
Submitted 18 May 2022
Accepted 1 September 2022
Published 29 September 2022

Corresponding author
Youming Qiao, ymqiao@aliyun.com

Academic editor
Muhammad Zia-Ul-Haq

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.14100

Copyright
2022 Chen et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Physiological, biochemical and
phytohormone responses of Elymus
nutans to α-pinene-induced allelopathy
Mengci Chen1, Youming Qiao1, Xiaolong Quan1, Huilan Shi2 and
Zhonghua Duan1

1 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
2College of Ecol-Environmental Engineering, Qinghai University, Xining, Qinghai, China

ABSTRACT
The α-pinene is the main allelochemical of many weeds that inhibit the growth of
Elymus nutans, an important forage and ecological restoration herbage. However, the
response changes of α-pinene-induced allelopathy to E. nutans is still unclear. Here, we
investigated the physiological, biochemical and phytohormone changes of E. nutans
exposed to different α-pinene concentrations. The α-pinene-stress had no significant
effect on height and fresh weight (FW) of seedlings. The water-soluble proteins, the
soluble sugars and proline (Pro) strengthened seedlings immunity at 5 and 10 µL L−1

α-pinene. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased at 5
µL L−1 α-pinene to resist stress. APX reduced themembrane lipid peroxidation quickly
at 10 µL L−1 α-pinene. The high-activity of peroxidase (POD), APX along with the
high level of GSH contributed to the cellular redox equilibrium at 15 µL L−1 α-pinene.
The POD, glutathione reductase (GR) activity and glutathione (GSH) level remained
stable at 20 µL L−1 α-pinene. The changes in antioxidant enzymes and antioxidants
indicated that E. nutans was effective in counteracting the harmful effects generated by
hydrogen peroxide (H2O2). The α-pinene caused severe phytotoxic effects in E. nutans
seedlings at 15 and 20 µL L−1. Endogenous signal nitric oxide (NO) and cell membrane
damage product Pro accumulated in leaves of E. nutans seedlings at 15 and 20µL L−1 α-
pinene, while lipid peroxidation product malondialdehyde (MDA) accumulated. The
chlorophylls (Chls), chlorophyll a (Chl a), chlorophyll b (Chl b) content decreased,
and biomass of seedlings was severely inhibited at 20 µL L−1 α-pinene. The α-pinene
caused phytotoxic effects on E. nutans seedlings mainly through breaking the balance
of the membrane system rather than with reactive oxygen species (ROS) productionat
15 and 20 µL L−1 α-pinene. Additionally, phytohormone levels were altered by α-
pinene-stress. Abscisic acid (ABA) and indole acetic acid (IAA) of E. nutans seedlings
were sensitive to α-pinene. As for the degree of α-pinene stress, salicylic acid (SA) and
jasmonic acid (JA) played an important role in resisting allelopathic effects at 15 µL
L−1 α-pinene. The ABA, Zeatin, SA, gibberellin 7 (GA7), JA and IAA levels increased
at 20 µL L−1 α-pinene. The α-pinene had a greatest impact on ABA and IAA levels.
Collectively, our results suggest that E. nutans seedlings were effective in counteracting
the harmful effects at 5 and 10 µL L−1 α-pinene, and they were severely stressed at
15 and 20 µL L−1 α-pinene. Our findings provided references for understanding the
allelopathic mechanism about allelochemicals to plants.

How to cite this article Chen M, Qiao Y, Quan X, Shi H, Duan Z. 2022. Physiological, biochemical and phytohormone responses of Ely-
mus nutans to α-pinene-induced allelopathy. PeerJ 10:e14100 http://doi.org/10.7717/peerj.14100

https://peerj.com
mailto:ymqiao@aliyun.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.14100
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.14100


Subjects Agricultural Science, Ecology, Plant Science
Keywords Allelochemical, α-pinene, Allelopathy, Oxidative metabolism, Phytohormone levels

INTRODUCTION
Environmental change and grassland degradation in the Sanjiangyuan region of the Tibetan
Plateau is one of the main issues that scientists have been concerned about for many years
and has degraded significantly, manifested as grassland degradation and undersupply
of pasture (Wang, Long & Cao, 2006; Qin, 2014). Allelopathy of many noxious and
unpalatable plants is one of the important ecological mechanisms of grassland degradation.
Many weeds produce allelochemicals that inhibit existing plants and are able to produce
large numbers of seeds and compete vigorously for nutrients with forages (Zhang et al.,
1989; Guo et al., 2017; Shang et al., 2008). Spread of weeds and allelopathic inhibition lead
toward weeds further colonization and the ultimate degradation of grassland (Shang et al.,
2013; Ren, 2013).

