
R E V I E W

Caged Polyprenylated Xanthones in Garcinia 
hanburyi and the Biological Activities of Them
Ruixi He, Buyun Jia , Daiyin Peng, Weidong Chen

School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China

Correspondence: Ruixi He, School of Pharmacy, Anhui University of Chinese Medicine, No. 350 Longzihu Road, Xinzhan District, Hefei, 230012, 
People’s Republic of China, Tel +8613637080511, Fax +8655168129099, Email heruixi@ahtcm.edu.cn 

Abstract: The previous phytochemical analyses of Garcinia hanburyi revealed that the main structural characteristic associated with 
its biological activity is the caged polyprenylated xanthones with a unique 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold, which contains 
a highly substituted tetrahydrofuran ring with three quaternary carbons. Based on the progress in research of the chemical constituents, 
pharmacological effects and modification methods of the caged polyprenylated xanthones, this paper presents a preliminary predictive 
analysis of their drug-like properties based on the absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. It 
was found out that these compounds have very similar pharmacokinetic properties because they possess the same caged xanthone 
structure, the 9,10-double bond in a,b-unsaturated ketones are critical for the antitumor activity. The author believes that there is an 
urgent need to seek new breakthroughs in the study of these caged polyprenylated xanthones. Thus, the research on the route of 
administration, therapeutic effect, structural modification and development of such active ingredients is of great interest. It is hoped 
that this paper will provide ideas for researchers to develop and utilize the active ingredients derived from natural products. 
Keywords: caged polyprenylated xanthones, pharmacological effects, antitumor, modification, ADME/T properties

Introduction
Garcinia hanburyi is widely distributed in the tropical rainforests of Southeast Asia. Gamboge is the dried resin exuded 
from the stems of Garcinia hanburyi that can be used as a pigment and has also been used for a long time as a folk 
medicine.1 In China, people are increasingly concerned about the safety of toxic herbs. Garcinia hanburyi is regulated as 
a toxic drug for medical use, and it requires special modification for clinical use. The previous phytochemical analyses of 
Garcinia hanburyi revealed that the main structural characteristic associated with its biological activity is the caged 
polyprenylated xanthones with a specialized 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold,2–9 which contains a highly 
substituted tetrahydrofuran ring.10 We have compiled the relevant literature and found out that more than 50 different 
xanthones have now been extracted from gamboge. The available evidence suggests that gamboge has anticancer 
properties, with gambogenic acid (GNA) and gambogic acid (GA) being the main components responsible for these 
activities. They have been demonstrated to exert cytotoxic activities through a variety of mechanisms.11–14 Among them, 
GA has been applied to treat a wide range of cancers, such as breast, liver, gastric, lung, colon, and skin cancers. Its 
therapeutic effects have been well established,15 and it has been shown to exert anticancer effects through apoptosis 
induction, cell cycle arrest, telomerase and angiogenesis inhibition.16,17 In recent years, increasing evidence has 
demonstrated that GNA exhibits higher antitumor activity and lower toxicity compared to GA, and the extraction 
process is simple and less costly.18–21 Despite these advantages, GNA has not been approved for clinical application 
mainly due to its poor aqueous solubility and low bioavailability.22 With the aim of overcoming these limitations, 
researchers have carried out various studies such as on the technology nanocarrier drug delivery, to improve the 
bioavailability of GNA.

Due to the diversity and potent activities of caged polyprenylated xanthones extracted from Garcinia hanburyi, 
a series of in-depth studies have been conducted by researchers all over the world. Our team has conducted study on 
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these bioactive ingredients. Our work covers many aspects, including compound isolation, pharmacokinetics, and 
formulation. In our previous studies, several highly fascinating methods were found to improve the therapeutic efficacy 
of GNA, including the use of solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs),23 liquid crystal 
dispersions,24 PEGylated liposomes, PEGylated nonionic surfactant vesicles,25 and folic acid-modified nonionic surfac-
tant vesicles.26 More than 50 different types of caged polyprenylated xanthones have been extracted from Garcinia 
hanburyi, but researchers have mostly focused more on GNA and GA. However, the basic properties of the other 
ingredients, particularly their absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties, all of 
which are the key factors affecting the efficacy of drugs in vivo, are unclear. However, in the development of new drugs, 
the evaluation of the physicochemical properties, such as ADME/T properties, is limited by a number of factors, such as 
the high economic cost and the long time required. Therefore, these properties are usually considered at the stage of 
clinical research. According to statistics, 40% of drug candidates are eliminated from further development due to poor 
bioavailability, pharmacokinetic properties or toxicity.27 Based on a collection of reliable experimental data as reported, 
a computer program was developed to effectively predict the ADME/T properties of bioactive ingredients.28 Compared 
with the traditional experiments in vivo, computer programs can process multiple active ingredients in batches and 
predict their ADME/T properties by simply providing the structure of the compound, thus making this process more 
efficient and less costly.29 PkCSM software is a distance-based graphical feature that can be used to predict and optimize 
the pharmacokinetic properties and toxicity of small molecules. It consists of 30 predictors divided into five major 
classes: absorption (7 predictors), distribution (4 predictors), metabolism (7 predictors), excretion (2 predictors), and 
toxicity (10 predictors).30 To start forecasting, only with the SMILES code of the compound, it enables easy and rapid 
early stage assessment of compounds. Under the pkCSM program, the ADME/T properties of 51 caged polyprenylated 
xanthones derived from Garcinia hanburyi were predicted and summarized. It is hoped that this will promote the 
development and utilization of natural products.

Chemical Structures of the Xanthones in Garcinia hanburyi
To predict and compare the ADME/T properties of the caged polyprenylated xanthones derived from Garcinia hanburyi 
more comprehensively, we summarized 51 of them that had been isolated to date. The caged polyprenylated xanthones 
currently known derived from Garcinia hanburyi are listed in Table 1. As typical caged polyprenylated xanthones in 
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Table 1 Chemical Structures of the Caged Polyprenylated Xanthones Derived from Garcinia hanburyi

No. Chemical structure Name Reference(s) No. Chemical structure Name Reference(s)

1 Desoxymorellin [9,10] 27 Gambogefic acid [10]

2 Isomorellin [10,31] 28 Gambogellic acid [10]

3 Morellic acid [3,10,32,33] 29 7-Methoxygambogellic acid [10]

4 Isomorellic acid [10,32,33] 30 Desoxygaudichaudione A [9,10]

5 Isomorellinol [10,32] 31 Hanburin [9,10,31]

6 Morellin dimethyl acetal [10] 32 Gaudichaudic acid [10,31]

7 Gambogin [10] 33 Desoxygambogenin [9,10,31]

8 Gambogic aldehyde [10] 34 Gambogenin [10]

(Continued)
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Table 1 (Continued). 

No. Chemical structure Name Reference(s) No. Chemical structure Name Reference(s)

9 Gambogic acid [9,10,33] 35 Isogambogenin [10,32]

10 Epigambogic acid [10] 36 Gambogenic acid [9,10,33]

11 Isogambogic acid [10,33] 37 Isogambogenic acid [10,31–33]

12 Epiisogambogic acid [10] 38 Gambogenin dimethyl 
acetal

[10]

13 30-Hydroxygambogic acid [10] 39 3-O-Geranylforbesione [10]

14 30-Hydroxyepigambogic acid [10] 40 8,8a-Dihydro 
-8-hydroxygambogenic acid

[10]

15 7-Methoxygambogic acid [10] 41 10-Methoxygambogenic 
acid

[10]

16 7-Methoxyepigambogic acid [10] 42 Gambogenific acid [10]

17 7-Methyoxydesoxymorellin [10] 43 8,8a-Epoxymorellic acid [10]

(Continued)
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Table 1 (Continued). 

No. Chemical structure Name Reference(s) No. Chemical structure Name Reference(s)

18 7-Methoxyisomorellin [10] 44 Dihydroisomorellin [10]

19 Isomoreollin B [3,10] 45 Hanburinone [10]

20 Methyl-8,8a-dihydromorellate [10] 46 Forbesione [10,33]

21 Moreollic acid [3,10] 47 10α-Butoxygambogic acid [1]

22 8,8a-Dihydro 
-8-hydroxymorellic acid

[10] 48 10α-ethoxy-9,10- 
dihydrogambogenic acid

[1]

23 8,8a-Dihydro 
-8-hydroxygambogic acid

[10] 49 Gambogic acid C or 
epigambogic acid C

[1]

24 Gambogic acid A or 10- 
methoxygambogic acid

[10] 50 Morellinol [34]

25 Gambogic acid B or 10- 
ethoxygambogic acid

[10] 51 10-Methoxygambogin [34]

(Continued)
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Garcinia hanburyi, GA (Compound 9) and GNA (Compound 36) are of great interest for their proliferation inhibitory 
effects on a variety of tumor cells.

