J Mol Model (2015) 21: 144
DOI 10.1007/500894-015-2692-3

SOFTWARE REPORT

EMPIRE: a highly parallel semiempirical molecular orbital
program: 2: periodic boundary conditions

Johannes T. Margraf' - Matthias Hennemann ' - Bernd Meyer' - Timothy Clark"

Received: 11 April 2015 / Accepted: 27 April 2015 /Published online: 17 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Introduction

The increasing role of quantum chemical calculations in drug
and materials design has led to a demand for methods that can
describe the electronic structures of large and complex sys-
tems. Semiempirical methods based on the neglect of diatomic
differential overlap (NDDO) approximation (e.g., the MNDO
[1, 2], MNDO/ [3], AM1 [4], AM1* [5], and PMx [6-8]
methods) are important representatives of such approaches.
Many of these methods have been implemented in the mas-
sively parallel program EMPIRE [9], which makes the full
quantum-mechanical treatment of systems containing
100,000 atoms or more possible.

Periodic boundary conditions (PBC) enable quantum
chemical programs to treat condensed-phase systems, such
as proteins in a periodic water box or solids. This allows
molecular materials to be studied in their “native” environ-
ment, instead of comparing experimental bulk properties with
gas-phase monomer calculations. For semiempirical methods,
the most practical way of implementing PBC is the cyclic-
cluster approach [10—12] in which the system is approximated
by a supercell and by imposing Born—von Karman boundary
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conditions [13]. Using a large unit cell allows the calculation
to be performed entirely in real space. This is easily affordable
because of the generally low computational cost of NDDO
calculations. The main advantage of this technique is that
program features like the calculation of local properties [14]
or excited states are directly transferable from nonperiodic
calculations [15]. We have, for example, used periodic
EMPIRE calculations to model amorphous carbon [16].
EMPIRE, which was especially designed for calculations
on systems with very many atoms, is also suitable for use on
systems with very large unit cells (e.g., disordered and amor-
phous systems). EMPIRE can, for example, be used in com-
bination with a classical molecular dynamics (MD) code to
perform electronic structure calculations on snapshots from an
MD run on a periodic system. In the first section of this paper,
we discuss the implementation of periodic boundary condi-
tions in EMPIRE. In the second, the program performance is
discussed briefly. Finally, some exemplary applications of
large-scale periodic NDDO calculations are shown.

Implementation

Periodic calculations in EMPIRE are performed entirely in
real space. Therefore, no major changes to the NDDO SCF
algorithm were required. Only small adjustments are neces-
sary in the treatment of two-electron two-center integrals: the
exchange energy and electrostatic interactions. These adjust-
ments will be discussed below. For more background infor-
mation, we refer the reader to [10, 12].

Two-electron two-center integrals

The values of the two-electron two-center integrals v,z used
in NDDO calculations (and the associated potential) quickly
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decrease with the distance between the centers but remain
nonzero. Since these small values add up to unphysical, infi-
nite potentials in a periodic system, they must be corrected
[12]. This is achieved by introducing a Gaussian damping
function that sets in at a cutoff value c. (the default is 10.0
bohrs). The functional form for these integrals is (in atomic
units)

1

Yap = r > Cet, (1)
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where G4 and Gp are parameterized constants for elements 4
and B, respectively, and r is the distance between the two
centers.

Exchange interaction energy

The next adjustment is required with respect to the two-
electron two-center exchange integrals /,,,, which appear in
the Fock matrix. These terms depend on the density matrix
elements P,,. In a periodic calculation, the exchange interac-
tions for an orbital centered on a given atom are only evalu-
ated within the Wigner—Seitz cell surrounding it. The net re-
sult is the neglect of very weak exchange interactions with
distant electrons, which causes no loss in accuracy [10].

Electrostatic interactions

MNDO-like NDDO methods describe electrostatic electron—
electron and electron—core interactions using multipole—mul-
tipole interactions. In a periodic system, small interactions
with an infinite number of distant charges lead to unphysical
results. This can be alleviated by introducing a simple, one-
parameter screening function.

