonstrate interaction between SCRIB and PUFA.
42

We recently reported on the potential for functional interpretation of genes underlying large 

pathogenic CNVs using quantitative-PCR validation, extensive literature and database 

searches to improve the diagnostic workup of a patient with a complex developmental 

phenotype comprising CAKUT, intellectual disability, limb defects, and other 

anomalies.
15,43

 Here we propose an original pipeline to facilitate identification of high-

priority genetic drivers for CNVs. This approach may be useful to narrow down the list of 

genes for follow-up resequencing studies and functional modeling in genetically engineered 

animal systems. These in silico analyses and expression studies in embryonic human and 

mouse kidney identified five potential candidate genes for CAKUT from a total of 151 

transcriptional units underlying 13 rare CNVs.

Our findings strongly support DLG1 as the main genetic driver of the renal phenotype for 

the 3q29 microdeletion syndrome and as a novel susceptibility gene for CAKUT, and 

provide the rationale for interpreting results from our analytical approach. First, the 3q29 

microdeletion syndrome was not found in >23,000 population controls and it has been 

previously described in another individual with a horseshoe kidney.
44

 Second, DLG1 shows 

a very high haploinsufficiency LOD score (4.66), indicating that heterozygous deletions of 

this gene are unlikely to be tolerated. 
34

 Third, DLG1 is hypothesized to have a role in 

cellular polarity establishment, cell-cell adhesion and cellular proliferation
31

 and Dlg1 
knock-out mice strikingly mirror the phenotypes observed in our patient, showing various 

abnormalities of the kidney and urinary tract, including MCDK, bilateral megaureter, duplex 

kidney and genital malformations,
31

 and craniofacial malformations including cleft 

palate.
31,32

 Consistently with these data, DLG1 was expressed in the human and mouse 

developing urinary tract (Figure 2 and Supplementary Figure 3). Altogether, these data 
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suggest that our strategy can identify high-priority genetic drivers and CAKUT candidate 

genes from rare CNV data.

Following this approach, we found a novel duplication of chromosome 9q32 that was absent 

in >23,000 population controls in a patient with a congenital megabladder, RHD, and 

congenital VUR, which spans the KIF12 locus. KIF12 (Kinesin family member 12) plays an 

important role in intracellular transport and spindle formation during mitosis, and has been 

identified as a modifier gene for renal disease severity, defined by kidney weight, length and 

volume, in autosomal recessive polycystic kidney disease in mice.
45

 Moreover, the 

transcription of Kif12 in mice is regulated by Hnf1b,
46

 which is the most commonly 

implicated gene in isolated CAKUT.
17,18

 We showed that KIF12 is highly and specifically 

expressed in the UB-derived structures during human kidney development (Figure 2) and in 

UB- and MM- derived structures in E14.5 embryonic mouse kidneys (Supplementary Figure 

3). The gain of copy number at this locus suggests increased gene dosage as a molecular 

mechanism, although loss-of-function cannot be excluded since the CNV proximal 

breakpoint is located only 16 Kb from KIF12 translation starting site. Another potentially 

relevant structural variant was a deletion on the chromosome Xq12 locus in found in a male 

patient affected by isolated congenital VUR. This deletion disrupts EDA2R (Ectodysplasia 

A2 receptor), which has been proposed to cause hypohydrotic ectodermal dysplasia, a 

syndrome phenotypically characterized by hyperthermia, deficiency of sweat glands, 

hyperpigmentation around the eyes, sparse hair, eyebrows and eyelashes, and hypodontia 

with irregularly shaped teeth.
47

 Although our patient did not show such a phenotype, it is 

notable that a similar deletion on chromosome X is reported in the ISCA database in one 

patient with congenital hydronephrosis and intrauterine growth retardation.

Finally, the chromosome 16p13.3 duplication, found in a girl with a prenatally involuted 

MCDK and an ureterocele, was absent in >23,000 population controls and contains PKD1, 
TRAF7 and TSC2. Loss-of-function mutations in PKD1 and TSC2 have both been 

implicated in renal disease (autosomal dominant polycystic kidney disease and tuberous 

sclerosis, respectively),
48–50

 representing the most obvious candidates, but surprisingly our 

prioritization pipeline predicted TRAF7 (Tumor Necrosis Factor Receptor Associated 

Family 7) as the most likely genetic driver. The function of TRAF7 is largely unknown and 

limited to the regulation of cell survival in meningiomas.
51

 As this finding appears 

counterintuitive to our previous understanding on the role of the 16p-locus in renal disease, 

additional studies will be required for a precise dissection of this CNV. The remaining high-

priority genetic driver identified here, PCDH9, is a member of the protocadherin family of 

genes and has predominantly been described within the central nervous system, where it is 

associated with a poor survival in glioma patients.
52

In addition to these five candidate genes, we identified two intergenic CNVs that were 

absent in over 23,000 population controls. These rare intergenic CNVs flank additional 

potential CAKUT candidate genes and possibly affect conserved regulatory elements that 

might be important in kidney and urinary tract development.

