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Simple Summary: Pancreatic cancer (PC) is among the most aggressive types of cancer, having
caused over 495,000 deaths worldwide in 2020, with increasing annual incidence. Pancreatic cystic
lesions (PCLs) are protrusions found within or on the surface of the pancreas, and in many cases
have the potential to become malignant. Current methods of characterising PCLs are imperfect and
there is a profound need for improved diagnostic algorithms. This review highlights the importance
of biological markers in the context of PCLs and PC, with a focus on ‘omics’-related work. Successful
integration of different ‘omics’ data could aid in the identification of a novel integrated biomarker
profile for the risk stratification of patients with PCLs and PC.

Abstract: Pancreatic cancer (PC) is regarded as one of the most lethal malignant diseases in the world,
with GLOBOCAN 2020 estimates indicating that PC was responsible for almost half a million deaths
worldwide in 2020. Pancreatic cystic lesions (PCLs) are fluid-filled structures found within or on the
surface of the pancreas, which can either be pre-malignant or have no malignant potential. While
some PCLs are found in symptomatic patients, nowadays many PCLs are found incidentally in
patients undergoing cross-sectional imaging for other reasons—so called ‘incidentalomas’. Current
methods of characterising PCLs are imperfect and vary hugely between institutions and countries.
As such, there is a profound need for improved diagnostic algorithms. This could facilitate more
accurate risk stratification of those PCLs that have malignant potential and reduce unnecessary
surveillance. As PC continues to have such a poor prognosis, earlier recognition and risk stratifi-
cation of PCLs may lead to better treatment protocols. This review will focus on the importance
of biomarkers in the context of PCLs and PCand outline how current ‘omics’-related work could
contribute to the identification of a novel integrated biomarker profile for the risk stratification of
patients with PCLs and PC.

Keywords: pancreatic cancer; pancreatic cystic lesion; biomarker; risk; omics; multi-omics

1. Introduction

Pancreatic cancer (PC) is the 7th leading cause of cancer-related death globally [1]. The
five-year survival rate for all pancreatic cancer stages combined is just 9%, with incidence
rates continuing to rise every year [2]. Pancreatic cancer can be divided into two main
subtypes: pancreatic adenocarcinoma, which is responsible for 85–90% of all pancreatic
neoplasms and has a five-year survival rate of just 8%, and pancreatic neuroendocrine
tumour (PanNET), which is far less common and represents less than 5% of PC [1,3,4].
As pancreatic adenocarcinoma is by far the most prevalent type of pancreatic cancer, it is
used synonymously with PC and will be the type of PC referred to throughout this review.
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Pancreatic cystic lesions (PCLs) are typically fluid-filled structures that can be found
within or on the surface of the pancreas, though some may have a solid appearance [3].
While many PCLs are benign and show no malignant potential, others, such as intraductal
papillary mucinous neoplasms (IPMNs) or mucinous cystic neoplasms (MCNs), possess
the ability to undergo malignant transformation and can be regarded as precursor lesions
of PC [3–5]. The risk factors known to be associated with PC are extensive. However,
investigations into these factors are largely case–control studies and as such have notable
selection and recall biases [6]. Risk factors for PC can be classified as modifiable and
non-modifiable [6,7]. Modifiable risk factors include lifestyle factors such as smoking and
alcohol consumption, as well as conditions such as obesity [6]. Non-modifiable risk factors
include age, gender, ethnicity, genetic risk factors, diabetes and chronic pancreatitis [7].

For patients who have a family history of PC or are predisposed to malignancy due to
hereditary genetic mutation, PCLs can be identified in up to one-third of such high-risk
individuals [8,9]. Germline mutations in BRCA1 and BRCA2 have been shown to confer
an increased risk in PC as well as breast and ovarian cancers [10]. Von Hippel–Lindau
(VHL) disease, caused by a germline mutation to the VHL tumour-suppressor gene, is
associated with an increased risk of pancreatic neuroendocrine tumours and non-malignant
serous-type PCLs [11].