Simply put, distant charges are relocated to an effective
distance 7., which is a function of the actual distance . The
space around a charge is divided into three regions, delimited
by a parameter «: at close distances (r<c), the actual and
effective distances are equal (r.r =7). At large distances
(r>2a), all charges are moved to a constant radius of 1.5q.
In this manner, their effects cancel each other out due to sym-
metry [12]. In the intermediate region, the distance is scaled so
as to satisfy the conditions

regr(c) = r (2)
and
reir(2a) = 1.5, (3)

This scaling function [12] is defined as

’,.2

«
= 2. 4
e = 5+ 25—~ (4)
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MNDO-like methods treat charges as distributed mul-
tipoles, i.e., point charges at a defined distance to a
center. To keep this screening scheme completely con-
sistent, the positions of all individual point charges that
make up distant multipoles would need to be scaled.
This is undesirable because it would require calculating
the distance between all atoms and all distributed mul-
tipole point charges. To avoid this, we introduce a sec-
ond scaling function for the distance between the point
charges of a multipole and the atom on which they are
centered. At distances r<c, the multipoles are unaffect-
ed. At large distances r>2«, all multipoles are reduced
to point charges. In the intermediate region a<r <2a,
the multipoles are scaled by a factor A(r), with the
boundary conditions

AMa) =1 (5)
and
AM2a) = 0. (6)
a
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Fig. 1 Top: positions of distributed multipole point charges in the exact,
scaled, and unscaled scenarios. Bottom: absolute error in the Coulomb
energy for the scaled and unscaled cases
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Fig. 2 Energy convergence with respect to the unit cell volume for
diamond, ZnO, NaCl, and adamantane

The corresponding function is the derivative of (4):
Ar) =2——. (7)

The effect of scaling the multipole size can be evalu-
ated by considering three different scenarios for an inter-
action between a point-charge and a dipole. The rigorous
but unpractical solution is to scale the positions of the
constituent point charges of the dipole individually,
whereas the simplest approach would be to scale only
the center of the dipole. Finally, we can scale the center
of the dipole according to (4) and the distances of the
distributed point charges to their center by (7).

Figure 1 shows the positions of the distributed monopoles
for all three cases («=15.0 A). Clearly, the scaling function
is a practical way to describe the exact scaling of the multipole
distance. This can also be shown by considering the Coulomb
energy for the interaction between point charge and dipole.
The dependence of the absolute error (i.e., the difference be-
tween the unscaled/scaled and exact cases) for this energy on
the distance is also shown in Fig. 1. Below the cutoff value, all
models are by definition equivalent. At the cutoff value, the
scaled and unscaled errors are identical. At increasing dis-
tances, however, the error decreases for the scaled case and
increases for the unscaled case.

Performance
Setting up periodic calculations

Periodic EMPIRE calculations require little more input than
nonperiodic ones. Apart from the Cartesian coordinates of all
atoms, a unit-cell vector is required for each periodic direction.
Calculations can be periodic in one, two, or three dimensions.
Since no k-space sampling is performed, the unit cell should
be sufficiently large. The MOPAC manual suggests that 7-8 A
per repeat unit vector should be sufficient for most com-
pounds, and larger unit cells should be used for highly conju-
gated 7t systems and small band-gap materials [17]. It is good
practice to check the convergence of the calculated results
with the size of the unit cell. Figure 2 shows the convergence
of the calculated heat of formation with the unit-cell volume
for diamond, ZnO, NaCl, and the adamantane molecular crys-
tal. The convergence of the unit-cell size may differ for other
properties, as Bredow et al. showed for excitation energies,
where significantly larger cells were required than for the
ground-state energy [15].

The electrostatic screening parameter can be modified via
the keyword ScreeningR, which sets the value of 2 in A. The
default is 30.0 A. This conservative cutoff corresponds to the
MOPAC default. Lower cutoffs result in lower computational
cost, but whether the heat of formation is affected by the
change should be checked. The energy convergences and
computational costs of different values of o are shown for
diamond and ZnO in the “Electronic supplementary material”
(ESM, Figs. S1 and S2).