The Role of Caged Polyprenylated Xanthones in Diseases
Antitumor
In recent years, in vitro and in vivo experiments have shown that the caged polyprenylated xanthones extracted from 
Garcinia hanburyi exhibits anti-tumor effects, the anti-tumor effects of GA and GNA are mainly achieved through 
induction of apoptosis, cell cycle arrest and inhibition of tumor cell invasion and migration, and the compounds of 
gambogefic acid, 7-methoxygambogellic acid, 7-methoxygambogic acid, 7-methoxyepigambogic acid, 8,8a-dihydro 
-8-hydroxymorellic acid, 8,8a-dihydro-8-hydroxygambogenic acid, oxygambogic acid, gambogenific acid, 7-methoxyi-
somorellinol, 8,8a-dihydro-8-hydroxygambogic acid also have inhibitory effects on cancer cells.4

Induction of Apoptosis
It was demonstrated that GA induces apoptosis in non-small cell lung cancer (NSCLC) A549 cells by upregulating the 
expression of pro-apoptotic genes BAX and PUMA and downregulating the expression of anti-apoptotic gene BCL-2 
through transcription factor P53.35 In addition, GA can increase the sensitivity of MCF-7 to tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) and promoted TRAIL-induced apoptosis in breast cancer cells by enhancing the 
activity of caspase-3 and caspase-8.36 GA can also induce apoptosis in glioblastoma by increasing the levels of the pro- 
apoptotic proteins BAX and apoptosis-inducing factor (AIF), and this is a non-caspase-related apoptotic pathway.37,38 

The Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway are closely related to 
tumor cell apoptosis, and it was shown that GA could induce apoptosis of esophageal cancer cells by inhibiting the JAK- 
STAT signaling pathway.39 The mechanism of GNA-induced apoptosis in tumor cells has also received considerable 
attention in recent years, studies have shown that GNA can induce apoptosis in breast cancer cells through the 
mitochondrial pathway, it can also induce apoptosis by inhibiting the expression of the anti-apoptotic protein BCL-2 
and activating apoptosis-related proteins.40,41

Blocking the Cell Cycle
Cell cycle factor is an important target for tumor treatment. Several studies show that caged polyprenylated xanthones in 
Garcinia hanburyi can block the tumor cell cycle. GNA can induce apoptosis by downregulating the expression of 
cyclin-dependent kinases (CDKs) that arrest the cell cycle in the G1 phase and subsequently activate caspases.42 GA can 
induce mRNA expression of genes related to cell cycle arrest, thereby causing cells to arrest in the G0/G1 phase.43

Inhibit the Invasion and Metastasis of Tumor Cells
Invasion and metastasis of tumor cells are the main reasons for the poor prognosis of patients. Experimental results have 
shown that GA can reduce the invasion of breast cancer cells and colon cancer cells, follow-up mechanistic studies 
revealed that this may be related to the c-Jun N-terminal kinase (JNK) signaling pathway, which increases the secretion 
of matrix metalloproteinases (MMPs) in cancer cells, disrupts the extracellular matrix, decreases intercellular adhesion, 

Table 1 (Continued). 

No. Chemical structure Name Reference(s) No. Chemical structure Name Reference(s)

26 Oxygambogic acid [10] 27 Gambogefic acid [10]
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and thus promotes invasion and metastasis of cancer cells.44 GNA and isomorellin were found to attenuate the migration 
and invasion of tumor cells by inhibiting the NF-κB pathway.45,46

Inhibit Angiogenesis
It was revealed that GNA could significantly reduce p-PI3K, p-AKT, and vascular endothelial growth factor (VEGF) 
expression, further experiments showed that GNA inhibits angiogenesis through the PTENPI3K/AKT/VEGF/eNOS 
pathway.47 In addition, it was also demonstrated that morellic acid, gambogenin and isogambogenic acid showed 
comparable antiangiogenic activities with less toxicities than GA.48

Induction of Cellular Autophagy
In recent years, autophagy has received extensive attention in numerous researches of antitumor drugs. GA could induce 
significant upregulation the expression of autophagy-related factors ATG7, BECLIN-1 and LC3-II in acute lymphoid 
leukemia cells, while inhibiting Wnt/β-catenin signaling, thus further inhibiting cell growth.49 It was observed that 
glioma cells treated with GNA showed increased expression of autophagic proteins and increased secretion of autophagic 
vesicles, suggesting that GNA can induce autophagy in tumor cells, thereby inhibiting tumor growth.50

Other Mechanism Studies
The accumulation of reactive oxygen species (ROS) has an important impact on the development of tumors. It was 
suggested that GA can induce the accumulation of ROS in tumor cells, which may be related to the ability of GA to 
inhibit cytosolic thioredoxin (TRX-1) and mitochondrial thioredoxin (TRX2) distributed in the cytoplasm and mitochon-
drion, which play a key role in maintaining ROS homeostasis.51–53 Recent studies have observed that GA kills cancer 
cells by inducing a vacuolization-associated cell death, and this phenomenon may be associated with GA-induced 
proteasomal inhibition leads to the endoplasmic reticulum (ER) dilation and ER stress in treated cancer cells.54

Anti-Cardiovascular Diseases
Currently, cardiovascular disease (CVD) is a great threat to human health. Previous studies have shown that the 
inflammation and risk of cardiovascular diseases have a strong consistent relationship, and this result has been proven 
by clinical trials and epidemiological studies.55 Studies have concluded that the activated pro-inflammatory cytokines, 
oxidative stress and inflammation and C-reactive protein (CRP) are key mechanisms in the development of CVD.56 Fu 
et al57 evaluated the role of neoglycyrrhetinic acid in sepsis-associated myocardial injury, and they discovered that GNA 
exerts anti-apoptotic, anti-fibrotic and anti-inflammatory effects in septic mice through inactivation of the MAPK/NF-κB 
pathway. Studies have shown that GA can inhibit cardiac hypertrophy and fibrosis induced by pressure or isoprenaline 
infusion by inhibiting the NF-κB pathways and proteasome, indicating that GA therapy may a new strategy for the 
treatment of cardiac hypertrophy and fibrosis.58

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic, systemic disease characterized by inflammatory synovitis. It is characterized by 
polyarticular, symmetric, aggressive joint inflammation of the small joints of the hands and feet, often accompanied by 
extra-articular organ involvement and positive serum rheumatoid factor, which can lead to deformities of the joints. 
There is no specific treatment for rheumatoid arthritis. The aim of treatment is to maintain joint mobility and coordinated 
function, and different therapies are used at different stages of the disease. Nonsteroidal anti-inflammatory drugs 
(NSAIDs) are commonly used to relieve pain and inflammation in the acute phase of RA. Early findings suggest that 
the ethyl acetate extract of gamboge appears to have a mechanism of action similar to NSAIDs rather than to steroids.59 

Subsequent studies have demonstrated that GA is one of the NSAIDs that inhibit the development of RA by suppressing 
the levels of inflammatory molecules and cytokines.60 Wu et al61 revealed that the anti-inflammatory effect of GA in RA 
rats was mediated by modulation of the PI3K/Akt/mTOR signaling pathway.
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Diabetes and Obesity
AMP-activated protein kinase (AMPK), an AMP-dependent protein kinase, is a key factor in the regulation of biological 
energy metabolism and also a key factor in the study of metabolism-related diseases, such as type 2 diabetes and 
obesity.62,63 Genetic and pharmacological studies have shown that AMPK is essential for the body to maintain glucose 
homeostasis. Zhao et al63 demonstrated for the first time that GA activates the AMPK signaling pathway by directly 
interacting with AMPK. Protein tyrosine phosphatase 1B (PTP1B) is involved in maintaining the balance of tyrosine 
protein phosphorylation and negatively regulates insulin signaling.34 The active compounds extracted from Garcinia 
hanburyi such as GA, moreollic acid, morellic acid, 10-methoxygambogenic acid, GNA, GA, morellinol, 10-methox-
ygambogin and desoxymorellin, were identified to be PTP1B inhibitors, they inhibit PTP1B in dose-dependent manner, 
the binding sites of GA and morellinol with PTP1B were studied, and it was revealed that the inhibitory activities are 
highly correlated with the caged motif and prenyl group in A ring.