One of the most significant risk factors for PCLs is age, with patients typically being
diagnosed at 50 years or older and the incidence rate rising exponentially with age there-
after [6–8,12]. PCL size and number have been shown to increase with age [13]. Variations
in PCL prevalence from country to country can be shown to correlate with population
demographics. This geographic variance is further widened by the differences in imaging
resolution and the frequency of routine physical check ups within the population [3,14].
Indeed, a 2017 study showed a positive correlation between socioeconomic development
(measured through Human Development Index and Gross Domestic Product) and pancre-
atic cancer incidence and mortality [15]. This observed increase in PC incidence with rising
socioeconomic development is thought to be result of the Western lifestyle and ageing
population, which are known to be large risk factors of PC [15]. A general improvement in
imaging technologies, and also a growth in the ageing population, has caused the world-
wide prevalence of PCLs to rise drastically over the last two decades [8,12]. The age- and
sex-adjusted prevalence of PCLs in the general population is approximately 2%, but this fig-
ure increases exponentially with age and can range up to 45% in older generations [16–18].
Notably, while many PCLs are found in symptomatic patients, PCLs are frequently found
incidentally in patients undergoing cross-sectional imaging for other reasons—so called ‘in-
cidentalomas’. The incidence rates of such PCLs vary depending on the imaging technique,
but can be as high as 19.6% in patients undergoing magnetic resonance imaging (MRI) [19].
With the rising prevalence of PCLs globally and poor survival rates associated with PC,
there is a great need for improved characterisation of pre-malignant PCLs to allow surgery
in those who need it, while avoiding unnecessary surveillance and intervention in those
who do not.

2. Current Management of PCLs

When a patient with a PCL is identified, the first thing to be ascertained is its malignant
potential. Broadly speaking, PCLs can be divided into either neoplastic or non-neoplastic
cysts, as shown in Figure 1 [12]. Neoplastic cysts can be either mucinous or non-mucinous,
with non-mucinous PCLs rarely undergoing malignant transformation [8,12]. Solid pseu-
dopapillary neoplasms and cystic neuroendocrine neoplasms are notable, rare exceptions,
as both are non-mucinous cystic lesions that do have some malignant potential and may
require surgical resection. However, mucinous PCLs such as IPMNs and MCNs are gen-
erally regarded as precursor lesions for PC [8,12,20,21]. IPMNs are the most common
pre-malignant PCL, being much more common than MCNs. The biological behaviour of
IPMNs are notoriously unpredictable and there are currently a number of clinical guide-
lines that aim to help stratify the risk of IPMNs undergoing malignant transformation [22].
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At present, there are three sets of guidelines in use to guide EUS and surgical referral
of patients presenting with asymptomatic PCLs: the 2017 International Association of
Pancreatology Fukuoka guidelines [23], the 2015 American Gastroenterological Associa-
tion (AGA) guidelines [24], and the 2018 European evidence-based guidelines (EEG) [25].
The fact that there are differing consensus guidelines in use is indicative of the imperfect
state of knowledge regarding PCLs and PC and the urgent need for improved biological
characterisation of these lesions.

IPMNs are classified based on the involvement of the pancreatic ductal system as
either main-duct (MD) IPMN, branch-duct (BD) IPMN or when both main and branch ducts
are involved, combined-type IPMN [3,12]. Approximately 70% of MD-IPMNs undergo
malignant transformation, whereas the rate is much lower in BD-IPMNs, ranging from
6 to 46% [3,26]. Indeed, the incidence rate of PC concomitant with BD-IPMN has been
shown to range between 2% and 11.2% [27]. The World Health Organisation describes three
grades of IPMN: low–intermediate-grade dysplasia; high-grade dysplasia; and IPMNs
with associated invasive carcinoma [12]. Current methodologies and guidelines are limited
in their ability to stratify patients into high- and low-risk of malignant transformation [28].
Identification of patients with high-grade dysplasia or early invasive cancer and the ability
to predict those most likely to undergo malignant transformation is a key aspect of PCL
patient management [24,28].