Single-node open MP scaling

Table 1 shows timings for AM1-SCF calculations of differ-
ently sized diamond and ZnO unit cells performed with the
single-node OMP version of EMPIRE. The corresponding
speedup for different numbers of cores is plotted in Fig. 3.
The scaling is quite efficient; the speedup factor is >7 using
eight cores for all systems investigated. The largest system
considered here is the Cs;, unit cell, for which an SCF

Table 1 Wall-clock times for

AMI1-SCF calculations Unit cell Number Wall-clock time (s) for N cores
performed with the single-node of orbitals
OMP version of EMPIRE. These N=1 N=2 N=3 N=4 N=5 =6 =7 N=8
calculations were performed on a
node consistingﬂoftwo quad-core Ceq 256 26.9 13.7 94 7.0 5.8 4.9 43 3.6
2.83-GHz lnt.el‘ Xenon" E5440 Caie 864 1114 56.7 387 30.1 24.6 20.0 17.2 15.2
processors with 8 GB of memory. ¢ ) 2048 4283 2177 1457 1096 9Ll 764 668 586
No hyperthreading was used
(ZnO)os 768 69.9 35.7 244 18.5 14.9 12.5 11.1 9.7
(ZnO);50 1200 1624 83.2 56.1 445 34.6 29.1 25.8 224
(ZnO),16 1728 224.0 114.2 77.9 594 48.0 41.0 36.5 319
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Fig. 3 Relative speedup factors for OMP parallel calculations of
differently sized diamond and ZnO unit cells, performed on a single
node consisting of two quad-core 2.83-GHz Intel” Xenon” E5440
processors with 8 GB of memory. No hyperthreading was used

calculation takes less than 1 min on eight cores. This shows
that on a modern desktop computer, periodic calculations with
EMPIRE are absolutely affordable (see Table 2 and Fig. 4).

Multi-node hybrid OMP/MPI scaling

The scaling of the hybrid OMP/MPI multi-node version of
EMPIRE was tested on the LiMa cluster at the Regionales
Rechenzentrum Erlangen. Here, we used differently sized di-
amond unit cells from C, 725 to Cy3 g24. Please note that very
large unit cells also require large amounts of memory, espe-
cially because the integrals are stored, since their calculation is
relatively expensive in periodic calculations. Therefore, it is
not possible to use the same reference number of nodes when
determining the scaling for these systems. The speedup is
always relative to the lowest number of nodes feasible for a
given system. Optimizing the SCF procedure for periodic cal-
culations may improve the performance of EMPIRE on fewer
nodes. As it is, the calculations scale very impressively up to
twice the minimum number of nodes. Further increasing the
number of nodes leads to a plateau.

Table 2 Wall-clock times for AM1 SCF calculations performed with
the multi-node hybrid MPI/OMP version of EMPIRE. Each node was
equipped with two six-core Intel” Xeon" 5650 “Westmere” chips; the
nodes were connected by an Infiniband interconnect fabric with 40 Gbit/s
bandwith per link and direction. We used two MPI tasks per node and six
OMP threads for each. No hyperthreading was used

Unit cell Number Wall-clock time (s) for N nodes
of orbitals
N=4 N=8 N=16 N=24 N=32
Ci7a8 6912 177.8 112.2 109.3 - -
Cso00 32000 - 5149.8  2806.1 24485 23277
Ciss4 55296 - - 13813.6 9376.8 77414
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Fig. 4 Relative speedup factors for MPI parallel calculations of
differently sized diamond unit cells, performed on the LiMa cluster.
Each node was equipped with two six-core Intel” Xeon” 5650
“Westmere” chips; the nodes were connected by an Infiniband
interconnect fabric with 40 Gbit/s bandwith per link and direction. We
used two MPI tasks per node and six OMP threads for each. No
hyperthreading was used
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Application

The application of NDDO methods to crystalline materials has
been thoroughly tested and evaluated by Stewart, and will
therefore not be discussed here in any detail [18]. Instead,
we would like to focus on two aspects unique to EMPIRE:
firstly, the calculation of local properties; secondly, the fact
that even unit cells with thousands of atoms can be treated
easily.

Local properties

A local property is any property that can be derived from the
wavefunction of a structure and mapped onto a real-space
grid, such as the electron density and the molecular electro-
static potential (MEP). These can be calculated with most
electronic structure codes. EMPIRE (in combination with an
auxiliary program) gives access to several additional local
properties derived from molecular orbitals and their energies.
These are the local electron affinity (EA}), ionization energy
(IEp), electronegativity, and hardness, which have been used
for biochemical QSPR studies and to predict the electron-
transport properties of nanostructures [19-27].

