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Introduction

Breast cancer is the most common malignancy and the second 
leading cause of death among females (1). Triple-negative 
breast cancer (TNBC), which accounts for approximately 
15% of malignant breast neoplasms, is characterized by the 

lack of expression of estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor receptor 2 
(HER2) (2-4). When compared with other subtypes, TNBC 
is perceived as exhibiting a highly aggressive phenotype, with 
higher grade, larger tumor size, and younger age of onset  
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(4-6). Chemotherapy is currently the mainstay of treatment 
and improves the prognosis for TNBC to a certain extent 
(2,7). Nevertheless, the clinical outcomes remain unfavorable 
with great potential for metastasis and an increased likelihood 
of death from TNBC (5,7,8).

According to different classifications, including gene 
expression, metabolic pathways, or proteomic data, each 
presenting a unique gene expression profiling, metabolic 
characteristics, or proteomic mapping, TNBC can be further 
divided into 4, 6, or more subtypes (9-13). The 3-year 
overall survival (OS) rate is reported to be 68–94% (7).  
Accumulated evidence has indicated the considerable 
heterogeneity of the disease, making it challenging to 
predict prognosis accurately based on clinicopathological 
factors. Therefore, it is of clinical importance to develop 
a TNBC-related prognostic tool integrating the genomic 
signature and conventional clinicopathological parameters 
for accurate prognosis prediction. 

Although an increasing number of breast cancer-related 
signatures have been established based on transcriptional 
profiling, few have focused on the triple-negative subtype 
(14-17). In addition, most studies have screened genes 
simply based on the differentially expressed genes (DEGs) 
between TNBC and adjacent or normal tissues, in which 
the selected genes may not be specific to the triple-negative 
phenotype. To address this issue, we performed a study 
to identify TNBC-related genes (TRGs) based on the 
overlapping genes between the results of differential gene 
expression analysis and coexpression network analysis 
using The Cancer Genome Atlas (TCGA). Additionally, 
we developed a nomogram integrating the signature and 
traditional clinicopathological features to improve the 
predictive ability and for easy use in clinical practice. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1931/rc).

Methods

Data collection and processing

Both the gene expression data (HTSeq-Counts) and clinical 
information of breast cancer (BRCA) were downloaded 
from TCGA by the TCGAbiolinks package (version 
2.14.1) (18). The expression data set contains a total of 
1,090 primary tumors and 113 normal tissues. Here, we 
performed prefiltering to remove genes that had fewer than 
10 reads in total. We also included our previously published 

cohort of 465 patients with TNBC treated at Fudan 
University Shanghai Cancer Center (FUSCCTNBC) (10). 
The RNA-sequencing data of FUSCCTNBC are available 
in the Sequence Read Archive (RNA-seq: SRP157974). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Differential gene expression analysis

All samples were classified as different subtypes of hormone 
receptor-positive/HER2-negative (HR+/HER2-), HR+/
HER2+, HR-/HER2+, TNBC, and normal samples 
according to the status of ER, PR, and HER2. The baseline 
characteristics of the 158 TNBC patients are presented in 
Table S1.

Differential gene expression analysis was performed 
using the DESeq2 package (version 1.26.0) (19). The 
corresponding fold change (FC) and adjusted P value were 
also obtained. The DEGs were detected between TNBC 
and each subtype of sample with an absolute log2FC of >1 
and an adjusted P value of <0.05. The overlap of the DEGs 
was finally determined. We also performed differential 
gene expression analysis between TNBC and non-TNBC 
samples (HR+/HER2-, HR+/HER2+, and HR-/HER2+).

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using 
the “clusterProfiler” package (version 3.14.3) (20) and 
“msigdbr” package (version 7.0.1) (21). The differential gene 
expression analysis outputs described above in the TNBC vs. 
non-TNBC analysis were used to prepare the ranked gene 
list and 1000 permutations were used in our study.

Coexpression network construction and module 
identification

First, variance-stabilizing transformation was adopted 
to transform the count data. Variance analysis was 
then performed, and genes with the top 25% variance  
(14,128 genes) were selected for weighted gene coexpression 
network analysis (WGCNA). 