Droopingwildryegrass (Elymus nutans) is a native perennial grass and plays an important
role in ecological restoration projects in the alpine meadow region of the Tibetan Plateau.
It grows extensively in alpine and humid areas with an altitude of 2500∼4000 m, and is
distributed in Inner Mongolia, Qinghai, Tibet and Sichuan, China. Compared with other
excellent germplasm resources that have been domesticated and selected for restoration
of degraded grasslands, such as crymophila bluegrass (Poa crymophila) and Kentucky
bluegrass (Poa pratensis), drooping wildryegrass has been used more widely and for longer
periods of time (Shang et al., 2018). Meanwhile, drooping wildryegrass has high crude
protein content and good palatability, which is suitable for supplementing pasture for
livestock.

Ajania tenuifolia is one of the major weeds in seeded drooping wildryegrass grasslands,
and is closely related to their degradation (Ren, Shang & Long, 2014). The α-pinene is
one of the main allelochemicals isolated from the volatile oil of A. tenuifolia (Zhen et
al., 1996). As an important monoterpene substance (Allenspach et al., 2020), α-pinene
is the main secondary metabolite of the essential oil of many plants (Adlard, 2010). It
is volatile and hydrophobic, with fresh rosin and woody aroma (Pastore, Vespermann
& Paulino, 2017). The α-pinene are released to the environment through volatilization
(Kamal, 2020). At present, the research of allelopathy of weeds mainly uses the aqueous
extracts, organic solvent extracts from plants (Weston & Duke, 2003; Wang et al., 2021).
The extracts of plants containing α-pinene had different degree of allelopathic inhibition
on seeds germination and growth of other plants. The main essential oil in the leaves
of Vitex pseudo-negundo at flowering stage were α-pinene and α-terpinyl acetate. The
essential oil of vitex is associated with inhibitory effects on the seed germination and
growth of Lepidium sativum, Amaranthus retroflexus and Taraxacum officinale (Haghighi,
Saharkhiz & Naddaf, 2019). It is found that the main essential oil components of rosemary
(Rosmarinus officinalis) at different phenological stages were α-pinene. The inhibitory effect
of essential oil was associated with seeds germination and growth of Lactuca serriola and
Rhaphanus sativus at different concentrations (Alipour & Saharkhiz, 2016). In our previous
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studies, it was also found that in the aqueous extracts of Pedicularis kansuensis, Stellera
chamaejasme, Elsholtzia densa and Morina chinensis, the main weeds in the grasslands of
the plateau region, had higher α-pinene content. These plants together with A. tenuifolia
release allelochemicals and inhibit growth of drooping wildryegrass in synergetic ways,
and gradually caused degradation of alpine pastures (Cheng et al., 2011; Liang et al., 2019).
Despite extracts of plants with a α-pinene-base that have been reported to have allelopathic
inhibition, little is known on the allelopathy of a single substance α-pinene.

At present, there are limited reports about impact of allelopathy on phytohormone.
No information is available on α-pinene-induced allelopathy for drooping wildryegrass.
In this study, we analyzed the allelopathic responses changes by investigating various
indicators related to growth, photosynthesis, biochemical and phytohormone levels
of drooping wildryegrass seedlings exposed to different α-pinene concentrations in a
hydroponic system. To our knowledge, this is the first time to study the allelopathic effects
of α-pinene in drooping wildryegrass seedlings from the physiological, biochemical and
phytohormone profiles. Our findings also provided references for understanding the
allelopathic mechanism of allelochemicals in plants.

MATERIALS & METHODS
Plant materials, growth conditions and treatments
Seeds of E. nutans were collected from Tongde Forage Seed Production Base of Qinghai
Province (China; 35◦15′N, 100◦38′E) in September 2019. Seeds were surface sterilized with
NaClO [ 0.5% (v/v)] for 15 min and washed 8 times with distilled water (dH2O). The
1.5 gram of healthy seeds were germinated in sterilized a Petri dish with 4 ml distilled
water. The germinated seeds were cultivated in a growth chamber with 12 h light and 12
h dark [photon density: 9000 Lux, diurnal temperature: (25 ± 2) / (20 ± 2) ◦C, relative
humidity: 65–70%] using 1/2Hoagland solution. The nutrient constituents of 1/2Hoagland
solution comprised KNO3 (2.5 mmol/L), Ca(NO3)2 (2.5 mmol/L), MgSO4 (one mmol/L),
NH4H2PO4 (0.5 mmol/L), NaFeEDTA (50 µmol/L), H3BO3 (7.5 µmol/L), MnCl2 (1.25
µmol/L), CuSO4 (0.5µmol/L), ZnSO4 (1µmol/L). The nutrient solutionwas changed every
day. After 14 days, healthy seedlings were treated by 0, 5, 10, 15 and 20 µL L−1 α-pinene
(The concentration selected was based on the plant growth phenotype obtained from the
results of previous pre-experiments) in the transparent closed tank. 0 µL L−1 α-pinene
was the control treatment. The α-pinene (>98% purity) were purchased from Macklin
Company (China). The transparent closed tank of the same volume was inverted, so that
various concentrations α-pinene was added to the lid. A Petri dish with healthy seedlings
was put in every transparent closed tank, only α-pinene varied in concentration between 0
and 20 µL L−1. The intention was for releasing α-pinene to different concentration levels
by volatilization into the transparent closed tank. The nutrient solution and α-pinene
were changed every day. Control and α-pinene-treated seedlings continued to grow for
4 days under the above stated conditions. Leaves of drooping wildryegrass seedling were
collected to determine the responses of the growth-related indicator related to physiological,
biochemical and hormonal processes associated-indicators. Three independent replications
of each treatment were used to determine each indicator.
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Shoot height, fresh weight and dry weight
The height, FW and dry weight (DW) of 15 shoot drooping wildryegrass seedlings were
measured, weighed and soaked for each treatment, followed by an oven-drying at 80 ◦C
for 48 h. Relative water content (RWC) of the shoot was calculated based on FW, DW and
turgid weight (TW) (Mostofa & Fujita, 2013), formula for RWC (%) = 100 × (FW−DW)
/ (TW−DW)