Other Diseases
Recent research has shown that GNA ameliorates cardiac injury and dysfunction in LPS-induced septic mice by 
inhibiting cardiac apoptosis, fibrosis and inflammation through downregulation of p-JNK and p-NF-κB.57 In a recent 
work, binding affinities of xanthone compounds which including morellic acid, gambogellic acid, GNA, moreollic acid 
with SARS-CoV-2 main protease (Mpro) were predicted using the molecular docking technique, the results showed that 
morellic acid has a high-binding affinity towards SARS-CoV-2 Mpro, and this suggests that MA is a promising candidate 
for anti-COVID-19; however, this requires further detailed in vivo experimental estimation and clinical evaluation.64

Pharmacokinetic Studies and Countermeasures for Improving the 
Drug-Like Properties of Caged Polyprenylated Xanthones
To effectively utilize the curative effects of caged polyprenylated xanthones in clinic, an in vivo pharmacokinetic study 
of the drug is essential. In previous studies, GA was administered via intravenous injection; however, GA has an 
extremely short half-life in plasma.17,65 Administering GA intravenously to patients to treat tumors leads to side effects 
such as cardiotoxicity, liver damage and phlebitis.66 For these reasons, GA was not evaluated in Phase III clinical trials as 
an intravenous antitumor agent. In addition, the previous study found that, GA is poorly absorbed after gastrointestinal 
administration in rats and has low bioavailability in vivo; studies have shown that, after oral administration, GA is toxic 
to various rat organs.67,68 In view of the above-mentioned drawbacks, the clinical applications of GA administered via 
intravenous injection and orally are limited. Actually, many active ingredients of TCM with antitumor activity have 
strong hydrophobicity, and the conventional solubilization techniques cannot meet the needs of the development of 
insoluble drugs. To address these challenges, multiple studies have been conducted to refine the pharmacokinetic and 
pharmacodynamic performance of GA, chemical structure modifications, combination therapy and different types of 
nanoscale drug delivery systems (Table 2) and have been employed to modify or encapsulate GA while avoiding vascular 
irritation and organ toxicity in vivo. Rational medicinal modifications on GA will improve its physicochemical properties 
and drug-like characters. The chemical structural of GA is shown in Figure 1. Previous structure modifications of GA 
mainly focused on the 9,10-double carbon bond of a,b-unsaturated ketone, 6-hydroxyl group, isopentenyl groups and the 
30-carboxyl group. It was found that the 9,10-double bond in a,b-unsaturated ketones is essential for the apoptosis- 
inducing activity, and the replacement of the acidic carboxyl group with ester and amide does not have much effect on 
the activity, it is also suggests that the hydrophilic face of GA may not have much relevance for its binding to biological 
targets. With the development of nano drug delivery systems, more and more elaborate and complex drug delivery 
systems are being designed, researchers have conducted studies on various nano-delivery systems of GA, including 
passive targeting, active targeting, tumor microenvironment response and bionic targeting, for example, the aqueous 
solubility of GA can be improved by chemical conjugation to a water-soluble polymer such as polyethylene glycol 
(PEG),69 Moreover, in order to control the release of GA, enhance its accumulation at tumor sites, and reduce side 
effects, multifunctional nanoparticles of GA with pH-sensitive and redox-responsive sensitivities as well as receptor- 
targeted responses were developed. However, more attention should be paid to the in vivo degradation and systemic 
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Table 2 GA Modifications

No. Modification 
Method

Specific Form(s) Indication Status Cell(s) Reference

1 Chemical structure 
modification

The derivatives of GA with aliphatic amino 
moieties at C(39)

Antitumor In vitro T47D, HCT116 
and SNU398 
cells

[81]

2 Chemical structure 
modification

The derivatives of GA with modification of the 
30-carboxy and 6-hydroxy group. 
The derivatives of GA without the 9,10 carbon– 
carbon double bond in the a,b-unsaturated 
ketone

Antitumor In vitro T47D, ZR751 
and DLD-1 cells

[82]

3 Chemical structure 
modification

Modified the carbon–carbon double bond at 
C-32/33 or C-37/38 and of the methyl groups at 
C-39/C-35

Antitumor In vitro HT-29, Bel-7402, 
BGC-823, A549, 
and SKOV 3 
cells

[83]

4 Chemical structure 
modification

The carbon-carbon double bonds of C-32/33 
and C-38/40 and the methyl group of C-34 were 
converted to epoxy group and hydroxymethyl 
group

Antitumor In vitro Bel-7402, HT-29, 
and BGC-823 
cells

[84]

5 Chemical structure 
modification

Two GA derivatives with neo-type A ring 
systems were generated during microwave 
irradiation in acidic condition

Antitumor In vitro HepG2, BGC- 
803, SGC-7901 
and MCF-7 cells.

[85]

6 Chemical structure 
modification

GA analogues that address potential key 
structural features after A and B rings were 
completely cut from the core structure

Antitumor In vitro HepG2 cells [86]

7 Chemical structure 
modification

Modified C(39) of GA by introducing aliphatic 
amino, aromatic amino, alkoxy, and halogen 
moieties in this position

Antitumor In vitro A549, BGC-823, 
U251, HepG2, 
and MB-231 
cells

[87]

8 Chemical structure 
modification

Aliphatic amino moieties at C(39) Antitumor In vitro A549, BGC823, 
U251, HepG2, 
and MDA-MB 
-231 cells

[87]

9 Chemical structure 
modification

Chemical modification at C(34) by introducing of 
hydrophilic aliphatic amines

Lung cancer In vitro A549 cells [88]

10 Drug delivery 
system

GA-loaded poloxamer 407/TPGS mixed micelles Breast and 
multidrug- 
resistant cancer

In vitro NCI/ADR-RES 
cells

[89]

11 Drug delivery 
system

GA-lactoferrin nanoparticles Antitumor In vitro HepG2 cells [90]

12 Drug delivery 
system

GA-mPEG2000 micelles Antitumor In vitro B16F10 and C26 
cells

[91]

13 Drug delivery 
system

N-Octyl-N-arginine-chitosan (OACS) micelles 
for GA

In situ intestinal 
perfusion

[92]

14 Drug delivery 
system

GA-Ps Liver cancer In vivo H22 cells [93]

(Continued)
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Table 2 (Continued). 

No. Modification 
Method

Specific Form(s) Indication Status Cell(s) Reference

15 Drug delivery 
system and 
combination 
therapy

GA-loaded HRA nanoparticles Breast cancer In vitro and 
in vivo

MCF-7 cells [94]

16 Drug delivery 
system

GA-TiO2 nanocomposites Liver cancer In vitro HepG2 cells [95]

17 Drug delivery 
system and 
combination 
therapy

BTZ-GA-loaded MNP-Fe3O4 Multiple 
myeloma

In vitro and 
in vivo

RPMI-8226 cells [96]

18 Drug delivery 
system

PEGylated liposomal formulation of GA (GAL) Breast cancer In vitro and 
in vivo

MDA-MB-231, 
Hep G2 and 
MIA PaCa-2 
cells

[97]

19 Combination 
therapy

GA+Fe3O4 

-MNP
Liver cancer In vitro SMMC-7721 

cells
[98]

20 Drug delivery 
system

GA-loaded cp-rHDL nanoparticles Antitumor In vitro and 
in vivo

HepG2 and 
HT1080 cells

[99]

21 Drug delivery 
system

GA-loaded F68-LA nanospheres Ovarian cancer In vitro A2780 cells [100]

22 Drug delivery 
system

GA/RACC-loaded glycol chitosan nanoparticles Osteosarcoma In vitro MG63 cells [101]

23 Drug delivery 
system

GA-loaded long-circulating liposomes In vivo 
pharmacokinetics

[102]

24 Drug delivery 
system

GA-loaded FA-Arg-PEUU nanoparticles Antitumor In vitro HeLa and A549 
cells

[103]

25 Drug delivery 
system

GA-HSA nanoparticles Lung cancer In vivo A549 cells [104]

26 Drug delivery 
system and 
combination 
therapy

DTX/GA PLGA nanoparticles Lung cancer In vitro and 
in vivo

MCF-7 and 
MCF-7/Adr cells

[105]

27 Drug delivery 
system

PLGA-GA nanosystem In vitro and ex 
vivo transport

Caco-2 cells [106]

28 Drug delivery 
system

GA and LMWH loaded nanosystem Malignant 
glioma

In vitro and 
in vivo

U87MG cells 
and HUVECs

[107]

29 Drug delivery 
system

RBCm-GA/PLGA nanoparticles Colorectal 
cancer

In vitro and 
in vivo

SW480, MKN45 
and AGS cells

[108]

30 Drug delivery 
system

GA-loaded PEG-PCL nanoparticles Gastric cancer In vitro and 
in vivo

MKN45 cells [109]

31 Drug delivery 
system

F68-LA/GA nanospheres Ovarian cancer In vitro A2780 cells [100]

(Continued)
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Table 2 (Continued). 