A gene coexpression network was constructed based on 
the expression set of the selected genes using the WGCNA 
package (version 1.69) (22). We then constructed an 
adjacency matrix by calculating the Pearson correlation 
coefficient between each pair of genes. In our study, the 
power of β=5 (scale-free R2=0.9) was chosen as an optimal 

https://atm.amegroups.com/article/view/10.21037/atm-22-1931/rc
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soft threshold to guarantee a scale-free network. We also 
calculated the topological overlap measure (TOM), which 
represents the overlap in shared neighbors, based on the 
adjacency matrix to further identify functional modules in 
the coexpression network. 

The module eigengene (ME) was defined as the first 
principal component of the corresponding module and 
was regarded as an optimal interpretation of the gene 
expression profile of a given module (22). The correlation 
coefficient was calculated between MEs and clinical traits to 
identify the highly related modules. Modules with the top 3 
correlations were identified.

Gene Ontology and pathway enrichment analysis

The R package “clusterProfiler” (version 3.14.3; The R 
Foundation for Statistical Computing, Vienna, Austria) 
was used to perform Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses of the genes in the selected modules (20). The 
ontology is categorized into 3 categories: molecular function 
(MF), biological process (BP), and cellular component (CC).

Gene screening and prognostic signature development

We first identified the TRGs, namely, the intersection 
between selected modules related to TNBC and DEGs 
between TNBC and the other 4 subtypes of samples. 
All TRGs were grouped by the median value of gene 
expression. The survival probability distribution of the 
TRGs was estimated based on the Kaplan-Meier method 
and compared using the log-rank test. 

Least absolute shrinkage and selection operator (LASSO) 
Cox regression was employed with 10-fold cross-validation 
to further filter the prognosis-related TRGs obtained  
above (23). The LASSO Cox regression was performed 
using the “glmnet” package (version 3.0-2).

Development of the prognostic signature and nomogram

The gene signature was established according to the 
LASSO Cox regression coefficients described above. 

Before developing the nomogram, multivariable analysis 
was performed to identify the spectrum of prognostic 
factors, and a nomogram was built by integrating the gene 
signature and clinicopathological parameters to predict the 
survival probability of different time points using the “rms” 
package (version 5.1-4).

Validation and performance of the model

The bootstrap resampling method with 1000 resamples 
was adopted for internal validation of the risk score and 
estimation of the confidence intervals (CIs) for point 
estimates of performance metrics.

Model performance was quantified and compared 
using Harrell’s concordance index (C-index) and Bayesian 
information criterion (BIC). In our study, the net 
reclassification index (NRI) for event probability at different 
time points was also adopted to assess the reclassification 
performance and improvement of the model (24). When 
the baseline and new models were nested, NRI >0 indicated 
improved performance of the new model. Calibration 
curves were estimated to assess the calibration performance 
of the nomogram.

To assess the performance of the gene signature as a 
categorical predictor, the optimal cutoff was determined 
using X-tile software (version 3.6.1; Yale University, 
New Haven, CT, USA) and multivariate analysis was also 
performed to evaluate the association between categorical 
predictors and OS.

Statistical analysis

Summary statistics and frequency tabulation were used to 
characterize the data distribution. The t test, the Mann-
Whitney-Wilcoxon test, and the Kruskal-Wallis test were 
used for comparisons of continuous variables and ordered 
categorical variables, while Pearson chi-square test or 
Fisher exact test was used to compare unordered categorical 
variables. All tests were performed in R software (version 
3.6.3; r-project.org), and a 2-sided P value of <0.05 was 
adopted to indicate statistical significance.

Results

DEGs of TNBC among breast cancer subtypes

The upset plot displayed the DEGs between TNBC and 
other subtypes of samples in TCGA data sets (Figure 1A,1B).  
A total of 4,417 DEGs were identified between TNBC and 
the HR+/HER2- subtype, 8,536 DEGs between TNBC 
and HR+/HER2+, 4,187 between TNBC and HR-/HER2+, 
and 6,847 between TNBC and normal tissues. After taking 
the intersection, a total of 864 overlapping DEGs were 
identified. 