Contents of water-soluble proteins, soluble sugars and photosynthetic
pigments
The contents of water-soluble proteins and soluble sugars were determined in the fresh
leaves of drooping wildryegrass by bicinchoninic acid (BCA) method (Campion, Loughran
& Walls, 2011) and anthrone colorimetry (Bai et al., 2013). The leaves of drooping
wildryegrass were extracted with 80% (V/V) acetone, and the absorbance of supernatant
was recorded at 663 nm and 645 nm. The Chls, Chl a and Chl b contents were calculated
according to the formula (Arnon, 1949).

Malondialdehyde, hydrogen peroxide, proline, glutathione and nitric
oxide contents
The contents of malondialdehyde (MDA) were determined in the fresh leaves of drooping
wildryegrass by the thiobarbituric acid method, using MDA detection Kit (MDA-1-Y).
H2O2 in drooping wildryegrass leaves were extracted by acetone and the contents were
determined using the Kit H2O2-1-Y. The contents of Pro were determined by acidic
ninhydrin method, using PRO detection Kit (PRO-1-Y). GSH contents were determined
by 2-nitrobenzoic acid method, using GSH detection Kit (GSH-1-W). The contents
of NO were determined by diazonium salt method,using NO-1-G kit. All the kits for
measuring activities were purchased from Comin Biotechnology Co., Ltd., Suzhou, China
(http://www.cominbio.com).

Extraction and assays of enzymes
The activities of SOD, APX, POD, catalase (CAT), GR and nitrate reductase (NR) were
determined in the fresh leaves of drooping wildryegrass seedlings under treatment. The
six enzymes indexes were determined according to the manufacturer’s protocol of assay
kits SOD-1-W for SOD activity; APX-1-W for APX activity; POD-1-Y for POD activity;
CAT-1-Y for CAT activity; GR-1-W kit for GR activity; NR-1-W for NR activity. All the
kits for activities were purchased from Comin Biotechnology Co., Ltd., Suzhou, China
(http://www.cominbio.com).

Phytohormone contents
The endogenous hormones in seedling leaves of drooping wildryegrass were measured with
high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS).
The internal standards, including IAA, ABA, JA, SA, Zeatin, gibberellin 4 (GA4) and
GA7, were purchased from Sigma-Aldrich (Burlington, MA, USA). Leaf samples were
accurately weighed to 1 g and ground to powder in liquid nitrogen. Ten times the volume
of acetonitrile and 8 µL internal standards was added to the powder, and then placed
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Table 1 Selected reaction monitoring conditions for protonated or deprotonated plant hormones([M
+H]+ or[M−H]−).

Name Electrode Precursor
ions (m/z)

Product
ions (m/z)

Clustering
voltage (V)

Collision
energy (V)

ABA − 263.1 153.1a/204.2 −60 −14/−27
GA4 − 331.1 243.2a/213.1 −131 −24/−39
GA7 − 329.2 223.2a/241.1 −89 −38/−22
IAA + 176.1 130.1a/102.9 65 12/42
JA − 209.2 59.1a −54 −16
SA − 137 92.9a/65 −50 −20/−39
Zeatin + 220.4 148.1/136.0a 92 22/16

Notes.
aQuantitative ion

at 4 ◦C a night. After centrifuge at 12,000 g for 5 min, the supernatant was extracted.
Five times the volume of acetonitrile was added to the sediment. The supernatant was
combined after extraction again, and added 35 mg C18 QuECherSmixed pack, mixed by
shaking for 30 s. After centrifugation at 10,000 g for 5 min, the supernatant was extracted.
The supernatant was dried with nitrogen, and dissolved in 400 µL methanol and passed
through a 0.22 µm filter for HPLC-MS/MS. The samples were tested by HPLC (Aglient
1290, USA) coupled to a triple-stage quadrupole mass spectrometer (AB SCIEX-6500
Qtrap; SCIEX, Framingham, MA, USA) and used electrospray ionization (ESI) as the ion
source for MRM detection mode scanning. The data of endogenous hormone was obtained
using monitoring conditions for protonated or deprotonated plant hormones ([M+H]+

or [M-H]−) (Table 1).