Figure 5 shows the molecular electrostatic potentials of a
pristine and a defective ZnO(1010) surface. The nonpolar
(1010) surface consists of rows of ZnO dimers that are sepa-
rated by trenches [28]. The most abundant atomic defects on
this surface are ZnO dimer vacancies [29]. The entire geome-
try was re-optimized with the MNDO/d Hamiltonian for both
the pristine and the defective surface. The removal of one ZnO
dimer clearly affects the electrostatic potential around the
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Fig. 5 Left: the MNDO/d molecular electrostatic potential (MEP)
projected onto an electron isodensity (0.01 e~ A7) surface of a
ZnO(1010) slab calculated with two-dimensional periodic boundary

defect, making it necessary to choose a large unit cell to avoid
interactions of the defect with its periodic image. This calcu-
lation required around 1 min per optimization step and con-
verged in 32 steps. The cell contains 766 atoms and 3,064
electrons. Note also that the MEP does not depend on simpli-
fications such as point-charge models. The multipole formal-
ism used in MNDO-like techniques gives a very good repre-
sentation of the MEP calculated at higher levels of theory,
including anisotropic distributions around heavy atoms [30].

A recent application of periodic local property maps lies in
the study of charge transport in organic materials [25-27, 31].
In the condensed phase, the local ionization energy (IE; ) and
electron affinity (EAr) can be interpreted as the local valence-
band maximum and conduction-band minimum, respectively.
They can therefore be used to visualize the anisotropic elec-
tronic properties of a molecular crystal. More recently, the
local properties have been used as external potentials to sim-
ulate charge transport (see [32]; Bauer T et al., A multi-agent
quantum Monte Carlo model for charge transport: applica-
tion to organic field-effect transistors, submitted). Figure 6
shows the local ionization energy (IE;) of a rubrene crystal
projected onto volume slices that cut through the unit cell
along its main axes.

Low IEp values (shown in blue) correspond to electron-
donating/hole-conducting pathways, whereas high IE; values

Fig. 6 AMI local ionization
energy (IEp ) volume slices cutting
through the rubrene unit cell
perpendicular to the x, y, and z
directions. The color code ranges
from 360 (blue) to 600

(red) kcal mol ™'

conditions. The image on the right shows the same slab after a ZnO dimer
was removed from the surface. The surface color code ranges from —50.0
(blue) to 50.0 (red) keal mol ™!

(shown in red) represent energy barriers. In Fig. 6, the IE;
maps look vastly different depending on the orientation of
the volume slice. This is in line with experimental reports,
which show that the field-effect mobilities in rubrene single
crystals depend strongly on the orientation of the contacts [33,
34].

Large unit cells

As an example of a large system, we chose the solvated lipid
bilayer membrane shown in Fig. 7. Specifically, the model
consists of 128 1,2-dilauroyl-sn-glycero-3-phosphocholine
(DLPC) and 3,840 water molecules equilibrated for 400 ns
in a classical molecular dynamics simulation [35]. The unit
cell contains 25,088 atoms and spans 62.502%65.506 x
58.441 A®. An AM1-SCF calculation was performed on 384
cores of the LiMa cluster (64 MPI tasks on 32 nodes with 2x6
cores each). The SCF converged in 31 cycles and took a little
over 3 h 7 min.

Note that periodic calculations of this size push double-
precision (64-bit) arithmetic to its limit, since many small
values are summed to a very large result during the energy
summation. To avoid numerical inaccuracies for large sys-
tems, this step is performed in quadruple precision (128-bit),
and special care is taken in the ordering of the summands.
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Fig. 7 Lefi: model lipid bilayer
membrane based on DLPC units
and 3840 water molecules (taken
from [34]). Right: MEP volume
slice, color coded from —50 (blue)
to 50 (red) kecal mol !

The resulting HDFS binary wavefunction file has a size of
21 GB and can be used to calculate local property maps. The
molecular electrostatic potential across the membrane is
shown in Fig. 7 (right). This clearly visualizes the polar water
layer and head groups and the nonpolar lipid bilayer. Such
calculations could, for instance, be used to predict the perme-
ability of membranes to different chemicals.