Figure 1. Molecular subgroups of pancreatic cystic lesions. Intraductal papillary mucinous neoplasms
(IPMNs) and their distinct subclassifications are highlighted. IPMNs are the most common subgroup
and are responsible for 38% of PCLs, while mucinous cystic neoplasms, serous cystic neoplasms and
cystic neuroendocrine neoplasm represent 23%, 16% and 7% of PCLs, respectively [29]. Branch-duct
IPMNs are most common (46%), followed by combined-type IPMNs (40%) and main-duct IPMNs
(14%) [30].

The most frequently used diagnostic tools for PCLs include computed tomography
(CT), magnetic resonance imaging (MRI), and endoscopic ultrasound (EUS) +/- fine-needle
aspiration (FNA), all of which have low sensitivity and specificity (SN/SP) for identifying
high- and low-risk patients [24]. In the case of BD-IPMNs, risk stratification is based on
cyst size and the presence or absence of a mural enhancing nodule. For MD-IPMNs, the
diameter of the main pancreatic duct is accepted as an indicator of malignant risk [21,24,25].
A 2017 retrospective study assessed the ability of these two sets of guidelines to identify
malignant cysts, and found that even when combined, 11.8% of malignant cysts were not
identified [28]. Although this study had some self-identified bias (it included only higher
risk patients), it highlighted the suboptimal performance of current clinical guidelines,
even in expert centres [28]. Surgical resection is associated with significant morbidity and
mortality and should be reserved for those at high risk of malignant transformation or
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established cancer [24]. Moreover, there is a 20% recurrence rate following surgical resection
for IPMN [31], and recent studies have found multiple distinct regions of dysplasia within
the pancreas, sometimes with differing mutational status of the same gene, supporting the
notion of a multi-focal tumorigenic process of IPMN within the pancreas [4,31,32].

EUS-guided FNA is a safe and accurate method of extracting cyst fluid or pancreatic
tissue from a patient for further analysis [26,33]. Cyst fluid cytology has high specificity
for malignancy or high-grade dysplasia, but low sensitivity due to the typically low
cellularity of PCL samples [26,33]. A 12 year multi-institutional study conducted by the
French Surgical Association found that 50% of patient cyst fluid samples collected were
non-diagnostic and acellular [34]. Diagnosis of PCLs by EUS requires attention to cyst
morphology, including size, number of cysts present, characteristics of the wall and internal
structures, calcification, positioning in relation to the main pancreatic duct and presence of
lesions in the background [12]. These descriptors are considerably operator dependent and
PCL characterisation without cyst fluid analysis is limited [3,26].

While the low cellularity of PCL fluid limits cytological yield, biochemical analysis of
PCL fluid has proven an important adjunct in characterising PCLs. Cyst fluid CEA has been
shown to have a sensitivity of between 59 and 67% and specificity of 83–91% for detection
of mucinous cysts, and is among the best of the biomarkers currently available [20,35].
Mutational profiling of patients has shown utility in the characterisation of different PCL
subtypes. However, genetic evaluation of PCL fluid is currently limited to research. KRAS
and GNAS mutations in the cyst fluid are particularly important early mutations in IPMNs
as they are not found in other common types of cysts [32]. The development of novel
biomarkers within the cyst fluid has proven difficult to date due to the heterogeneic
nature of the fluid. CA19-9 is a tetrasaccharide antigen released by pancreatic cancer
cells and is an established marker for PC, but has low SN/SP and is not elevated in pre-
malignant PCLs [36]. However, there is some evidence that CA19-9 is contributive, and
most PCL guidelines advocate for its use in surveillance. Indeed, the importance of such
minimally invasive serological biomarkers for use in tandem with non-invasive imaging to
identify high-risk patients should not be underestimated. Based on all the aforementioned
limitations of current diagnostics, it is clear therefore that there is an urgent need for novel
methods and markers to accurately classify and risk stratify PCLs, and we believe that the
‘omics’ revolution is poised to fill this void of information.