Statistical Analysis
The data were analyzed using IBM SPSS Statistics 21 software. Kruskal-Wallis Test was
used to detect the differences. A p value <0.05 was considered significant. The data were
presented as mean ± standard error.

RESULTS
Effects of α-pinene on plant growth, biomass, RWC, toxicity symptoms
and photosynthetic pigment of drooping wildryegrass seedlings
The α-pinene treatments had no significant influences on plant height and FW, but resulted
in significant decrease in DW of seedling at 15 and 20 µL L−1 α-pinene (χ2

= 11.567,
df = 4, p= 0.021; Table 2). The two α-pinene concentrations also affected the water status
of drooping wildryegrass seedlings. The RWC of leaves increased by 42.5, 41.1%, at 15,
20 µL L−1 α-pinene, respectively (χ2

= 11.167, df = 4, p= 0.025; Table 2). The leaves of
drooping wildryegrass seedlings began to yellow 4 days after 20 µL L−1 α-pinene treatment
(Fig. 1). Consistent with phenotypic changes, the total Chl (χ2

= 10.833, df = 4, p= 0.029),
Chl a (χ2

= 11.300, df = 4, p= 0.023) and Chl b (χ2
= 9.567, df = 4, p = 0.048) content

decreased by 60.5, 67.4 and 43.2% at 20 µL L−1 α-pinene, respectively (Figs. 2A–2C).
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Table 2 Effects of α-pinene on height, FW, DW and RWC of drooping wildryegrass seedlings exposed
to 0, 5, 10, 15 and 20µL L−1 of α-pinene for a period of 4 days (with Kruskal–Wallis test). Fresh weight
(FW), dry weight (DW) and relative water content (RWC). The values are mean± standard error (n= 3).
Different letters indicate comparisons with significant difference (p< 0.05) among treatments.

α-pinene
(µL L−1)

Plant height
(cm)

FW (g seedlings−15) DW (g seedlings−15) Leaf RWC
(%)

0 14.17± 0.05a 0.575± 0.02a 0.065± 0.002a 84.08± 1.62b
5 14.36± 0.07a 0.657± 0.04a 0.064± 0.004a 87.85± 3.82ab
10 14.09± 0.06a 0.569± 0.03a 0.055± 0.001ab 102.94± 7.12ab
15 14.13± 0.05a 0.546± 0.05a 0.051± 0.002b 119.82± 9.20a
20 13.10± 0.07a 0.489± 0.04a 0.046± 0.003b 118.60± 4.29a

Figure 1 Effects of α-pinene on toxicity symptoms in the leaves of drooping wildryegrass seedlings
subjected to 0, 5, 10, 15 and 20µL L−1 α-pinene for 4 days.

Full-size DOI: 10.7717/peerj.14100/fig-1

Effects of α-pinene on water-soluble proteins, soluble sugars
The effects of α-pinene on water-soluble proteins and the soluble sugars showed similar
change trend (Figs. 3A and 3B). Thewater-soluble proteins (χ2

= 12.900, df = 4, p= 0.012)
and the soluble sugars (χ2

= 13.033, df = 4, p= 0.011) levels increased significantly at 5,
10, 15 and 20 µL L−1 α-pinene, respectively, but no significant differences between 10, 15
and 20 µL L−1 α-pinene were detected (Figs. 3A and 3B).

Effects of α-pinene on H2O2 accumulations, MDA levels and
pro contents
No significant differences in H2O2 levels at different doses of α-pinene treatment (Fig.
4A), but caused membrane damage. The contents of lipid peroxidation product MDA
and cell membrane damage product Pro in the seedlings increased sharply when α-pinene
concentration ≥15 µL L−1 (Figs. 4B and 4C). A remarkable increase of MDA level by
253.0% at 20 µL L−1 α-pinene (χ2

= 11.567, df = 4, p= 0.021; Fig. 4B). Pro content had
a steady increase with α-pinene concentrations (χ2

= 13.500, df = 4, p= 0.009; Fig. 4C).
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Figure 2 Effects of α-pinene on photosynthetic pigment in the leaves of drooping wildryegrass
seedlings subjected to 0, 5, 10, 15 and 20µL L−1 α-pinene for 4 days (with Kruskal–Wallis test). (A)
Total chlorophylls (Chls). (B) Chlorophyll a (Chla). (C) Chlorophyll b (Chlb). Fresh weight (FW).
Different letters indicate comparisons with significant difference (p< 0.05) among treatments. The values
are means± standard error (n= 3).