No. Modification 
Method

Specific Form(s) Indication Status Cell(s) Reference

32 Drug delivery 
system

GA-LMWH micelles Liver cancer In vitro and 
in vivo

H22 cells [110]

33 Drug delivery 
system and 
combination 
therapy

pTRAIL and GA coloaded HA-coated PEI-PLGA 
NPs

Breast cancer In vitro and 
in vivo

MCF-7, MDA- 
MB-231 and 4T1 
cells

[111]

34 Drug delivery 
system

GA-loaded PEG-PCL (GA-PP) micelles Lung cancer In vitro A549 cells [112]

35 Drug delivery 
system

GA-loaded HA(CD)-4Phe4 nanocomplex Breast cancer In vitro MDA-MB-435/ 
MDR cells

[113]

36 Drug delivery 
system

GA-loaded OACS micelles In vivo 
pharmacokinetics 
and 
biodistribution 
study

[114]

37 Drug delivery 
system and 
combination therapy

GA-conjugated PAAs/DTX-shRNA micelles Breast cancer In vitro and 
in vivo

MCF-7 cells [115]

38 Targeted drug 
delivery system

GA-loaded magnetic nanoparticles Mesenchymal 
epidermolysis 
bullosa 
carcinoma

In vivo VX-2 cells [116]

39 Drug delivery 
system

GA-loaded FA-Arg-PEUU nanoparticles Antitumor In vitro HeLa and 
HCT116 cells

[103]

40 Drug delivery 
system

GA-HSA nanoparticles Lung cancer In vivo A549 cells [104]

41 Targeted drug 
delivery system

GA-loaded Mn-ICG@pHis-PEG NCPs Breast cancer In vitro and 
in vivo

4T1 cells [117]

42 Drug delivery 
system

GA-loaded precision polymer nanosystem In vivo 
pharmacokinetics 
and 
biodistribution

[118]

43 Drug delivery 
system

GA-encapsulated MPEG-PCL micelles Breast cancer In vitro and 
in vivo

MCF-7 cells [119]

44 Drug delivery 
system

GA-NLC-cRGD, GA-NLC-RGE, GA-NLC- 
cRGD/RGE

Breast cancer In vitro and 
in vivo

MDA-MB-231 
cells

[120]

45 Targeted drug 
delivery system

(sPEG/HA/CSO)-SS-Hex/Fe3O4/GA Breast cancer In vitro and 
in vivo

4T1 cells [121]

46 Structural 
modification

GA-CPP conjugate Bladder cancer In vitro EJ bladder 
cancer cells

[122]

47 Drug delivery 
system

HA-PRM-GA micelles Lung cancer In vitro A549 cells [123]

(Continued)
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Table 2 (Continued). 

No. Modification 
Method

Specific Form(s) Indication Status Cell(s) Reference

48 Drug delivery 
system

GA-encapsulated oil-in-water nanoemulsion Acute myeloid 
leukemia

In vitro and 
in vivo

HL-60, Jurkat, 
MV4-11 and 
L929 cells

[124]

49 Drug delivery 
system

GA-loaded liposomes Melanoma In vitro and 
in vivo

B16F10 and 
EMT6 cells

[17]

50 Drug delivery 
system

iE–RBCm–GA/PLGA NPs Colorectal 
cancer

In vitro and 
in vivo

Caco-2, HT-29 
and SW480 cells

[125]

51 Sequential and site- 
specific drug 
delivery

LbL fabrication of GA and TRAIL codelivered 
BSA nanoparticles

Antitumor In vitro and 
in vivo

A549 and MCF- 
7 cells

[126]

52 Drug delivery 
system

Hydrophilic, positively charged lung-targeting 
GA-loaded particles

Lung cancer In vitro and 
in vivo

LL/2 cells [127]

53 Targeted drug 
delivery system

GA-loaded BzPGA-HA-C6-ATRA core–shell 
nanoparticles

Antitumor In vitro and 
in vivo

B16F10, HepG2, 
A549 and L929 
cells

[128]

54 Drug delivery 
system

HA(HECS-ss-OA)/GA nanoparticles Lung cancer In vitro and 
in vivo

A549 cells [129]

55 Dual sensitive drug 
delivery system

mPEG-VC-SS-GA NPs Liver cancer In vitro HepG2 cells [130]

56 Targeted drug 
delivery system

Fe3O4@NH2-b-CD MNPs Antitumor In vitro 
cytotoxicity and 
in vivo 
pharmacokinetics

HepG2 and HL- 
60 cells

[131]

57 Drug delivery 
system

PLGA−GA nanosystem In vivo safety 
assessment

[132]

58 Drug delivery 
system

c(RGD) peptides modified with GA-NLC Breast cancer In vitro and 
in vivo

4T1 cells [133]

59 Drug delivery 
system

GA-Cy7 NPs Hypoxic cancer In vitro and 
in vivo

PC3 cells [134]

60 Drug delivery 
system

GA-encapsulated BSA nanoparticles Antitumor In vitro and 
in vivo

HepG2 cells [135]

61 Topical drug 
delivery

GA and AZ-PG combination Melanoma In vitro and 
in vivo

B16F10 cells [70]

62 Drug delivery 
system for 
synergistic 
anticancer therapy

GA and retinoic acid co-encapsulated liposomes Breast cancer In vitro and 
in vivo

4T1 cells [136]

63 Drug delivery 
system and 
synergistic 
anticancer therapy

Hydrogels packaging GA NPs and iRGD Antitumor In vitro and 
in vivo

MKN45 cells [137]

(Continued)
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Table 2 (Continued). 

No. Modification 
Method

Specific Form(s) Indication Status Cell(s) Reference

64 Structural 
modification and 
drug delivery 
system

GA prodrug and chitosan nanoparticles Orthotopic 
bladder cancer

In vitro MB49 cells [138]

65 Drug delivery 
system and 
combination 
therapy

HA-NI shells with MnO2 NPs as oxygen 
modulators and γ-PFGA as the cores to deliver 
GA and Ce6

Breast cancer In vitro and 
in vivo

4T1 cells [139]

66 Click chemistry 
platform and drug 
delivery system

NPs with mPEG-GA conjugates Antiarthritis In vitro and 
in vivo anti- 
inflammatory 
activity

RAW 264.7 cells [140]

67 Drug delivery 
system

GA-loaded ROS-responsive amino acid-based 
poly(ester amide) nanoparticles

Antitumor In vitro PC3 and HeLa 
cells

[141]

68 Drug delivery 
system and 
synergistic 
anticancer therapy

PLGA nanoparticles coloaded with GA, HP and 
CpG ODN

Liver cancer In vitro and 
in vivo

HepG2 and H22 
cells

[142]

69 Drug delivery 
system and 
synergistic 
anticancer therapy

PDA–SNO–GA–HA–DOX nanocomplex Antitumor In vitro and 
in vivo

HaCaT and HN6 
cells

[143]

70 Drug delivery 
system and 
combination 
therapy

P2Ns-GA-CsA Systemic lupus 
erythematosus

In vitro and 
in vivo

[144]

71 Drug delivery 
system and 
synergistic 
anticancer therapy

GA/PTX NLCs Breast cancer In vitro and 
in vivo

4T1, MCF-7, 
MCF-7/ADR, 
and MDA-MB 
-231 cells

[145]

72 Drug delivery 
system and 
combination 
therapy

PLGA-GA2-CUR nanoparticles Ocular 
inflammation

In vivo [146]

73 Drug delivery 
system and 
synergistic 
anticancer therapy

GA-loaded FA-Arg-PEUU NPs Breast cancer In vitro and 
in vivo

TNBC and 
HCC1806 cells

[147]

74 Drug delivery 
system and 
molecular docking

93Zr-CS-GA multifunctional liposomes Breast cancer In vivo MDA-MB-231 
cells

[148]

75 Drug delivery 
system and 
synergistic 
anticancer therapy

HMCS-PEG-GA nanosystem Antitumor In vitro HepG2 cells [149]

(Continued)

Drug Design, Development and Therapy 2023:17                                                                             https://doi.org/10.2147/DDDT.S426685                                                                                                                                                                                                                       

DovePress                                                                                                                       
3637

Dovepress                                                                                                                                                               He et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 2 (Continued). 