Every EMPIRE calculation also includes a Coulson popu-
lation analysis. Figure 8 shows a plot of the Coulson charges
of all oxygen atoms as a function of their vertical position. In
this plot, five charge groups are discernable, corresponding to
the four chemically distinct oxygen atoms in DLPC and the
oxygen atom in water. This presents an interesting perspective
in the development of force fields for condensed-phase appli-
cations, since the charges can be derived directly for the solid
or liquid of interest.

Conclusions

We have implemented periodic boundary conditions in the
massively parallel semiempirical molecular orbital theory
code EMPIRE. The standard SCF procedure of EMPIRE

60 =
50 - ;
40 # # '
'
N 30
-O .
s 414
10 1 e - °
O- T T 1
1.5 -1.0 -0.5 0.0

Coulson Charge/e’

Fig. 8 Distribution of Coulson charges and vertical coordinates of all
oxygen atoms in the DLPC membrane/water system
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reliably converges the wavefunctions of a broad range of pe-
riodic systems, including covalent, ionic, and molecular crys-
tals and surfaces as well as disordered biological systems such
as a lipid bilayer. Like the nonperiodic version of EMPIRE,
the program is parallelized in the single-node version via open
MP, and in the multi-node version via a hybrid open MP/MPI
approach.

The single-node version was shown to perform well for
calculations on unit cells containing between 64 and 512
atoms, and to scale very efficiently on up to eight cores. The
multi-node version allows systems with tens of thousands of
atoms to be treated; the largest system described here
consisted of 25,088 atoms. The program scaling is similar to
that observed for nonperiodic calculations with EMPIRE [9].

Acknowledgments This work was supported by the Deutsche
Forschungsgemeinschaft as part of SFB 953 “Synthetic Carbon
Allotropes” and EXC 315 “Engineering of Advanced Materials”, and
by the Bavarian Government within the “Solar Technologies go Hybrid”
(SolTech) initiative. JTM was supported by a Beilstein Fellowship.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

1. Dewar MJS, Thiel W (1977) Ground states of molecules, 38. The
MNDO method. Approximations and parameters. ] Am Chem Soc
99:4899. doi:10.1021/ja00457a004

2. Dewar MIJS, Thiel W (1977) Ground states of molecules, 39.
MNDO results for molecules containing hydrogen, carbon, nitro-
gen, and oxygen. J] Am Chem Soc 99:4907. doi:10.1021/
ja00457a005


http://dx.doi.org/10.1021/ja00457a004
http://dx.doi.org/10.1021/ja00457a005
http://dx.doi.org/10.1021/ja00457a005

J Mol Model (2015) 21: 144

Page 7 of 7 144

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Thiel W, Voityuk A (1996) Extension of MNDO to d-orbitals—
parameters and results for the second-row elements and for the zinc
group. J Phys Chem 100:616. doi:10.1021/jp9521480

Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AMI: a
new general purpose quantum mechanical model. ] Am Chem Soc
107:3902. doi:10.1021/ja002992024

Winget P, Horn AC, Selguki C, Martin B, Clark T (2003) AMI1*
parameters for phosphorus, sulfur and chlorine. J Mol Model 9:408.
doi:10.1007/s00894-003-0156-7

Stewart JIP (1989) Optimization of parameters for semi-empirical
methods I: method. J Comput Chem 10:209-220. doi:10.1002/jcc.
540100208

Stewart JJP (2007) Optimization of parameters for semiempirical
methods V: modification of NDDO approximations and application
to 70 elements. J Mol Model 13:1173. doi:10.1007/s00894-007-
0233-4

Stewart JJP (2013) Optimization of parameters for semiempirical
methods VI: more modifications to the NDDO approximations and
re-optimization of parameters. J Mol Model 19:1-32. doi:10.1007/
$00894-012-1667-x