Full-size DOI: 10.7717/peerj.14100/fig-2

Effects of α-pinene on ROS-metabolizing enzymes
The antioxidant system, i.e., enzyme defense system of drooping wildryegrass seedlings,
plays a crucial part in the oxidative stress induced by α-pinene. SOD activity showed a
unimodal variation with α-pinene concentration and the maximum value appeared at 5
µL L−1 α-pinene (72.6%). No significant SOD activity differences between 0, 10, 15 and
20 µL L−1 α-pinene (χ2

= 11.033, df = 4, p= 0.026; Fig. 5A). CAT activity decreased
following different concentrations of α-pinene treatment (χ2

= 12.367, df = 4, p= 0.015;
Fig. 5B). POD activity increased by 94.4% at 15 µL L−1 α-pinene (χ2

= 11.067, df = 4,
p= 0.026; Fig. 5C). APX activity increased by 98.3, 161.7 and 180.7% at 5, 10 and 15 µL
L−1 α-pinene, respectively; however, this increasing trend started to decrease, showing
53.4% increase at 20 µL L−1 α-pinene (χ2

= 12.767, df = 4, p= 0.012; Fig. 5D).
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Figure 3 Levels of water-soluble proteins and soluble sugars in the leaves of drooping wildryegrass
seedlings subjected to 0, 5, 10, 15 and 20µL L−1 α-pinene for 4 days (with Kruskal–Wallis test). (A)
Water-soluble proteins. (B) Soluble sugars. Fresh weight (FW). Different letters indicate comparisons with
significant difference (p< 0.05) among treatments. The values are means± standard error (n= 3).

Full-size DOI: 10.7717/peerj.14100/fig-3

Effects of α-pinene on GSH level and GR activity
GSH level and GR activity increased at high dose of α-pinene. Compared with the control,
a significant increase of GSH level at 15 and 20 µL L−1 α-pinene (χ2

= 12.000, df = 4,
p= 0.017; Fig. 6A), and GR activity at 20 µL L−1 α-pinene (χ2

= 9.800, df = 4, p= 0.044;
Fig. 6B).

Effects of α-pinene on nitrogen metabolites
The level of NO in the drooping wildryegrass leaves increased by 308.9 and 1545.8% at
15 and 20 µL L−1 α-pinene, as compared with untreated control (χ2

= 12.533, df = 4,
p= 0.014; Fig. 7A). No significant differences for NR activity was detected at different
doses of α-pinene (Fig. 7B).

Endogenous hormone levels
The endogenous levels of ABA, Zeatin, SA, GA4, GA7, JA and IAA level in drooping
wildryegrass seedling leaves following α-pinene treatment varied with concentrations. The
ABA level increased significantly at 5, 10, 15 and 20 µL L−1 α-pinene, but no significant
differences between 10, 15 and 20 µL L−1 α-pinene (χ2

= 12.933, df = 4, p= 0.012; Fig.
8A). A significant increase of Zeatin level was recorded at 20 µL L−1 α-pinene (χ2

=

11.500, df = 4, p= 0.021; Fig. 8B). The SA ( χ2
= 11.433, df = 4, p= 0.022; Fig. 8C) and

JA (χ2
= 12.833, df = 4, p= 0.012; Fig. 8F) level increased by 125.8, 138.2% and 90.0,

177.9 times at 15 and 20 µL L−1 α-pinene, respectively. No significant differences were
found in GA4 levels between different α-pinene treatments (Fig. 8D). GA7 level increased
by 371.5% at 20 µL L−1 α-pinene (χ2

= 13.033, df = 4, p = 0.011; Fig. 8E). IAA levels
increased by 236.9, 556.3 and 1202.9% at 10, 15 and 20 µL L−1 α-pinene (χ2

= 12.967,
df = 4, p= 0.011; Fig. 8G).
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Figure 4 Reactive oxygen species (ROS) generation and lipid peroxidation in the leaves of drooping
wildryegrass seedlings subjected to 0, 5, 10, 15 and 20µL L−1 α-pinene for 4 days (with Kruskal–Wallis
test). (A) Hydrogen peroxide (H2O2). (B) Malondialdehyde (MDA). (C) Proline (Pro). Fresh weight
(FW). Different letters indicate comparisons with significant difference (p< 0.05) among treatments. The
values are means± standard error (n= 3).