No. Modification 
Method

Specific Form(s) Indication Status Cell(s) Reference

76 Drug delivery 
system and 
synergistic 
anticancer therapy

GA-loaded BZ (GBZ) nanoparticles Hepatocellular 
carcinoma

In vitro and 
in vivo

Huh7 cells [150]

77 Drug delivery 
system and 
combination 
therapy

GA porous lipid/PLGA microbubbles Human glioma In vitro U251 human 
glioma cells

[151]

78 Topical and 
transdermal 
therapeutic system

GA b+ EN-US Cutaneous 
melanoma

In vitro 
penetration and 
in vivo antitumor 
effect

B16F10 cells [71]

79 Drug delivery 
system

GA-loaded prodrug nanomicelles sensitive to 
multiple environments

Antitumor In vitro and 
in vivo

MCF-7, HepG2, 
LO2, and HeLa 
cells

[152]

80 Targeted drug 
delivery system

Copolymer of PEI-grafted WSC and GA Antitumor In vitro and 
in vivo

PC-3, MCF-7, 
LoVo and 
HCT116 cells

[153]

81 Targeted drug 
delivery system

CB5005N-GA-liposomes Breast cancer In vitro and 
in vivo

4T1 and MDA- 
MB-231 cells

[154]

82 Oral tumor- 
targeting delivery 
system

GNA@PDA-FA SA NPs Antitumor In vitro and 
in vivo

4T1 cells [78]

83 Drug delivery 
system and 
combination 
therapy

cFA/dNP2-GA/PTX NLCs Breast cancer In vitro and 
in vivo

4T1 cells [155]

84 Drug delivery 
system and 
combination 
therapy

GA@PEG-TK-ICG polymeric micelles Breast cancer In vitro and 
in vivo

4T1 cells [156]

85 Codelivery system 
and combination 
therapy

Carrier-free codelivered nanoassembly of GA 
and DiR

Breast cancer In vitro and 
in vivo

4T1 cells [157]

86 Chemical tools and 
combination 
therapy

COF-GA nanoagents Breast cancer In vitro and 
in vivo

4T1 cells [158]

87 Chemical tools and 
combination 
therapy

DOX/Cypate/ 
GA@Rb1 NPs

Breast cancer In vitro MCF-7 and 4T1 
cells

[159]

88 Drug delivery 
system and 
combination 
therapy

GA-PB@MONs@LA nanoplatform Breast cancer In vitro and 
in vivo

4T1 cells [160]

(Continued)
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toxicity of excipients used in these preparations, especially administered via intravenous injection. To date, no related 
oral or intravenous preparations of GA that have successfully passed clinical trials for market approval. In recent years, 
people have continued to explore new routes to deliver GA with improved bioavailability and reduced toxicity to serve as 
a breakthrough in tumor treatment. In addition to intravenous and oral administration, recent attention has been focused 
on improving the effectiveness of GNA through local delivery. Previously, researchers demonstrated that localized 
administration of GA with the help of chemical penetration enhancers could be a safe and effective therapy for the 
treatment of melanoma.70 In their follow-up study, compared with chemical penetration enhancers, ultrasound, and 
intravenous injection, GA exhibited the strongest antimelanoma activity with combined chemical penetration enhancers 
and ultrasound administration, as chemical penetration enhancers can increase the cavitation effect of US.71

GNA is another major active ingredient extracted from the resin of gamboge, exhibits broader antitumor activity and 
less systemic toxicity than GA.72 To date, in vivo pharmacokinetic results in rats have shown that GNA is as poorly 
absorbed as GA after intragastric administration of Garcinia hanburyi extract. Additionally, the pharmacokinetic data of 
these two structurally similar xanthones are comparable, which means that slight changes in the position of the 
substituent on the alkyl side chain do not appreciably affect the in vivo pharmacokinetic properties of the 
compound.65,67,73–75 With the aim of overcoming the in vivo pharmacokinetic shortcomings of GNA for cancer therapy, 
recent studies have been trying to modify GNA with the aid of nanocarriers to improve its bioavailability and reduce its 
toxicity (Table 3). In 2013, our group prepared GNA-SLNs and compared the pharmacokinetic characteristics in rats after 
intraperitoneal injection of GNA solution and GNA-SLNs.76 Additionally, colloidal delivery systems were successfully 
fabricated for the targeted delivery of GNA. As demonstrated by the pharmacokinetic assay, after being encapsulated by 

Table 2 (Continued). 

No. Modification 
Method

Specific Form(s) Indication Status Cell(s) Reference

89 Drug delivery 
system and 
combination 
therapy

PPMD@GA/si NPs Breast cancer In vitro and 
in vivo

4T1 cells [161]

90 Codelivery system G−G@HTA NPs Lung cancer In vitro and 
in vivo

NSCLC, A549, 
and H1299 cells

[162]

91 Drug delivery 
system and 
combination 
therapy

NIR-II thermosensitive liposomes containing 
DTBZ and GA

Antitumor In vitro and 
in vivo

B16F10 and 
NIH-3T3 cells

[163]

92 Click chemistry and 
drug delivery 
system

mPEG–GA conjugate NPs Antitumor In vitro and 
in vivo

CT-26 cells [69]

Figure 1 The chemical structure of GA.
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the nano-delivery system, the residence time of GNA in the blood circulation was prolonged; in addition, the antitumor 
ability of the encapsulated GNA was significantly enhanced. In conclusion, the results of this study suggest that the nano- 
delivery system can potentially be used to deliver GNA. Notably, intravenous administration increases vascular damage 
and causes recurrent pain due to the vascular irritability of GA. As an attractive alternative, oral administration offers the 
following advantages, for instance, various dosage forms are available, relatively low production costs, ease of produc-
tion and good patient compliance.77 Researchers have also designed oral dosage forms of GNA, such as, polydopamine 
nanoparticles were prepared for encapsulating and stabilizing GNA coated with sodium alginate after the modification of 

Table 3 GNA Modifications

No. Modification 
Method

Specific Form Indication Status Cancer Cell(s) Reference

1 Drug delivery 

system

GNA SLNs Antitumor In vivo safety [76]

2 Drug delivery 

system

PEG-GNA NISVs In vivo pharmacokinetics [25]

3 Drug delivery 

system

FA-GNA MNPs Lung 

cancer

In vitro cytotoxicity A549 cells [164]

4 Drug delivery 

system

GNA nanosuspensions Antitumor In vitro cytotoxicity and 

in vivo pharmacokinetics

HepG2 cells [165]

5 Drug delivery 

system

GNA-loaded cubosomes Antitumor In vitro cytotoxicity and 

in vivo pharmacokinetics

SMMC-7721 cells [24]

6 Drug delivery 

system

Monodispersed ceria nanoparticles 

(CNPs) covered with GNA

Breast 

cancer

In vitro cytotoxicity MCF-7 cells [166]

7 Drug delivery 

system

GNA-PEG NLCs In vitro release and in vivo 

pharmacokinetics

[23]

8 Drug delivery 

system

GNA nanoliposomes In vivo pharmacokinetics [167]

9 Drug delivery 

system

GNA-PEG liposomes Antitumor In vitro and in vivo A549, SGC-7901, 

HepG2, and LLC cells

[168]

10 Drug delivery 

system

GNA-PLC micelles Antitumor In vitro cytotoxicity and 

in vivo pharmacokinetics

HepG2 cells [169]

11 Drug delivery 

system

GNA-PEI/siRNA liposomes Antitumor In vitro cytotoxicity HepG2 cells [170]

12 Drug delivery 

system

GNA-loaded zein nanoparticles In vivo pharmacokinetics 

and tissue distribution

[171]

13 Drug delivery 

system

GNA-loaded mPEG-PLA/mPEG- 

PCL mixed micelles

Antitumor In vitro cytotoxicity HepG2 cells [172]

14 Drug delivery 

system

FA-GNA NISVs Lung 

cancer

In vitro cytotoxicity and 

in vivo pharmacokinetics

A549 cells [26]

15 Drug delivery 

system

GNA@Zein-PDA NPs Antitumor In vitro cytotoxicity and 

in vivo pharmacokinetics

HepG2 cells [173]

16 Oral drug 

delivery 
system

GNA@PDA-FA SA NPs Breast 

cancer

In vitro and in vivo 4T1 cells [78]
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folic acid to achieve antitumor effect after oral administration and to improve the water solubility, bioavailability and 
tumor targeting of GNA.78 Our subject group also successfully isolated and extracted another component of Garcinia 
hanburyi, morellic acid (MA) (Compound 3, Table 1), which has also shown a good antitumor effect. As predicted, MA 
also has unfavorable pharmacokinetics; therefore, our group prepared MA NLCs to conquer this problem.79 However, the 
feasibility of producing this nano-delivery system, as well as the in vivo degradation and systemic toxicity of the 
excipients, need to be further investigated.

In recent years, studies have shown that water processing could alter the bioavailability of five caged xanthones in 
Garcinia hanburyi, which could attenuate toxicity and increase their effects.80 Apart from the abovementioned studies, 
very few pharmacokinetic studies of other caged xanthones have been reported.

Interpretation of the Prediction Model
Physical and Chemical Properties
The pkCSM prediction results of physical and chemical properties (Table 4) show that the molecular weights of these 
caged polyprenylated xanthones are all greater than 500 with the exception of forbesione (Compound 46), the number of 
hydrogen bond acceptors is less than 10, the number of hydrogen bond donors is less than 5, and the logP values are 
between 5.0 and 8.5. The above parameters partially conform to the rule of Lipinski,174 and among these parameters, 
their drug-like properties are mainly limited by their larger molecular weight and higher lipid solubility.