Additionally, a total of 3,969 DEGs were identified 
between TNBC and non-TNBC. The GSEA plots 
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indicated that most DEGs were associated with the 
inflammatory response or cell cycle regulation (E2F_
TARGETS and G2M CHECKPOINT) (Figure S1).

Construction of the coexpression network and identification 
of key modules

We performed WGCNA to further explore the gene 
modules associated with different subtypes of breast cancer, 
and all tumor samples were clustered based on the average 
linkage method and the Pearson correlation method. As 
stated in the Methods section, the power of β=5 (scale-free 
R2=0.90) was selected as the soft threshold to guarantee a 
scale-free network (Figure 2A,2B). A total of 16 modules 
were generated via hierarchical clustering, and each 
module was marked by various colors (Figure 2C). Inside, 
yellow, blue, and green modules were considered highly 
related to the trait of TNBC and were chosen for further 
analysis (Figure 2D). Both a distinctly different pattern 
of gene expression for TNBC (Figure S2A-S2C) and a 
high correlation between module membership and gene 
significance (Figure S2D-S2F) were observed in each of the 
yellow, blue, and green modules.

GO and KEGG pathway enrichment analysis

Genes in 3 modules were annotated in 4 aspects, namely 
CC, MF, BP, and KEGG. In the yellow module, genes were 
mainly enriched in ciliary part, plasma membrane bounded 
cell projection cytoplasm, and motile cilium in the CC 
category (Figure 3A). In terms of MF, genes were mostly 
enriched in monovalent inorganic cation transmembrane 
transporter activity, motor activity, and dynein heavy/
light chain binding (Figure 3B). In terms of BP, genes were 
mainly enriched in microtubule-based movement, cilium 
movement, and microtubule bundle formation (Figure 3C).  
In the KEGG category, genes were mainly enriched in 
neuroactive ligand-receptor interaction and the cAMP 
signaling pathway, the PI3K-Akt signaling pathway, and the 
MAPK signaling pathway (Figure 3D). In the blue module, 
genes were mainly enriched in cell-cell junction, neuronal 
cell body, and synaptic membrane of the CC category; 
metal ion transmembrane transporter activity, monovalent 
inorganic cation transmembrane transporter activity, and 
serine-type peptidase activity of the MF category; epidermis 
development, organic anion transport, and epidermal 
cell differentiation of the BP category; and the PI3K-

4000

3000

2000

1000

0

In
te

rs
ec

tio
n 

si
ze

8000 6000 4000 2000     0

Set size

TNBC vs. Normal

TNBC vs. HR−/HER2+

TNBC vs. HR+/HER2+

TNBC vs. HR+/HER2−

3,689

3,689

2,681

1,352

1,024
116

127

26

16

864

892
881

284

296

928

558 2,681

1,352

1,024
928 892 881 864

558
296 284

127 116 26 16

A B
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Figure 2 Construction of the weighted co-expressed network. (A) Analysis of the scale-free fit index for different soft thresholding powers. 
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Akt signaling pathway, the cAMP signaling pathway, and 
the MAPK signaling pathway of the KEGG category  
(Figure S3). In the green module, genes were mostly 
enriched in chromosomal region, spindle, and condensed 
chromosome of the CC category; tubulin binding, ATPase 
activity, and microtubule binding of the MF category; 
organelle fission, nuclear division, and chromosome 
segregation of the BP category; and cell cycle, oocyte 
meiosis, and cellular senescence of the KEGG category 
(Figure S4).

Establishment and prognostic value of the signature

A total of 267 TRGs were determined when we took 

the intersection between the DEGs (TNBC vs. other  
4 subtypes of samples) and genes in the yellow, blue, and 
green modules. Some 13 of them were associated with OS, 
namely COL9A3, ERICH3, ELFN1-AS1, FABP7, HCAR1, 
IL12RB2, KRT83, LINC01344, NOL4, OCA2, TMCC2, 
OVOS2, and ORM2 (Figure 4). Using the LASSO Cox 
regression model, 6 TRGs with nonzero coefficients were 
evaluated for their prognostic value (Figure 5A,5B). The 
following calculation formula of the prognostic signature 
was therefore derived: risk score =0.1944× HCAR1 
+0.0999× ORM2 +0.0365×TMCC2 −0.1338× ERICH3 
−0.0231× KRT83 −0.0128× FABP7.