Full-size DOI: 10.7717/peerj.14100/fig-4

DISCUSSION
In the long-term evolution process, plants respond to all kinds of environmental stresses
through a signal regulation mechanism to maintain normal growth (Chen & Yang, 2020).
Generally, environmental stresses have detrimental effects on plant growth, stress proteins,
stress hormones, and stress metabolites synthesis. Allellochemicals, the phytotoxins
released from plants, exert inhibition on growth of plants, likeMetasequoia glyptostroboides
water extracts on Lepidium sativum, Lactuca sativa, Medicago sativa (Matuda et al., 2022);
Tithonia diversifolia water extract on neighboring plants (Kato-Noguchi, 2020); and Rhus
typhina water extracts on Tagetes erecta (Qu et al., 2021). In the present report, α-pinene
treated seedlings had no significant influences on plant height and FW (Table 2), but the
increased applications of α-pinene inhibited the biomass of drooping wildryegrass (Table
2). Additionally, the balanced water status of plants was broken and seedling development
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Figure 5 Activities of reactive oxygen species (ROS)-detoxifying enzymes in the leaves of drooping
wildryegrass seedlings subjected to 0, 5, 10, 15 and 20µL L−1 α-pinene for 4 days (with Kruskal–Wallis
test). (A) Superoxide dismutase (SOD). (B) Catalase (CAT). (C) Peroxidase (POD). (D) Ascorbate per-
oxidase (APX). Fresh weight (FW). Different letters indicate comparisons with significant difference (p<
0.05) among treatments. The values are means± standard error (n= 3).

Full-size DOI: 10.7717/peerj.14100/fig-5

was inhibited under various abiotic stresses (Mostofa et al., 2017). The RWC presented a
significant increase at 15 and 20 µL L−1 α-pinene (Table 2), suggesting allelochemicals may
damage cell membranes through direct or indirect interaction (Yu et al., 2003). We guess
this phenomenon is related to the transparent closed tank, when the membrane system of
drooping wildryegrass was destroyed at 15 and 20 µL L−1 α-pinene, the seedlings could
absorb more water at high humidity atmospheres. The changes in Chls was consistent with
the phenotype in various abiotic stresses (Fig. 1). The α-pinene drastically affected Chls,
Chl a and Chl b biosynthesis at 20µL L−1 (Figs. 2A, 2B and 2C), indicating that biomass and
cell membranes of drooping wildryegrass were inhibited and destroyed at 15 and 20 µL L−1

α-pinene. Protein and sugar are two important macromolecules that provide metabolites
and energy through various biochemical processes to strengthen plant immunity during
the onset of stress (Krasensky & Jonak, 2012). In our study, total water-soluble proteins
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Figure 6 Levels of GSH and activities of GR in the leaves of drooping wildryegrass seedlings subjected
to 0, 5, 10, 15 and 20µL L−1 α-pinene for 4 days (with Kruskal–Wallis test). (A) glutathione (GSH). (B)
glutathione reductase (GR). Fresh weight (FW). Different letters indicate comparisons with significant dif-
ference (p< 0.05) among treatments. The values are means± standard error (n= 3).

Full-size DOI: 10.7717/peerj.14100/fig-6

Figure 7 Effects of α-pinene on nitrogenmetabolites in the leaves of drooping wildryegrass seedlings
subjected to 0, 5, 10, 15 and 20µL L−1 α-pinene for 4 days (with Kruskal–Wallis test). (A) nitric oxide
(NO). (B) nitrate reductase (NR). Fresh weight (FW). Different letters indicate comparisons with signifi-
cant difference (p< 0.05) among treatments. The values are means± standard error (n= 3).

Full-size DOI: 10.7717/peerj.14100/fig-7

and soluble sugars were accumulated significantly at 5, 10, 15 and 20 µL L−1 α-pinene,
suggesting drooping wildryegrass rapidly synthesized various stress-responsive proteins
and sugars to combat α-pinene toxic effects to some extent (Figs. 3A and 3B). Similar results
were also reported in self-allelopathy of Casuarina equisetifolia seedlings (Lin, 2007).

ROS are one of the most classical signaling molecules and response to environmental
stress in plants (Chen & Yang, 2020). ROS include several types of active molecules, such
as superoxide anion radical (O·−2 ), hydrogen peroxide (H2O2), hydroxyl radical (OH−)
and singlet oxygen (1O2) (Noctor, Reichheld & Foyer, 2018). The O·−2 can be spontaneously
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Figure 8 Levels of endogenous hormone in the leaves of drooping wildryegrass seedlings subjected to
0, 5, 10, 15 and 20µL L−1 α-pinene for 4 days (with Kruskal–Wallis test). (A) Abscisic acid (ABA). (B)
Zeatin. (C) Salicylic acid (SA). (D) Gibberellin 4 (GA4). (E) Gibberellin 7 (GA7). (F) Jasmonic acid (JA).
(G) Indole acetic acid (IAA). Fresh weight (FW). Different letters indicate comparisons with significant
difference (p< 0.05) among treatments. The values are means± standard error (n= 3).