3. Identification of Biomarkers in PCLs and PC Using Omics

The omics field has made huge strides in the past two decades, largely due to tech-
nological advancements, enabling the cost-effective and high-throughput analysis of bi-
ological molecules or ‘biomarkers’ [37]. Some omics disciplines are demonstrating great
potential in the search for a novel biomarker for PC (Table 1), but the data for PCLs are
much more limited.
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Table 1. Overview of biomarkers in PC and PCLs that have been validated in an independent cohort.
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KRAS and/OR GNAS
Genetic mutation

panel Multi

PCR Cyst fluid 91 65% 100% (83–100) N/A MCN vs. non-MCN [38]
(52–76) 98%

84% (86–100) N/A IPMN vs. non-IPMN
(70–92)

95.50%
PCR using NGS Cyst fluid 197 68.50% (N/A) N/A IPMN vs. non-IPMN [39]

(N/A)
100%

NGS Cyst fluid 595 89% (88–100) N/A MCN vs. non-MCN [40]
(79–95) 100%

Sanger sequencing Cyst fluid 159 65% (N/A) N/A MCN vs. non-MCN
(N/A)

lncRNA-TFG Long noncoding
RNA Single Affymetrix human

exon 1.0 ST Tissue 28 N/A N/A 6.23 × 10−8 Positive correlation with
tumorigenesis in IPMNs [41]

CTD-2033D15.2 Long non-coding
RNA Single Affymetrix human

exon 1.0 ST Tissue 28 N/A N/A 1.47 × 10−4 Negative correlation with
tumorigenesis in IPMNs [41]

HAND2-AS1 Long non-coding
RNA Single Affymetrix human

exon 1.0 ST Tissue 28 N/A N/A 2.66 × 10−3 Negative correlation with
tumorigenesis in IPMNs [41]

Glucose Metabolite Multi

Liquid
chromatography Cyst fluid 19 94% 64% 0.004 Glucose ≤ 66 mg/dL in

MCNs vs. non-MCNs [42]

(N/A) (N/A)

Glucometer Glucose ≤ 50 mg/dL in
MCNs vs. non-MCNs

Cyst fluid 153 92% 87% N/A [43]
(N/A) (N/A)

Kynurenine Metabolite Single Liquid
chromatography Cyst fluid 19

90% 100%
0.002 Lower in MCNs vs.

non-MCNs
[42](N/A) (N/A)

AcSperm and
Metabolite panel Single Mass spectrometry Blood

plasma 121
66.70% 95%

N/A PDAC vs. N [44]DAS and (N/A) (N/A)
LPC(18: 0) and LPC(20:
3) and indole derivative
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ADAMTS1 Methylated gene Single Methylation on
beads

Blood
cfDNA

39
87.20% 95.80%

N/A PDAC vs. N [45](N/A) (N/A)

BNC1 Methylated gene Single Methylation on
beads

Blood
cfDNA

39
64.10% 93.70%

N/A PDAC vs. N [45](N/A) (N/A)

SOX17 Methylated gene Single Methylation-specific
ddPCR

Cyst fluid 154
78.40% 85.60%

N/A High-risk PCL vs. low-risk
PCLs

[46](64.7–88.7) (78.4–91.1)

TBX15 and BMP3
Methylated gene

marker panel Single
Whole-genome

methylome
discovery and qPCR

Cyst fluid 134
90% 92%

N/A HGD/PC vs. LGD/N [47]
(70–99) (85–96)

ADAMTS1 and/OR
BNC1

Methylated gene
panel Single Methylation on

beads
Blood

cfDNA
39

97.40% 91.60%
N/A PDAC vs. N [45](N/A) (N/A)