Table 4 Predicted Physical and Chemical Properties for the Caged Polyprenylated 
Xanthones in Garcinia hanburyi Provided by pkCSM

No. Molecular Weight LogP Rotatable Bonds Acceptors Donors

1 530.661 6.4481 4 6 1

2 544.644 5.6271 5 7 1

3 560.643 5.5128 5 7 2

4 560.643 5.5128 5 7 2

5 546.66 5.4205 5 7 2

6 590.713 6.0471 7 8 1

7 598.78 8.1746 7 6 1

8 612.763 7.3539 8 7 1

9 628.762 7.2393 8 7 2

10 628.762 7.2393 8 7 2

11 628.762 7.2393 8 7 2

12 628.762 7.2393 8 7 2

13 644.761 6.2117 9 8 3

14 644.761 6.2117 9 8 3

15 658.788 7.0083 9 8 2

16 658.788 7.0083 9 8 2

17 546.66 5.827 5 7 1

18 576.686 5.1859 6 8 2

(Continued)
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Table 4 (Continued). 

No. Molecular Weight LogP Rotatable Bonds Acceptors Donors

19 574.67 5.6012 6 8 1

20 574.67 5.6012 6 8 1

21 590.669 5.4869 6 8 2

22 576.642 5.3985 5 8 3

23 644.761 7.125 8 8 3

24 658.788 7.2134 9 8 2

25 672.815 7.6035 10 8 2

26 644.761 6.2101 8 8 3

27 626.746 6.9933 5 7 2

28 626.746 6.8492 6 7 2

29 656.772 6.1682 7 8 2

30 532.677 6.4782 6 6 2

31 532.677 6.696 6 6 2

32 562.659 5.5429 7 7 3

33 600.796 8.2047 9 6 2

34 614.779 7.3837 10 7 2

35 614.779 7.3837 10 7 2

36 630.778 7.2694 10 7 3

37 630.778 7.2694 10 7 3

38 660.848 7.8037 12 8 2

39 600.796 8.3354 10 6 1

40 646.777 7.1551 10 8 4

41 660.804 7.2435 11 8 3

42 662.776 6.0152 9 9 4

43 576.642 4.724 5 8 2

44 544.644 5.6271 5 7 1

45 624.683 3.6525 7 10 4

46 464.588 4.9695 4 6 2

47 700.869 8.3837 12 8 2

48 604.696 5.877 7 8 2

49 672.815 6.9935 7 8 2

50 546.66 5.4205 5 7 2

51 628.806 8.1487 8 7 1
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Absorption
The absorption parameter (Table 5) results show that these caged polyprenylated xanthones have poor water solubility, 
and lipid-soluble drugs are not absorbed as well as those that are water-soluble, especially after administration via the 
gastrointestinal tract.175 Additionally, these compounds have different degrees of Caco-2 cell permeability. In the pkCSM 

Table 5 Predicted Absorption Properties for the Caged Polyprenylated Xanthones in Garcinia hanburyi Provided by pkCSM

No. Absorption

Water 
Solubility 
(Log mol/L)

Caco2 
Permeability 
(Log Papp in 
10−6 cm/s)

Intestinal 
Absorption 
(Human) (% 
Absorbed)

Skin 
Permeability 
(Log Kp)

P-Glycoprotein 
Substrate  
(Yes/No)

P-GlycoproteinI 
Inhibitor  
(Yes/No)

P-GlycoproteinII 
Inhibitor  
(Yes/No)

1 −4.892 1.405 95.565 −2.829 No Yes Yes

2 −4.792 1.54 100 −2.762 No Yes Yes

3 −4.14 1.335 81.218 −2.734 Yes No Yes

4 −4.14 1.335 81.218 −2.734 Yes No Yes

5 −4.685 1.489 100 −2.817 Yes Yes Yes

6 −4.21 1.277 100 −2.749 No Yes Yes

7 −4.298 1.686 97.634 −2.734 Yes Yes Yes

8 −4.239 1.21 100 −2.735 Yes Yes Yes

9 3.835 1.065 98.839 −2.735 Yes No Yes

10 −3.835 1.065 98.839 −2.735 Yes No Yes

11 −3.835 1.065 98.839 −2.735 Yes No Yes

12 −3.835 1.065 98.839 −2.735 Yes No Yes

13 −3.28 −0.041 89.992 −2.735 Yes No No

14 −3.28 −0.041 89.992 −2.735 Yes No No

15 −4.464 0.763 98.935 −2.735 Yes No Yes

16 −4.464 0.763 98.935 −2.735 Yes No Yes

17 −4.88 0.969 98.516 −2.845 No Yes Yes

18 −4.674 0.918 100 −2.817 Yes Yes Yes

19 −3.885 0.894 100 −2.735 Yes Yes Yes

20 −4.171 1.284 100 −2.754 No Yes Yes

21 −3.542 0.69 82.287 −2.735 Yes No Yes

22 −3.805 0.032 70.71 −2.735 Yes No Yes

23 −3.441 0.136 88.414 −2.735 Yes No Yes

24 −3.401 0.707 85.855 −2.735 Yes No Yes

25 −3.386 0.707 86.613 −2.735 Yes No Yes

26 −4.034 −0.01 75.41 −2.735 Yes No Yes

(Continued)
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predictive model, high Caco-2 permeability would give predicted values greater than 0.90. Thus, GA and GNA are 
predicted to have high Caco-2 permeability. The intestinal absorption rates of these compounds ranged from 65% to 
100%, well above the low intestinal absorption threshold of 30%, and they are considered to be well absorbed. These 
compounds also have certain skin permeability (they are not easily absorbed through the skin if the value is greater than 
−2.5).176 Notably, most of these compounds are substrates or inhibitors of p-glycoprotein (P-gp), suggesting that they 
may be excreted from cells by P-gp, which would lead to drug resistance.177 As P-gp inhibitors, these compounds may 

Table 5 (Continued). 

No. Absorption

Water 
Solubility 
(Log mol/L)

Caco2 
Permeability 
(Log Papp in 
10−6 cm/s)

Intestinal 
Absorption 
(Human) (% 
Absorbed)

Skin 
Permeability 
(Log Kp)

P-Glycoprotein 
Substrate  
(Yes/No)

P-GlycoproteinI 
Inhibitor  
(Yes/No)

P-GlycoproteinII 
Inhibitor  
(Yes/No)

27 −3.88 1.338 89.438 −2.735 Yes No Yes

28 −3.914 1.41 88.719 −2.735 Yes No Yes

29 −3.796 0.742 100 −2.735 Yes No Yes

30 −4.432 1.218 100 −2.736 Yes Yes Yes

31 −4.5 1.348 100 −2.752 Yes Yes Yes

32 −3.894 0.829 71.535 −2.735 Yes No Yes

33 −4.481 1.339 100 −2.721 Yes Yes Yes

34 −4.388 1.154 100 −2.731 Yes Yes Yes

35 −4.388 1.154 100 −2.731 Yes Yes Yes

36 −3.852 0.949 74.491 −2.735 Yes No Yes

37 −3.852 0.949 74.491 −2.735 Yes No Yes

38 −3.81 1.118 98.002 −2.73 Yes Yes Yes

39 −4.39 1.582 96.309 −2.733 Yes Yes Yes

40 −3.493 −0.132 65.765 −2.735 Yes No Yes

41 −3.256 −0.066 76.201 −2.735 Yes No Yes

42 −3.541 −0.143 67.485 −2.735 Yes No No

43 −3.708 1.274 76.851 −2.735 Yes No No

44 −4.792 1.54 100 −2.762 No Yes Yes

45 −3.34 −0.051 69.628 −2.735 Yes No No

46 −3.991 1.211 98.907 −2.821 Yes Yes Yes

47 −3.337 0.725 88.143 −2.735 Yes No Yes

48 −3.542 0.689 83.044 −2.735 Yes No Yes

49 −3.176 0.599 94.653 −2.735 Yes No Yes

50 −4.685 1.489 100 −2.817 Yes Yes Yes

51 −3.764 1.581 96.212 −2.732 Yes Yes Yes

https://doi.org/10.2147/DDDT.S426685                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2023:17 3644

He et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


have significant pharmacokinetic implications for P-gp substrates, and may either be exploited for specific therapeutic 
advantages or result in contraindication.