Full-size DOI: 10.7717/peerj.14100/fig-8
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and rapidly inverted to H2O2, and can also be disproportionated by SOD which detoxify
superoxide anion to H2O2 by enzymatic reaction (Chen & Yang, 2020). In addition, APX,
CAT are ROS detoxifying proteins, and GSH is an antioxidant (Mittler et al., 2004). GSH
maintains redox balance inside cells, including anti-oxidation, free radical scavenging,
electrophile elimination, and may directly react with ROS (Thiboldeaux, Lindroth & Tracy,
1998). GR plays a crucial part in the control of the intracellular redox environment by
catalyzing the reduction of oxidised glutathione (GSSG) to GSH (Coelho et al., 2017).
GSH and GR were involved in ascorbate-glutathione (AsA-GSH) cycle, which has been
recognized to be related to oxidative stress (Foyer & Noctor, 2011). MDA is a widely used
marker of oxidative lipid injury (Davey et al., 2005). In our present study, we observed
fast accumulation of MDA in drooping wildryegrass leaves at 20 µL L−1 α-pinene (Fig.
4B), indicating that high dosage of α-pinene caused oxidative damage system of drooping
wildryegrass. The other allelochemical also triggers a wave of oxidative damage (Bais et
al., 2003). In many plants, free Pro accumulates in response to various abiotic stresses.
Pro can stabilise subcellular structures and scavenge free radicals (Hare & Cress, 1997).
Pro content had a significant increase in response to α-pinene stress at 5 and 10 µL
L−1. However, a sharp increase in Pro content indicated that drooping wildryegrass
seedlings was seriously affected at 15 and 20 µL L−1 α-pinene. The increased activity of
the antioxidant enzymes exhibited different kinetics of seedlings growth during the dose
gradient treatment of α-pinene. The enzyme system plays an active role in inhibiting the
production of H2O2 in drooping wildryegrass leaves (Fig. 4A). The changes in antioxidants
suggested that drooping wildryegrass seedlings were sensitive to α-pinene, as SOD and
APX increased at 5 µL L−1 α-pinene to resist stress (Figs. 5A and 5D). The activity of
APX increased with α-pinene dose increased, indicating that the plant produced APX
decreased the membrane lipid peroxidation quickly at 10 µL L−1 α-pinene (Fig. 5D). POD
participate in the removal of H2O2 from plant cells (De Gara, 2004). The high-activity of
POD, APX along with the high level of GSH found at 15 µL L−1 α-pinene indicated that
the AsA-GSH cycle may contribute to the cellular redox equilibrium (Figs. 5C, 5D and
6A). However, when growth of seedlings was severely stressed at 20 µL L−1 α-pinene, the
activity of POD, GR and level of GSH remained stable, the activity of APX started declining,
growth of seedlings was inhibited (Figs. 5D, 6A and 6B). Contrary to the other antioxidant
enzymes and antioxidants, the activity of CAT decreased at different doses of α-pinene
(Fig. 5B). Therefore, when drooping wildryegrass seedlings is stressed by α-pinene, SOD
and APX played the pioneer role in the low concentration. With the increase of α-pinene
concentration, APX, POD and GSH played a bigger active role. When the stress degree was
maximum, POD, GR activity and GSH level remained stable. The dynamic changes of the
enzyme system cleared H2O2 produced under α-pinene stress conditions. The change of
detoxifying enzyme system may be the mechanisms that allelopathy, as reported in Oryza
sativa (Fang et al., 2008) and Citrullus lanatus (Geng et al., 2005).

NO is an endogenous signal that responses to several stimuli in plants (Neill et al., 2008;
He et al., 2022). NO was associated with the responses to abiotic stress in plants, such as
drought and heat stress (Leshem, Wills & Ku, 1998). The increase of NO level has also been
found in allelopathic effects of some weed species (Xie et al., 2021). NO also enhances the
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activity of the enzyme through some unidentified signaling pathways. NOmay increase the
antioxidant capacity of cells by increasing the activities of APX (Neill et al., 2008). In our
study, NO level increased significantly from 15 µL L−1 α-pinene (Fig. 7A). The increase
of APX activity may be related to the increase of NO level at 15 µL L−1 α-pinene. NO
is catalysed by nitrate reductase (NR) under certain conditions (Kaiser & Huber, 2001).
However, α-pinene treatment had no effect on NR activity (Fig. 7B). The increase of NO
level was not related to NR. ABA triggers NO generation (N et al., 2008). We guess that the
increase of NO level may be related to the increase of ABA levels (Figs. 7A and 8A).

Plants have evolved a variety of stress responses, and the changes of plant hormone were
different when plants respond to different stress condition (Verma, Ravindran & Kumar,
2016). However, hormones are related by synergistic or antagonistic cross-talk and they
regulate each other’s biosynthesis process (Peleg & Blumwald, 2011). The hormone levels
we studied were altered by α-pinene stress. Typically, ABA is closely associated with abiotic
stress defense plants, and ABA levels increased under drought, salinity, cold, heat stress
and wounding conditions (Lata & Prasad, 2011; Zhang et al., 2006). It was reported that
the allelochemicals stimulation increased ABA levels (Bogatek & Gniazdowska, 2007). In
our study, ABA level showed a significant increase at different α-pinene doses (Fig. 8A).
Phenolic allelochemicals ferulic acid also activated the synthesis of ABA (Holappa & Blum,
1991). Research in Arabidopsis thaliana revealed that numerous genes encoding proteins
associated with cytokinins (CKs) signaling pathways that were differentially affected by
various abiotic stresses (Argueso, Ferreira & Kieber, 2010). CKs levels in plants may increase
or decrease under water limiting conditions (Argueso, Ferreira & Kieber, 2010). Zeatin and
its derivatives are the most important group of isoprenoid CKs (Gajdošová et al., 2011). In
this study, the levels of Zeatin decreased at 5 µL L−1 α-pinene and increased at 20 µL L−1