FOXE1 and SLIT2 and Methylated gene
panel Single Methylation-specific

ddPCR
Cyst fluid 154

84.30% 89.40%
N/A High-risk PCL vs. low-risk

PCLs
[46]EYA4 and SFRP1 (N/A) (N/A)

miR-1290 MicroRNA Multi

MicroRNA array
analysis

Blood
serum 60 88% 84% N/A PC vs. N [48]

(N/A) (N/A)
76 83% 69% N/A PC vs. CP

(N/A) (N/A)
95 83% 78% N/A PC vs. CP and N

(N/A) (N/A)

qRT-PCR Blood
plasma

49 N/A N/A 0.027 PDAC vs. N [49]
Blood
serum

qRT-PCR
200 74.20% 91.20% N/A PC vs. C [50]

(N/A) (N/A)

9-miRNA model a MicroRNA panel Single TaqMan miRNA
Array

Tissue and
33 and 50

89% 100%
N/A

HG IPMNs, PanNETs and
SPNs vs. LG IPMNs and

SCAs

[51]
cyst fluid (N/A) (N/A)
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miR-3679-5p and
miR-940

MicroRNA panel Single qPCR Saliva

80 72.50% 70.00% N/A PC vs. N

[52]

(N/A) (N/A)
60 62.50% 80.00% N/A PC vs. BPT

(N/A) (N/A)
100 70.00% 70.00% N/A PC vs. N and BPT

(N/A) (N/A)

CA19-9

Protein-

Multi

Bead-based xMAP
immunoassay

Blood
serum 267 57.20% 90% N/A PDAC vs. N [53]

associated (N/A) (N/A)
ELISA

Blood
plasma

176 77.50% 83.10% N/A CA19-9 > 20.3 U/mL [54]
Retrospective
clinical data

Blood
serum (N/A) (N/A) PDAC vs. C

41 90% 83.33% N/A 2.45 times elevated CA19-9
indicated recurrence of PC [55]

(N/A) (N/A)

CEA Protein Multi

Clinical data Cyst fluid 31 73% 89% N/A CEA > 192 ng/mL for
MCN [42]

(N/A) (N/A)
ELISA Cyst fluid 149 95.50% 81.50% <0.0001 CEA ≤ 10 ng/mL for SCN [56]

(N/A) (N/A)
Enzyme-linked
immunosorbent

assay
Cyst fluid 153 58% 96% N/A CEA > 192 ng/mL for MC [43]

(N/A) (N/A)
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MUC5AC:WGA and
MUC5AC:BGH and
Endorepellin:WGA

Protein

Multi

Antibody-lectin
sandwich

microarray
Cyst fluid 147 92% b 94% b N/A

Elevation in any two
differentiates MCNs vs.

non-MCNs
[57]

panel (N/A) (N/A)

Antibody-lectin
sandwich arrays

Elevation in any two
differentiates MCNs vs.

non-MCNs
Cyst fluid 22 87% 100% N/A [58]

(N/A) (N/A)

Thymosin- β4 Protein Single MALDI imaging and
mass spectrometry Tissue 45

70% 71%
0.011 Overexpressed in IPMN

with HGD
[59](N/A) (N/A)

Ubiquitin Protein Single MALDI imaging and
mass spectrometry Tissue 45

94% 86%
0.04 Overexpressed in IPMN

with HGD
[59](N/A) (N/A)

VEGF-A Protein Single ELISA Cyst fluid 149
100% 83.70%

<0.0001
VEGF-A > 5000 pg/mL

benign SCN [56](N/A) (N/A)

VEGF-A and CEA Protein panel Single ELISA Cyst fluid 149
95.50% 100%

N/A
VEGF-A > 5000 pg/mL

and CEA ≤ 10 ng/mL in
benign SCN

[56]
(N/A) (N/A)