Distribution
In terms of distribution (Table 6), the steady-state volume of distribution (VDss) values of these xanthones are between 
−0.478 and 0.755, with those of GA and GNA being −0.154 and −0.478, respectively. The higher the VDss is, the more 

Table 6 Predicted Distribution Properties for the Caged Polyprenylated Xanthones in Garcinia 
hanburyi Provided by pkCSM

No. Distribution

VDss (Human)  
(Log L/kg)

Fraction Unbound  
(Human) (Fu)

BBB Permeability  
(Log BB)

CNS Permeability  
(Log PS)

1 0.336 0.047 −0.272 −2.296

2 0.272 0.054 −0.506 −2.539

3 0.012 0.103 −0.693 −2.678

4 0.012 0.103 −0.693 −2.678

5 0.282 0.064 −0.464 −2.609

6 0.72 0.016 −0.396 −2.542

7 0.189 0 0.144 −1.979

8 0.11 0 −0.073 −2.235

9 −0.154 0 −0.195 −2.391

10 −0.154 0 −0.195 −2.391

11 −0.154 0 −0.195 −2.391

12 −0.154 0 −0.195 −2.391

13 −0.243 0.04 −1.527 −2.751

14 −0.243 0.04 −1.527 −2.751

15 −0.236 0 −1.033 −2.736

16 −0.236 0 −1.033 −2.736

17 0.466 0 −0.573 −2.553

18 0.349 0 −0.738 −2.789

19 0.325 0.033 −0.258 −2.353

20 0.645 0.044 −0.363 −2.521

21 0.309 0.08 −0.428 −2.492

22 0.384 0.135 −1.372 −2.735

23 0.251 0.029 −1.522 −2.358

24 0.092 0.065 −0.291 −2.193

25 0.128 0.067 −0.298 −2.181

(Continued)
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a drug is distributed in tissue rather than plasma.178 This means that the compound would be cleared quickly with a short 
retention time in vivo if the VDss value is less than −0.15. It can be seen from the unbound fraction179,180 that most of 
these compounds bind to serum proteins. The VDss values and unbound fraction jointly predict that these caged 
polyprenylated xanthones have a short residence time, are eliminated quickly, and do not accumulate easily in vivo. 
The predicted values of blood‒brain barrier (BBB) permeability (logBB) for these compounds are less than 0.3, which 
means that none of these compounds can easily cross the BBB. Notably, the logBB values for GNA and GA are less than 

Table 6 (Continued). 

No. Distribution

VDss (Human)  
(Log L/kg)

Fraction Unbound  
(Human) (Fu)

BBB Permeability  
(Log BB)

CNS Permeability  
(Log PS)

26 −0.136 0.09 −1.354 −2.646

27 −0.084 0.07 −0.18 −2.312

28 −0.015 0.071 −0.195 −2.363

29 −0.009 0 −0.436 −2.567

30 0 0 0.236 −2.318

31 −0.219 0.034 0.198 −2.406

32 −0.169 0.051 −1.272 −2.7

33 −0.318 0 0.236 −2.191

34 −0.325 0 0.027 −2.433

35 −0.325 0 0.027 −2.433

36 −0.478 0.027 −1.35 −2.573

37 −0.478 0.027 −1.35 −2.573

38 0.255 0.006 −0.088 −2.298

39 0.071 0 0.052 −1.995

40 0.023 0.071 −1.529 −2.618

41 −0.085 0.088 −1.583 −2.244

42 0.348 0.068 −1.411 −2.856

43 0.321 0.143 −0.863 −2.859

44 0.272 0.054 −0.506 −2.539

45 0.755 0.149 −1.627 −3.056

46 0.193 0.088 0.172 −2.604

47 0.103 0.068 −0.309 −2.145

48 0.351 0.078 −0.435 −2.48

49 0.106 0.082 −0.196 −2.169

50 0.282 0.064 −0.464 −2.609

51 0.083 0.02 0.096 −1.811
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−1, which means that they are poorly distributed to the brain. The predicted extent of BBB permeability and central 
nervous system (CNS) permeability suggest that these compounds do not easily penetrate the BBB or enter the CNS, and 
therefore, they do not produce side effects on the brain.

Metabolism
In terms of metabolism (Table 7), cytochrome P450s (CYP450s) are an important class of enzymes involved in the 
metabolism of exogenous substances and mainly found in the liver. The two main isoforms responsible for drug 
metabolism are 2D6 and 3A4. Many drugs are deactivated by CYP450s; however, some are activated by these enzymes, 

Table 7 Predicted Metabolism Properties for the Caged Polyprenylated Xanthones in Garcinia hanburyi 
Provided by pkCSM

No. Metabolism

CYP2D6 
Substrate  
(Yes/No)

CYP3A4 
Substrate  
(Yes/No)

CYP1A2 
Inhibitor  
(Yes/No)

CYP2C19 
Inhibitor  
(Yes/No)

CYP2C9 
Inhibitor  
(Yes/No)

CYP2D6 
Inhibitor  
(Yes/No)

CYP3A4 
Inhibitor  
(Yes/No)

1 No Yes No No No No Yes

2 No Yes No No No No Yes

3 No Yes No No No No No

4 No Yes No No No No No

5 No Yes No No No No Yes

6 No Yes No No No No Yes

7 No Yes No No No No Yes

8 No Yes No No No No Yes

9 No Yes No No No No No

10 No Yes No No No No No

11 No Yes No No No No No

12 No Yes No No No No No

13 No Yes No No No No No

14 No Yes No No No No No

15 No Yes No No No No No

16 No Yes No No No No No

17 No Yes No No No No Yes

18 No Yes No No No No Yes

19 No Yes No No No No Yes

20 No Yes No No No No Yes

21 No Yes No No No No No

22 No Yes No No No No No

23 No Yes No No No No No

(Continued)
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which may lead to excessive drug accumulation if the compound is a CYP450 inhibitor.181 The prediction results 
indicated that these caged polyprenylated xanthones are substrates of CYP3A4 with the exception of forbesione 
(Compound 46), and some of them, including GNA, are also inhibitors of CYP3A4. This implies that when these 

Table 7 (Continued). 

No. Metabolism

CYP2D6 
Substrate  
(Yes/No)

CYP3A4 
Substrate  
(Yes/No)

CYP1A2 
Inhibitor  
(Yes/No)

CYP2C19 
Inhibitor  
(Yes/No)

CYP2C9 
Inhibitor  
(Yes/No)

CYP2D6 
Inhibitor  
(Yes/No)

CYP3A4 
Inhibitor  
(Yes/No)

24 No Yes No No No No No

25 No Yes No No No No No

26 No Yes No No No No No

27 No Yes No No No No No

28 No Yes No No No No No

29 No Yes No No No No No

30 No Yes No No No No Yes

31 No Yes No No No No Yes

32 No Yes No No No No Yes

33 No Yes No No No No No

34 No Yes No No No No Yes

35 No Yes No No No No Yes

36 No Yes No No No No Yes

37 No Yes No No No No Yes

38 No Yes No No No No Yes

39 No Yes No No No No Yes

40 No Yes No No No No No

41 No Yes No No No No No

42 No Yes No No No No No

43 No Yes No No No No No

44 No Yes No No No No Yes

45 No Yes No No No No No

46 No No No No No No Yes

47 No Yes No No No No No

48 No Yes No No No No No

49 No Yes No No No No No

50 No Yes No No No No Yes

51 No Yes No No No No Yes
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xanthones are co-administered with drugs that are CYP3A4 substrates, they will interfere with metabolism and may 
induce drug accumulation in vivo, leading to toxicity.

Excretion
The excretion section (Table 8) describes the total clearance of the caged polyprenylated xanthones and whether they are 
organic cation transporter 2 (OCT2) substrates. Total clearance is related to bioavailability, which is important when 
determining dosing rates so that steady-state concentrations can be achieved. OCT2 is a renal uptake transporter that 
plays important roles in the disposition and renal clearance of drugs and endogenous compounds.182,183 From the 
predicted excretion data, these caged polyprenylated xanthones are not substrates of OCT2 and thus have a low risk 
of nephrotoxicity.

Toxicity
In terms of toxicity (Table 9), these caged polyprenylated xanthones are not hERG inhibitors and therefore have no 
cardiotoxicity, were predicted to be negative in the AMES test and skin sensitivity test, and thus have no mutagenicity 

Table 8 Predicted Excretion Properties for the Caged Polyprenylated Xanthones in 
Garcinia hanburyi Provided by pkCSM

No. Excretion

Total Clearance (log mL/min/kg) Renal OCT2 Substrate (Yes/No)

1 −0.344 No

2 −0.281 No

3 −0.38 No

4 −0.38 No

5 −0.282 No

6 −0.213 No

7 −0.373 No

8 −0.315 No

9 −0.41 No

10 −0.41 No

11 −0.41 No

12 −0.41 No

13 −0.347 No

14 −0.347 No

15 −0.386 No

16 −0.386 No

17 −0.209 No

18 −0.258 No

19 −0.27 No

20 −0.294 No

(Continued)
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Table 8 (Continued). 