A significant difference in prognosis was observed 
between patients with different risk scores when the score 

https://cdn.amegroups.cn/static/public/ATM-22-1931-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1931-supplementary.pdf
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was stratified by median (log-rank P=0.0015), tertile (log-
rank P<0.0001), and quartile (log-rank P<0.0001) values  
(Figure 6A-6C). With a 1-unit increase in the risk score, 
a 4.34-fold risk of death was observed [hazard ratio (HR) 
4.34; 95% CI: 2.35–8.03; P<0.001]. After adjusting for 
clinicopathological variables, 7.49-fold risk of death was 
observed (HR 7.49; 95% CI: 3.57–15.70; P<0.001; Table S2).

In addition, we also performed the analysis when the 
gene signature was used as a categorical predictor with 
a threshold of 2.5. A total of 131 (82.9%) patients were 
classified as low risk (<2.5), and a small proportion (17.1%) 
were categorized as high risk. After adjustment for age, 
menopausal status, race, histology, pathological stage, and 
breast and axillary surgery, the categorical gene signature 
also remained prognostic (HR 15.70; 95% CI: 3.67–67.22; 
P<0.001).

Establishment of the nomogram

Multivariable analysis showed that both the risk score and 
pathological stage were independent prognostic factors 
in patients with TNBC (Table S2); thus, we developed a 

nomogram integrating the risk score and pathological stage 
for easy use in clinical practice to predict the 2-, 3-, and 
5-year survival probability (Figure 7A), and the calibration 
curve showed good calibration for different timepoints 
(Figure 7B-7D).

Performance of the prognostic signature and nomogram

Model performance of the pathological stage, risk score, 
and nomogram was then assessed. The C-index increased 
from 0.80 for pathological stage to 0.83 for the risk score 
(ΔC-index 0.03; 95% CI: –0.06 to 0.11) and to 0.89 for the 
nomogram (ΔC-index 0.08; 95% CI: 0.01–0.14). A similar 
trend was observed in terms of BIC, which was decreased 
from 145.46 for pathological stage to 130.78 for the risk 
score and to 125.21 for the nomogram, indicating better 
performance. When compared with pathological stage, the 
risk score had a 2-year NRI of 0.90 (95% CI: –1.07 to 1.58), 
3-year NRI of 0.51 (95% CI: –0.84 to 1.41), and 5-year 
NRI of 0.64 (95% CI: –0.48 to 1.46). Likewise, the 
nomogram had a 2-year NRI of 1.85 (95% CI: 0.01–1.14), 
3-year NRI of 1.53 (95% CI: 0.30–2.10), and 5-year NRI of 
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Figure 3 GO and KEGG pathway enrichment analysis for the yellow module. (A) Cellular component in GO enrichment analysis. The 
vertical bars show the number of genes identified by only 1 pathway and the intersection pathways. Single dots and the corresponding 
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https://cdn.amegroups.cn/static/public/ATM-22-1931-supplementary.pdf
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Figure 4 The association between gene expression and survival probability. Kaplan-Meier curves show the OS of TNBC patients with high 
specific gene expression and low expression in 13 different genes. The x-axis represents the survival time (months), and the y-axis represents 
survival probability. The red lines represent high gene expression, and the green lines represent low gene expression. OS, overall survival; 
TNBC, triple-negative breast cancer.

Figure 5 Feature selection in LASSO Cox regression. (A) Partial likelihood deviance for the LASSO coefficient profiles. (B) LASSO 
algorithms were used to identify the 6 selected genomic features. LASSO, least absolute shrinkage and selection operator.

1.00 (95% CI: 0.27–1.78) (Table 1). 
Additionally, we compared the risk score and nomogram. 