Our approach has several limitations and is designed to explore only the simplistic model in 

which the phenotype associated to a CNV is mostly driven by the effect of a single gene. 
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Moreover, the DNA from family members in the KIMONO-Study was not available for 

CNV analysis, thus limiting the possibility to assess for inheritance and, therefore, to 

strengthen our inference of genetic causation. Finally, in this study we limited our search to 

deletions and duplications of 100 Kb or larger in order minimize false positives and to 

harmonize data from platforms with different coverage. Therefore, it is possible that a 

fraction of patients, unknown at the present moment, might harbor pathogenic CNVs of 

smaller size, below the detection threshold provided by our approach. Great promises are 

currently held by whole-genome sequencing, which can provide assessment of structural 

variants (including inversions, gene fusions, and translocations) of a wide range of sizes, 

from few base pairs to several megabases.

In summary, we identified known or novel genomic disorders in 14% of patients with a 

solitary functioning kidney of congenital origin, confirming the importance of CNV analysis 

in improving diagnosis, risk stratification of developmental diseases that manifest later in 

life, and individualization of care. By using a novel prioritization strategy based on publicly 

available bioinformatics tools, coupled with expression profiling in the developing human 

and mouse urinary tract, we identified five potential genetic drivers underlying these CNVs, 

and propose DLG1 and KIF12 as high-priority novel candidate genes for CAKUT. The 

KIMONO-study thereby proposes a first approach to identify the genetic drivers of CNVs 

implicated in CAKUT, in order to devise comprehensive genetic and functional follow-up 

studies.

CONCISE METHODS

Additional Methods are reported in the Supplementary Material.

Participants

The KIMONO-study, a large cohort study of over 400 patients with a solitary functioning 

kidney has been previously described.
3
 Individuals were enrolled from April 2012 until May 

2013. The institutional review boards of the VU University Medical Center and Columbia 

University Medical Center approved the study protocol.

Genetic analyses

Sanger sequencing for HNF1B, PAX2, and DSTYK—Genomic DNA was purified 

from peripheral blood samples using standard methods. Specific primers were used to direct 

PCR at all exons and exon-intron boundaries of HNF1B, PAX2, and DSTYK as previously 

described (Supplementary Table 13).
18,22

CNV analysis—Genome-wide genotyping was performed in all subjects using the 

Illumina OmniExpress platform (730,525 markers; Illumina Inc, San Diego CA). Genotype 

calls and quality controls were performed in GenomeStudio (v2011.1; Illumina Inc, San 

Diego CA) and PLINK.
53

 Single nucleotide polymorphisms with missingness greater than 

5% and significant deviation from Hardy-Weinberg were removed, and all samples with a 

genotype call rate below 99% were excluded from structural variants analysis. The CNV 

calls were determined with generalized genotyping methods implemented in the PennCNV 
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program.
54

 Additional quality control and validation for CNVs were performed as 

previously described.
15,30

 Briefly: samples with a logR ratio (LRR) standard deviation 

greater than 0.35 and with a weaviness factor greater than 0.05 were excluded; based on 

experimental validation by quantitative PCR on over 100 structural variants,
15

 only CNVs 

with a confidence score ≥30 (threshold used to define high-quality CNVs) were included in 

the analyses; finally, all resulting CNVs were manually inspected in GenomeStudio software 

(Genome Viewer) to eliminate possible artifacts and somatic events. Annotation to the 

human reference genome and case-control association were performed using original Perl 

scripts generated in the lab.
15

 We compared CNV data from cases to data derived from 

23,362 anonymized adult and pediatric population controls selected from eleven cohorts 

after stringent quality control. These controls include more than 13,000 individuals used in 

our previous CNV study on kidney malformations
15

 plus additional ~10,000 individuals 

from dbGap studies [Verbitsky et al.
30

, and unpublished data]. All controls had been 

genotyped on high-density Illumina platforms (Human- Hap-550, 610-Quad, 660W, 1M, 

1M-Duo and Omni1) as part of case-control or longitudinal studies of complex traits. The 

race/ethnicity distribution for the controls was: White (85%), Black/African American 

(10%), Asian (4%), and Others (1%). CNV frequencies were calculated on the basis of the 

entire control data set of 23,362 individuals. To minimize the different detectance rate for 

small structural variants between genotyping platforms with different coverage density, we 

restricted our analyses to CNVs ≥100 Kb. We annotated CNVs with a frequency of ≤1:1,000 

in controls with significant overlap (>10% in size) with known genomic disorders and 

subsequently used more strict frequency filters (<1:4,000) to identify potential novel 

genomic disorders. Finally, we annotated all large rare intergenic CNVs that were absent in 

controls.