Hennemann M, Clark T (2014) EMPIRE: a highly parallel semi-
empirical molecular orbital program: 1: self-consistent field calcu-
lations. J Mol Model 20:2331. doi:10.1007/s00894-014-2331-4
Perkins PG, Stewart JJP (1980) Cluster model for solids. J] Chem
Soc Faraday Trans 2 76:520. doi: 10.1039/F29807600520
Bredow T, Geudtner G, Jug K (2001) Development of the cyclic
cluster approach for ionic systems. J Comput Chem 22:89—101. doi:
10.1002/1096-987X(20010115)22:1<89::AID-JCC9>3.0.CO;2-7
Stewart JJP (2000) A practical method for modeling solids using
semiempirical methods. J Mol Struct 556:59—67. doi:10.1016/
S0022-2860(00)00651-7

Born M, Kéarméan T (1912) Uber Schwingungen in Raumgittern.
Phys Z 13:297-309

Ehresmann B, Martin B, Horn AHC, Clark T (2003) Local molec-
ular properties and their use in predicting reactivity. ] Mol Model 9:
342-347. doi:10.1007/s00894-003-0153-x

Gadaczek I, Hintze KJ, Bredow T (2012) Periodic calculations of
excited states for solids using a semiempirical approach. Phys
Chem Chem Phys 14:741-750. doi:10.1039/c1¢cp22871d

Margraf JT, Strauss V, Guldi DM, Clark T (2015) The electronic
structure of amorphous carbon nanodots. J Phys Chem B 119:
ASAP. doi:10.1021/jp510620j

Stewart JJP (2015) MOPAC online manual. Stewart Computational
Chemistry, Colorado Springs. http://openmopac.net/manual/
Solids_cluster.html. Accessed 5 April 2015

Stewart JJP (2008) Application of the PM6 method to modeling the
solid state. J Mol Model 14:499-535. doi:10.1007/s00894-008-
0299-7

Ehresmann B, de Groot MJ, Alex A, Clark T (2004) New molecular
descriptors based on local properties at the molecular surface and a
boiling-point model derived from them. J Chem Inf Comput Sci 44:
658-668. doi:10.1021/ci034215¢

Giissregen A, Matter H, Hessler G, Miiller M, Schmidt F, Clark T
(2012) 3D-QSAR based on quantum-chemical molecular fields:

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

towards an improved description of halogen interactions. J Chem
Inf Model 52:2441-2453. doi:10.1021/¢i300253z

Ehresmann B, de Groot MJ, Clark T (2005) Surface-integral QSPR
models: local energy properties. J] Chem Inf Model 45:1053—1060.
doi:10.1021/¢i050025n

Clark T (2010) The local electron affinity for non-minimal basis
sets. J Mol Model 16:1231-1238. doi:10.1007/s00894-009-0607-x
ElKerdawy A, Wick CR, Hennemann M, Clark T (2012) Predicting
the sites and energies of noncovalent intermolecular interactions
using local properties. J Chem Inf Model 52:1061-1071. doi:10.
1021/¢i300095x

Clark T, Halik M, Hennemann M, Jager CM (2013) Simulating
“soft” electronic devices. In: Hicks MG, Kettner C (eds)
Molecular engineering and control. Logos, Berlin, pp 137-150
Etschel S, Waterloo A, Margraf JT, Amin AY, Hampel F, Jager CM,
Clark T, Halik M, Tykwinski RR (2013) An unsymmetrical penta-
cene derivative with ambipolar behavior in organic thin-film tran-
sistors. Chem Commun 49:6725-6727. doi:10.1039/C3CC43270]
Jager CM, Schmaltz T, Novak M, Khassanov A, Vorobiev A,
Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik
M, Clark T (2013) Improving the charge transport in self-assembled
monolayer field-effect transistors—from theory to devices. ] Am
Chem Soc 135:4893-4900. doi:10.1021/ja401320n

Schubert C, Margraf JT, Clark T, Guldi DM (2014) Molecular
wires—impact of 7-conjugation and implementation of molecular
bottlenecks. Chem Soc Rev 44:988-998. doi:10.1039/c4¢cs00262h
Meyer B, Marx D (2003) Density-functional study of the structure
and stability of ZnO surfaces. Phys Rev B 67:035403. doi:10.1103/
PhysRevB.67.035403

Kovacik R, Meyer B, Marx D (2007) F centers versus dimer va-
cancies on ZnO surfaces: characterization by STM and STS calcu-
lations. Angew Chem Int Ed 46:4894—4897. doi:10.1002/anie.
200604399