Similar results were observed. The C-index increased 
with a ΔC-index of 0.06 (95% CI: 0.00–0.11). In terms of 
reclassification performance, the nomogram had a 2-year 

NRI of 1.53 (95% CI: 0.79–2.02), 3-year NRI of 1.12 (95% 
CI: 0.26–1.86), and 5-year NRI of 0.16 (95% CI: –0.57 
to 1.17) (Table 1). All the data presented above indicated 
an improved performance after the addition of the gene 
signature to pathological stage.



Chen et al. A clinico-transcriptomic signature in TNBCPage 8 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(20):1095 | https://dx.doi.org/10.21037/atm-22-1931

Points

Gene signature

Pathological stage

Total points

2-year survival probability

3-year survival probability

5-year survival probability

n=158 d=21 p=4, 50 subjects per group

Gray: ideal

n=158 d=21 p=4, 50 subjects per group

Gray: ideal

n=158 d=21 p=4, 50 subjects per group

Gray: ideal

X-resampling optimism added, B=828

Based on observed-predicted

X-resampling optimism added, B=827

Based on observed-predicted

X-resampling optimism added, B=823

Based on observed-predicted

1.0

0.8

0.6

0.4

0.2

0.0

Fr
ac

tio
n 

su
rv

iv
in

g 
2-

ye
ar

1.0

0.8

0.6

0.4

0.2

Fr
ac

tio
n 

su
rv

iv
in

g 
3-

ye
ar

1.0

0.8

0.6

0.4

0.2

Fr
ac

tio
n 

su
rv

iv
in

g 
5-

ye
ar

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Predicted 2-year survival

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Predicted 5-year survival

0.5 0.6 0.7 0.8 0.9
Predicted 3-year survival

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.5 1.5 2.5 3.50 1 2 3 4

10

−1.5        −1        −0.5

Stage II

0.99                     0.95       0.9        0.8          0.6     0.4     0.2    0.05 0.01

0.99                      0.95      0.9        0.8          0.6     0.4     0.2     0.05       0.001

0.99                      0.95      0.9        0.8          0.6     0.4     0.2     0.05       0.001

Stage III

Stage IV

Stage I

A

B C D

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0               30              60              90              120

Time, months

0               30              60              90              120

Time, months

0               30              60              90              120

Time, months

0               30              60              90              120

Time, months

0               30              60              90              120

Time, months

0               30              60              90              120

Time, months

Number at risk

P=0.0015 P<0.0001 P<0.0001

Number at risk Number at risk

79

79

< median

≥ median

< median

≥ median

T1
T2
T3

Q1
Q2
Q3
Q4

Q1

Q2

Q3

Q4

T1

T2

T3

52

54

52

12

24

9

7

8

3

4

4

1

0

0

0

40

39

39

40

9

18

14

5

5

6

5

2

3

3

3

0

0

0

0

0

27

19

11

7

6

3

0

0

A B C

Figure 6 Survival analysis by different risk score cutoffs. (A) Kaplan-Meier plots of the high- and low-risk scores grouped by the median. (B) 
Kaplan-Meier plots of the high-, middle-, and low-risk scores. (C) Kaplan-Meier plots of the risk score grouped by quartile.

Figure 7 Construction of a predictive nomogram. (A) The nomogram was built by the 6-gene risk score and pathological stage information. 
(B) Calibration plots of the nomogram for 2-year survival probability. (C) Calibration plots of the nomogram for 3-year survival probability. 
(D) Calibration plots of the nomogram for 5-year survival probability.
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When validated by the bootstrap resampling method, the 
risk score alone showed a robust performance, with a C-index 
of 0.84 (95% CI: 0.75–0.92) and BIC of 129.82 (95% CI: 
73.21–186.44); the nomogram had a C-index of 0.90 (95% 
CI: 0.81–0.98) and BIC of 120.95 (95% CI: 65.04–176.86) 
(Table 1). We performed external validation using our 
previously published FUSCC-TNBC data set. When used 
as a continuous predictor, higher risk scores suggested a 
worse prognosis (HR 2.9; 95% CI: 1.3–6.4; P=0.0071). 
A significant difference in prognosis was shown among 
individuals with various risk scores when stratified by the top 
quartile values (log-rank P=0.0039; Figure S5). Notably, the 
model of the pathological stage combined with risk score 
also exhibited a good performance (C-index =0.72).