Systematic in silico analysis to identify genetic drivers for CAKUT-associated 
CNVs—To prioritize candidate susceptibility genes for CAKUT underlying rare CNVs, we 

developed an automated in silico approach that relies on publicly available bioinformatics 

tools (Figure 1 and Supplementary Methods).

Immunofluorescence staining

High-priority candidate genes for CAKUT from our in silico prioritization study were then 

tested for expression in the developing human and mouse kidney and urinary tract. 

Immunofluorescence staining on paraffin-embedded tissues sections was performed on 

embryonic human kidney (6th week of development) and C57BL/6 mouse kidney at day 

E14.5 mice to investigate expression levels of all candidate gene products (except PKD1 and 

TSC2 as their role in human renal disease is well established).
49,50

 A normal human 

embryo, without any sign of abnormality or maceration was collected after tubal pregnancy 

from the Department of Pathology, University Hospital of Split, Croatia. The embryonic 

tissue was treated as postmortem material with permission of the Ethics and Drug 

Committee of the Clinical Hospital of Split in accordance with the 1964 Helsinki 

Declaration. The following rabbit polyclonal primary antibodies were used: anti-Dlg1 

(55085-1-AP, also called SAP97), anti-Kif12 (12035-1-AP), anti-Traf7 (11780-1-AP; all 

three provided by Proteintech Group Inc., Chicago IL, USA), anti-Eda2r (NBP1-76710) and 

anti-Pcdh9 (NBP1-86073) (both provided by Novus Biologicals LLC, Littleton CO, USA). 
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As negative controls, the primary or the secondary antibody was omitted from the staining 

procedure and additionally irrelevant IgG (MA5-16384, Thermo Fisher Scientific) was used 

instead of the primary antibodies. No staining was observed in either negative control.

Statistics

Continuous variables are presented as mean (standard deviation; SD) or median 

[interquartile range; IQR] for variables with Gaussian and non-Gaussian distribution, 

respectively. For blood pressure and anthropometric data, z-scores were calculated using 

standardized pediatric reference values based on age and gender.
55,56

 Qualitative variables 

are shown as counts (proportion). The difference in CNV frequency between cases and 

controls was tested using Fisher’s Exact test and nominal P-values are reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. From CNVs to candidate genes for CAKUT
All identified CNVs (N) were included in the analysis. For all novel, rare CNVs, deletions 

and duplications that showed significant overlap to pathogenic or uncertain pathogenic 

CNVs in public databases were included (see Supplementary Figure 1 and Supplementary 

Table 6). After annotation of gene content (n), genes that displayed rare truncating variants 

(deletions) and rare missense variants (duplications) in the Exome Variant Sever Database 

(http://evs.gs.washington.edu/EVS) were selected. We then assessed haploinsufficiency 

(HI-)LOD-scores and residual variation intolerance (RVI) scores for the prioritized genes 

(threshold values: HI LOD ≥2 and/or RVI-score <10th percentile) and included the 

prioritized genes within single gene CNVs as well as those genes that are implicated in renal 

disease. One gene met >1 threshold value for inclusion (DLG1). Gene expression profiles in 

the developing mouse kidney for all high-priority genes were evaluated by using GUDMAP 

(http://www.gudmap.org) and Genepaint (http://www.genepaint.org/) databases. Finally, we 

performed immunofluorescence studies in an E14.5 mouse kidney. By using this systematic 

bioinformatic approach, we prioritized 5 candidate genes for CAKUT.

CAKUT, congenital anomalies of the kidney and urinary tract; CNV, copy number variation 

and LOD, logarithm of the odds. Web-resources: Database of Chromosomal Imbalance and 

Phenotype in Humans Using Ensembl Resources Consortium (DECIPHER; http://

decipher.sanger.ac.uk/); International Standards For Cytogenomic Arrays Consortium 

(ISCA; https://www.iscaconsortium.org/).
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Figure 2. Expression of KIF12 and DLG1 in the developing human kidney
Transversal section through lumbosacral part of human embryo (6th week of development): 

a) within the nephrogenic zone (nz), KIF12 is weakly expressed in the developing nephron 

(renal vesicle – rv) and negative in the metanephric mesenchyme (mm). KIF12 is strongly 

expressed (arrows) in the UB stalk and UB-derived structures, such as the epithelium of 

collecting ducts (Cd), while the surrounding mesenchyme is negative; b) DAPI nuclear 

staining; c) merge of a and b; negative isotype control. d) DLG1 is weakly or not expressed 

in the developing nephron (renal vesicle – rv, metanephric cup - mc) and negative in the 

metanephric mesenchyme (mm), while it is moderately expressed (arrows) in the epithelium 

of collecting ducts (Cd); e) DAPI nuclear staining; f) merge of d and f; negative isotype 

control. Immunostaining of Kif12 and Dlg1, magnification ×40, scale bar 25Xm.
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