No. Excretion

Total Clearance (log mL/min/kg) Renal OCT2 Substrate (Yes/No)

21 −0.369 No

22 −0.445 No

23 −0.479 No

24 −0.394 No

25 −0.365 No

26 −0.494 No

27 −0.661 No

28 −0.589 No

29 −0.573 No

30 0.029 No

31 −0.004 No

32 −0.007 No

33 −0.149 No

34 −0.086 No

35 −0.086 No

36 −0.185 No

37 −0.185 No

38 −0.008 No

39 −0.063 No

40 −0.254 No

41 −0.004 No

42 −0.435 No

43 −0.461 No

44 −0.281 No

45 −0.398 No

46 0.121 No

47 −0.355 No

48 −0.34 No

49 −0.765 No

50 −0.282 No

51 −0.356 No
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Table 9 Predicted Toxicity for the Caged Polyprenylated Xanthones in Garcinia hanburyi Provided by pkCSM

No. Toxicity

AMES 
Toxicity 
(Yes/No)

Max. Tolerated 
Dose (Human) 
(Log mg/kg/day)

hERGI 
Inhibitor 
(Yes/No)

hERGII 
Inhibitor 
(Yes/No)

Oral Rat Acute 
Toxicity (LD50) 
(mol/kg)

Oral Rat Chronic 
Toxicity (LOAEL) 
(log mg/kg bw/day)

Hepatotoxicity 
(Yes/No)

Skin 
Sensitisation 
(Yes/No)

T.pyriformis 
Toxicity 
(Log μg/L)

Minnow 
Toxicity 
(Log mM)

1 No −0.059 No No 2.746 2.058 No No 0.286 −0.723

2 No −0.166 No No 2.366 2.362 No No 0.285 −0.205

3 No 0.275 No No 3.465 1.865 No No 0.285 0.215

4 No 0.275 No No 3.465 1.865 No No 0.285 0.215

5 No −0.302 No No 2.826 1.658 No No 0.285 0.063

6 No −0.284 No No 3.432 1.991 No No 0.285 −2.24

7 No 0.259 No No 2.921 1.84 No No 0.285 −2.08

8 No 0.141 No No 2.613 1.737 No No 0.285 −1.679

9 No 0.001 No No 3.598 1.662 No No 0.285 −0.794

10 No 0.001 No No 3.598 1.662 No No 0.285 −0.794

11 No 0.001 No No 3.598 1.662 No No 0.285 −0.794

12 No 0.001 No No 3.598 1.662 No No 0.285 −0.794

13 No −0.364 No No 3.187 1.845 No No 0.285 0.603

14 No −0.364 No No 3.187 1.845 No No 0.285 0.603

15 No −0.049 No No 3.488 1.794 No No 0.285 −2.747

16 No −0.049 No No 3.488 1.794 No No 0.285 −2.747

17 No −0.273 No No 3.009 1.951 No No 0.286 −1.146

18 No −0.524 No No 3.591 1.573 No No 0.285 0.789

19 No −0.224 No No 2.764 1.688 No No 0.285 −0.276

20 No −0.261 No No 3.455 2.054 No No 0.285 −2.021

21 No 0.031 No No 3.526 1.831 No No 0.285 0.242
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Table 9 (Continued). 

No. Toxicity

AMES 
Toxicity 
(Yes/No)

Max. Tolerated 
Dose (Human) 
(Log mg/kg/day)

hERGI 
Inhibitor 
(Yes/No)

hERGII 
Inhibitor 
(Yes/No)

Oral Rat Acute 
Toxicity (LD50) 
(mol/kg)

Oral Rat Chronic 
Toxicity (LOAEL) 
(log mg/kg bw/day)

Hepatotoxicity 
(Yes/No)

Skin 
Sensitisation 
(Yes/No)

T.pyriformis 
Toxicity 
(Log μg/L)

Minnow 
Toxicity 
(Log mM)

22 No 0.153 No No 3.596 1.922 No No 0.285 0.502

23 No 0.066 No No 3.474 1.688 No No 0.285 −0.53

24 No 0.107 No No 3.269 1.79 No No 0.285 −1.501

25 No 0.104 No No 3.268 1.75 No No 0.285 −1.666

26 No 0.079 No No 3.493 1.917 No No 0.285 −0.155

27 No 0.23 No No 3.4 1.796 No No 0.285 −0.742

28 No 0.159 No No 3.43 1.81 No No 0.285 −0.762

29 No −0.158 No No 3.53 1.669 No No 0.285 −1.279

30 No −0.411 No No 3.213 1.35 No No 0.286 −0.82

31 No −0.204 No No 2.64 1.449 No No 0.285 −0.917

32 No −0.092 No No 3.543 1.837 No No 0.285 0.118

33 No −0.032 No No 3.297 1.375 No No 0.285 −1.767

34 No −0.126 No No 2.688 1.615 No No 0.285 −1.249

35 No −0.126 No No 2.688 1.615 No No 0.285 −1.249

36 No 0.013 No No 3.432 1.862 No No 0.285 −0.829

37 No 0.013 No No 3.432 1.862 No No 0.285 −0.829

38 No 0 No No 4.23 1.829 No No 0.285 −4.795

39 No 0.194 No No 2.725 1.767 No No 0.285 −2.493

40 No 0.142 No No 3.181 1.975 No No 0.285 −0.373

41 No 0.225 No No 3.167 1.675 No No 0.285 −1.886

42 No −0.028 No No 3.366 2.018 No No 0.285 0.614
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43 No 0.169 No No 2.802 1.956 No No 0.285 0.929

44 No −0.166 No No 2.366 2.362 No No 0.285 −0.205

45 No 0.096 No No 3.516 2.018 No No 0.285 4.02

46 No −0.518 No No 2.559 1.494 No No 0.286 0.068

47 No 0.123 No No 3.178 1.795 No No 0.285 −2.153

48 No 0.021 No No 3.534 1.79 No No 0.285 0.076

49 No 0.178 No No 3.201 1.684 No No 0.285 −0.83

50 No −0.302 No No 2.826 1.658 No No 0.285 0.063

51 No 0.156 No No 3.265 1.718 No No 0.285 −2.635
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and do not irritate the skin; however, these compounds have certain Tetrahymena pyriformis and minnow toxicity. 
T. pyriformis is a protozoan bacterium with nutritional requirements, subcellular organelles and biochemical pathways 
similar to those of mammalian cells.184 This organism is commonly used to predict drug toxicity, and a predicted value 
greater than −0.5 is considered toxic. The value of minnow toxicity represents the concentration of a molecule that is 
necessary to cause the death of 50% of flathead minnows. This predicted value was below −0.3 for all of the caged 
polyprenylated xanthones, indicating that they may have aquatic toxicity.

Conclusion
In recent years, a lot of researches have been conducted on the pharmacological effects and formulation of caged 
polyprenylated xanthones in Garcinia hanburyi, with plenty of results achieved. However, the pharmacological study of 
the caged polyprenylated xanthones is still not deep enough, and there is no systematic research conducted on the quality 
standards and in vivo processes of active ingredients in Garcinia hanburyi. Based on the progress in research of the 
chemical constituents, pharmacological effects and modification methods of the caged polyprenylated xanthones, this 
paper presents a preliminary predictive analysis of their drug-like properties based on the ADME/T properties. These 
compounds have disadvantageous physical and chemical properties, including a large molecular weight, poor water 
solubility and low bioavailability in vivo, which is an obstacle to developing new drugs through the use of active 
ingredients contained in natural products. For the caged xanthones in Garcinia hanburyi, the author believes that 
subsequent studies could be carried out by considering the following points. (1) The new dosage forms and routes of 
administration. Currently, these compounds are mainly considered for injectable formulations. For example, based on the 
predicted results, these compounds have a certain degree of skin permeability, and it might be worth considering the 
possibility of dermal delivery. (2) The focus on researches for other indications. In addition to their use in cancer 
treatment, the caged xanthones can be studied and developed for other indications. Notably, gamboge has been used in 
traditional medicine as a potent purgative and to treat infected wounds. (3) The chemical modifications based on 
streamlined structure. Previous studies have shown that the 9,10-double bond in a,b-unsaturated ketones is essential 
for the antitumor activity and the acidic carboxyl group of GA without much effect on apoptosis-inducing activity. In 
terms of drug-likeness, the large molecular weights of these caged xanthones cause certain difficulties in both formula-
tion studies and industrialization, and attempts can be made to simplify their structures while retaining the pharmaco-
phores in the research and development of these ingredients. (4) The systematic studies on other caged xanthones. In 
addition to GA and GNA, we can also fully compare and explore the properties of other caged xanthones in Garcinia 
hanburyi, such as forbesione, which has been found to have a therapeutic effect on cholangiocarcinoma.185–187
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