Discussion

Our study mainly focused on the association between 
genomics and clinical outcomes in patients with TNBC. 
We established a risk score based on the gene expression 
profiling of TRGs, which were obtained from the 
intersection between TNBC-specific modules in WGCNA 

and DEGs (TNBC vs. the other 4 subtypes). With a 1-unit 
increase in the risk score, an approximately 7-fold higher 
risk of death was observed in the current study. 

According to various classifications, such as gene 
expression, metabolic pathways, or proteomic data, TNBC 
can be further subdivided into diverse subtypes. Each of 
these subtypes presents its own distinct features. Ensenyat-
Mendez et al. reported that different classifications 
can be based on gene expression, metabolic pathways, 
methylation, and other means (11). Vasudevan et al. 
classified TNBCs into at least 17 different subtypes via 
proteomic analysis (12). Moreover, Dawson et al. identified 
at least 10 subtypes based on genomic and transcriptomic 
landscapes (13). Therefore, TNBC is known to be a 
highly heterogeneous disease with variable prognosis. 
Traditional clinicopathological markers, such as grade, 
tumor size, and lymph node status, are routinely adopted 
for prognosis prediction in the management of breast 
cancer. However, the prognostic value of these parameters 
remains questionable and only a marginal association has 
been observed between conventional markers and prognosis 
in TNBC (4,25,26). All these studies reinforce the idea 

Table 1 Model performance of the risk score

Metrics Pathological stage (95% CI) Risk score (95% CI) Pathological stage plus risk score (nomogram) (95% CI)

Performance of the risk score in TCGA to BRCA

C-index 0.80 0.83 0.89

BIC 145.46 130.78 125.21

Validation by bootstrap resampling method

C-index 0.80 (0.71 to 0.89) 0.84 (0.75 to 0.92) 0.90 (0.81 to 0.98)

BIC 141.35 (78.59 to 204.11) 129.82 (73.21 to 186.44) 120.95 (65.04 to 176.86)

Pairwise comparison of the performance

ΔC-index Reference 0.03 (−0.06 to 0.11) 0.08 (0.01 to 0.14)

– Reference 0.06 (0.00 to 0.11)

2-year NRI Reference 0.90 (−1.07 to 1.58) 1.85 (0.67 to 2.26)

– Reference 1.53 (0.79 to 2.02)

3-year NRI Reference 0.51 (−0.84 to 1.41) 1.53 (0.30 to 2.10)

– Reference 1.12 (0.26 to 1.86)

5-year NRI Reference 0.64 (−0.48 to 1.46) 1.00 (0.27 to 1.78)

– Reference 0.16 (−0.57 to 1.17)

The 2- , 3-, and 5-year NRI indicates the NRIs which are calculated by the event (death) probability at the 2nd, 3rd, and 5th year. C-index, 
concordance index; TCGA, The Cancer Genome Atlas; BRCA, breast cancer; BIC, Bayesian information criterion; NRI, net reclassification 
index; CI, confidence interval.

https://cdn.amegroups.cn/static/public/ATM-22-1931-supplementary.pdf
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that conventional biomarkers alone cannot yield accurate 
prognosis prediction. Additionally, the identification of 
genomic markers that may inform prognosis and guide 
treatment decisions for TNBC remains a clinically unmet 
need. To address this issue, a nomogram was established 
in our study by integrating the genomic signature and 
pathological stage. Improved performance was found when 
compared with the gene signature or pathological stage 
alone.

The GO and KEGG pathway analyses revealed the 
TNBC-related enriched pathways. Dong et al. reported 
that activation of the cAMP signaling system inhibits 
the migration and motility of TNBC cells (27). Many 
reports have shown that the PI3K-Akt signaling pathway 
and the MAPK signaling pathway play an important 
role in TNBC (28-31). The development of medications 
targeting the PI3K/Akt signaling pathway or the MAPK 
signaling pathway for the treating of TNBC is a developing 
sector that must consider the efficacies and toxicity of 
novel therapies as well as their interactions with other 
cancer pathways. Interestingly, Zhang et al. reported that 
estrogen signaling is associated with the progression of 
ER-negative breast cancer (32). However, the GABAergic 
synapse, protein digestion and absorption, neuroactive 
ligand-receptor interaction pathways, and others, have not 
been thoroughly studied in TNBC. These pathways may 
be involved in the development of TNBC. Therefore, 
additional studies are needed to discover whether targeting 
these pathways has therapeutic promise. 