α-pinene. There were no significant differences in Zeatin levels compared with the control
treatment. However, there was a significant difference in Zeatin levels at 5 µL L−1 α-pinene
and 20 µL L−1 α-pinene, indicating that there was a difference between the synthesis
mechanisms at low and high concentrations of α-pinene (Fig. 8B). The increased level of
CKs could inhibit leaf senescence during stress conditions and might increase the level of
Pro (Alvarez et al., 2008). The increase in Zeatin level may be attributed to an increase in
Pro level at 20 µL L−1 α-pinene (Fig. 4C). CKs can rapidly induce NO biosynthesis in plant
cell cultures of Arabidopsis, parsley and tobacco (Tun, Holk & Scherer, 2001).We guess that
the increased NO level was also related to the accumulation of Zeatin at 20µL L−1 α-pinene
(Figs. 7A and 8B). SA is a signal molecule involved in plant defense responses (Shah, 2003).
In our study, SA level showed a significant increase at 15 and 20 µL L−1 α-pinene (Fig.
8C), as supported by the studies on abiotic stress, like drought (Pandey, 2017; Sergi & Josep,
2003), cold (Kosová et al., 2012), heat (Dat et al., 1998) andsalinity stress (Sawada, Shim &
Usui, 2006). Reduction of GA levels and signaling result in plant growth restriction under
several stresses conditions, including cold, salt and osmotic stress (Colebrook et al., 2014).
GA is composed of a large group of tetracyclic diterpenoid carboxylic acids, of which GA1,
GA3, GA4 and GA7 mostly active (Sponsel, 2003). The α-pinene treatment decreased GA1
and GA3 levels so that their levels did not reach the detection limits of the instruments.
GA4 levels had no significant difference at different α-pinene doses, and GA7 levels showed
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a significant increase at high dosage of α-pinene (20 µL L−1) (Figs. 8D and 8E). JA play
crucial roles in plant responses to abiotic stress factors, and there is growing evidence that
auxin is involved in the trade-off between growth and defense. Some studies also revealed
that JA increases auxin production (Pérez-Alonso et al., 2021). The α-pinene treatment
caused JA and IAA level to show a similar pattern of response (Figs. 8F and 8G). The
result of phytohormone indicated that ABA and IAA of drooping wildryegrass seedlings
leaves were sensitive to α-pinene. Zeatin, SA, GA7 and JA levels of drooping wildryegrass
seedlings could not be affected at 5 and 10 µL L−1 α-pinene. As the degree of α-pinene
stress, ABA and IAA levels continued to increase. SA and JA played an important role
in resisting allelopathic effects at 15 µL L−1 α-pinene. At high dosage of α-pinene, ABA,
Zeatin, SA, GA7, JA and IAA levels increased. The α-pinene treatment had the greatest
impact on ABA and IAA levels. They act as key regulators under individual drought and
pathogen stress respectively (Gupta et al., 2017). The mechanism of drooping wildryegrass
seedlings hormone change needs further study.

CONCLUSIONS
The α-pinene-induced allelopathy activated physiological response of drooping
wildryegrass that led to change of biomass, RWC, photosynthetic pigment, water-soluble
proteins, soluble sugars, MDA, GSH levels, Pro contents, ROS-metabolizing enzymes,
nitrogen metabolites and endogenous hormone levels. The α-pinene-stress had no
significant effect on height, FW, H2O2, NR and GA4. The dynamic changes of enzyme
system cleared H2O2 produced under α-pinene stress conditions. However, higher doses of
α-pinene caused severe phytotoxic effects by impairing several physiological, biochemical
and phytohormone processes in drooping wildryegrass. Endogenous signal NO and cell
membrane damage product Pro accumulated in leaves of drooping wildryegrass seedlings
at 15 µL L−1 α-pinene, and lipid peroxidation product MDA accumulated at 20 µL L−1

α-pinene. The α-pinene caused stress damage to drooping wildryegrass seedlings mainly
through break the balance of membrane system rather than ROS production at 15 and
20 µL L−1concentrations. Additionally, the α-pinene treatment has the most impact on
ABA and IAA levels. Drooping wildryegrass seedlings can effective in counteracting the
harmful effects of ROS generated at lower doses of α-pinene, and they were severely
stressed at higher doses of α-pinene. Our findings provided references for understanding
the allelopathic mechanism of allelochemicals in plants.
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