Hor AHC, Lin J-H, Clark T (2005) Multipole electrostatic model
for MNDO-like techniques with minimal valence spd-basis sets.
Theor Chem Acc 114:159-168; erratum: (2007) 117:461-465
Atienza C, Martin N, Wielepolski M, Haworth N, Clark T, Guldi
DM (2006) Tuning electron transfer through p-phenyleneethylene
molecular wires. Chem Commun 30:3202-3204. doi: 10.1039/
B603149H

Bauer T (2015) Multi-Agenten-Simulation organischer
Feldeffekttransistoren. Ph.D. thesis. Universitidt Erlangen-
Niirnberg, Erlangen

Ling MM, Reese C, Briseno AL, Bao Z (2007) Non-destructive
probing of the anisotropy of field-effect mobility in the rubrene
single crystal. Synth Met 157:257-260. doi:10.1016/j.synthmet.
2007.02.004

Reese C, Bao Z (2007) High-resolution measurement of the anisot-
ropy of charge transport in single crystals. Adv Mater 19:4535—
4538. doi:10.1002/adma.200701139

Jambeck JPM, Lyubartsev AP (2012) Derivation and systematic
validation of a refined all-atom force field for phosphatidylcholine
lipids. J Phys Chem B 116:3164-3179. doi:10.1021/jp212503¢

@ Springer


http://dx.doi.org/10.1021/jp952148o
http://dx.doi.org/10.1021/ja00299a024
http://dx.doi.org/10.1007/s00894-003-0156-7
http://dx.doi.org/10.1002/jcc.540100208
http://dx.doi.org/10.1002/jcc.540100208
http://dx.doi.org/10.1007/s00894-007-0233-4
http://dx.doi.org/10.1007/s00894-007-0233-4
http://dx.doi.org/10.1007/s00894-012-1667-x
http://dx.doi.org/10.1007/s00894-012-1667-x
http://dx.doi.org/10.1007/s00894-014-2331-4
http://dx.doi.org/10.1039/F29807600520
http://dx.doi.org/10.1002/1096-987X(20010115)22:1%3C89::AID-JCC9%3E3.0.CO;2-7
http://dx.doi.org/10.1016/S0022-2860(00)00651-7
http://dx.doi.org/10.1016/S0022-2860(00)00651-7
http://dx.doi.org/10.1007/s00894-003-0153-x
http://dx.doi.org/10.1039/c1cp22871d
http://dx.doi.org/10.1021/jp510620j
http://openmopac.net/manual/Solids_cluster.html
http://openmopac.net/manual/Solids_cluster.html
http://dx.doi.org/10.1007/s00894-008-0299-7
http://dx.doi.org/10.1007/s00894-008-0299-7
http://dx.doi.org/10.1021/ci034215e
http://dx.doi.org/10.1021/ci300253z
http://dx.doi.org/10.1021/ci050025n
http://dx.doi.org/10.1007/s00894-009-0607-x
http://dx.doi.org/10.1021/ci300095x
http://dx.doi.org/10.1021/ci300095x
http://dx.doi.org/10.1039/C3CC43270J
http://dx.doi.org/10.1021/ja401320n
http://dx.doi.org/10.1039/c4cs00262h
http://dx.doi.org/10.1103/PhysRevB.67.035403
http://dx.doi.org/10.1103/PhysRevB.67.035403
http://dx.doi.org/10.1002/anie.200604399
http://dx.doi.org/10.1002/anie.200604399
http://dx.doi.org/10.1039/B603149H
http://dx.doi.org/10.1039/B603149H
http://dx.doi.org/10.1016/j.synthmet.2007.02.004
http://dx.doi.org/10.1016/j.synthmet.2007.02.004
http://dx.doi.org/10.1002/adma.200701139
http://dx.doi.org/10.1021/jp212503e

	EMPIRE: a highly parallel semiempirical molecular orbital �program: 2: periodic boundary conditions
	Introduction
	Implementation
	Two-electron two-center integrals
	Exchange interaction energy
	Electrostatic interactions

	Performance
	Setting up periodic calculations
	Single-node open MP scaling
	Multi-node hybrid OMP/MPI scaling

	Application
	Local properties
	Large unit cells

	Conclusions
	References