Prognostic signatures derived from high-dimensional 
data may suffer from overfitting to a certain extent. To 
address this problem, a Cox regression model with a 
LASSO penalty has been applied for the selection of 
genes and the shrinkage of corresponding coefficients; this 
can facilitate the selection of genes with high expression 
variance and avoid multicollinearity, thus contributing to 
improved prognostic performance (23). 

Several of the 6 genes involved in the signature have 
been reported to play potential roles in cancer biology. For 
example, HCAR1 has been reported to act as a sensor of 
extracellular lactate in cancer (33). Activation of HCAR1 
may contribute to increased expression of monocarboxylate 
transporters, which are crucial for lactate uptake as an 
alternative energy source for cancer cells (33-35). It may 
also mediate resistance to anticancer drugs in cervical 
cancer (34,35). ORM2, an acute phase plasma protein, may 
be involved in aspects of immunosuppression (36). The 
plasma ORM2 concentration was found to be increased 

in breast and ovarian cancers and was also reported to be 
an independent prognostic factor for colorectal cancer 
(37,38). Further, FABP7 has been widely studied and was 
found to be mainly expressed in the nervous system and 
mammary gland. In the mammary gland, FABP7 promotes 
differentiation and suppresses the proliferation of mammary 
cells (39). Kwong et al. also reported the antitumorigenic 
function of FABP7 in TNBC by activating the expression 
of PPAR-α and therefore limiting the efficient utilization 
of available bioenergetic substrates, such as glucose, and 
impacting metabolic plasticity (40). In addition, both Zhang 
et al. and Alshareeda et al. reported better prognosis in 
FABP7-positive triple-negative disease (41,42). Consistently, 
our study found that increased expression of FABP7 acted as 
a protective factor in patients with TNBC.

To date, several gene signatures have been proposed 
to inform prognosis for patients with TNBC. Jiang et al.  
developed an integrated messenger RNA (mRNA)–
long noncoding RNA (lncRNA) signature based on 
transcriptome analysis for 33 paired TNBC and adjacent 
normal breast tissues (14). Yang et al. identified several 
mRNAs, lncRNAs, and micro RNAs (miRNAs) that may 
serve as potential biomarkers for prognosis prediction 
in TNBC patients based on the differential expression 
analysis between 111 TNBC tissues and 104 noncancerous  
tissues (17). As stated before, most previous studies have 
selected genes that were differentially expressed between 
TNBC and normal samples. Nevertheless, these screened 
genes may not be specific to TNBC’s expression profiling 
nor to the other subtypes. In the present study, differential 
gene expression analyses were performed between TNBC 
and HR+/HER2-, HR+/HER2+, HR-/HER2+, and normal 
tissues. Coexpression network analysis was also conducted 
to identify TNBC-related gene modules. However, 
cautious interpretation about TNBC-related genes should 
be noted since no experimental validation was performed 
in our study. Finally, the genes in the intersection between 
the DEGs and the selected TNBC-related modules were 
named TNBC-related genes and were adopted for signature 
development.

Inevitably, this work had several limitations. First, 
we used a retrospective study design, and therefore, 
the prognostic signature requires rigorous validation in 
prospective trials. Second, the potential role of several 
genes involved in the signature in TNBC biology has not 
been thoroughly identified, and thus, further experimental 
studies are required to facilitate our understanding of these 
genes.
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Conclusions

The mRNA-based  prognost ic  s ignature  and the 
nomogram reported herein, which incorporate both the 
clinicopathological parameters and gene expression profiles 
in the transcriptome, may inform the prognosis of patients 
with TNBC. Further validation in prospective settings may 
contribute to model generalization, facilitate counseling, 
and provide additional information when determining 
treatment approaches.
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