BPT = benign pancreatic tumour, C = non-cancer control, CP = chronic pancreatitis, ELISA = enzyme-linked immunosorbent assay, HG = high grade, HGD = high-grade dysplasia, IPMN = intraductal papillary
mucinous neoplasm, LG = low grade, LGD = low-grade dysplasia, MALDI = matrix-assisted laser desorption ionisation, MC = mucinous cyst, MCN = mucinous cystic neoplasm, N = normal healthy, N/A = not
available, NGS = next-generation sequencing, PanNET = pancreatic neuroendocrine tumour, PC = pancreatic cancer, PCL = pancreatic cystic lesion, PCR = polymerase chain reaction, PDAC = pancreatic ductal
adenocarcinoma, SCN = serous cystic neoplasm, and SPN = solid-pseudopapillary neoplasm. a Model is intellectual property of the authors. b Average of three cohorts.
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3.1. Genomics

Genetic mutations have been shown to be hugely important in the study of many
cancers and pancreatic cancer is no different, with GNAS and KRAS mutations representing
the predominant mutations observed in this cancer [60,61]. KRAS is an oncogene primarily
involved in the production of protein for regulating cell division [60]. Mutations in this
gene are arguably the most important in the context of PC, as they frequently occur
in non-cancerous precursor lesions and are subsequently present in 90–95% of all PC
cases [62–64]. The PANDA study analysed the DNA of 113 patient cyst fluid samples in
a multi-centre, prospective study [65]. Mutations in KRAS were shown to be indicative
of a mucinous cyst, with a specificity of 96% [65]. However, there is some evidence to
suggest that KRAS mutation alone may not be sufficient to drive a malignant phenotype,
and other genetic or epigenetic events may be needed [62]. A 2011 study found that GNAS
mutations were present in 66% of IPMNs, while mutations of either KRAS or GNAS were
present in 96% [61]. The same study found GNAS mutations in seven out of eight cases
of invasive PC that resulted from an IPMN, while it was not present in other types of
pancreatic cysts or carcinoma that was not associated with an IPMN [61,66]. Mutations
in both genes are believed to occur in the early stages of IPMN carcinogenesis [67]. The
reported incidence of GNAS and KRAS mutations alone in IPMNs has varied greatly
between studies, but a 2016 meta-analysis revealed the prevalence of GNAS and KRAS in
these cysts to be 56% and 61%, respectively [68]. Simultaneous mutations in both GNAS
and KRAS have been demonstrated to occur in up to 33% of IPMNs [38,69]. Indeed a KRAS
and/or GNAS biomarker panel has been shown to have a SN/SP of up to 84%/98% for
the identification of IPMNs (Table 1) [38,39]. Unfortunately, these results for GNAS and
KRAS mutations are not mimicked in MCNs, where two separate studies revealed a SN/SP
of 65%/100% for MCNs [38,40], while others have highlighted a distinct lack of GNAS
mutations in all subtypes of MCNs [69]. Importantly, a 2019 study utilised next-generation
sequencing (NGS) of formalin-fixed and paraffin-embedded tissue samples to compare
mutational patterns between pancreatic ductal adenocarcinoma (PDAC) and concurrent
IPMNs, identifying 3 distinct pathways by which IPMNs can progress to PDAC [70]. The
‘sequential’, ‘branch-off’ and ‘de novo’ subtypes could prove to be highly useful in the
clinical characterisation and surveillance of IPMNs. Indeed, further validation of these
findings and deeper exploration of the mechanisms involved is greatly needed.

Whole-genome sequencing of patients with PC, and subsequent RNAseq revealed
the KRAS signalling pathway to be the most heavily impacted. However, further details
elucidating passenger and driver mutations are needed [71]. It also appears that KRAS
and GNAS mutational status vary with IPMN histological grade, adding further to the
difficulties observed in these genetic mutations as potential biomarkers [69]. The feasibility
of KRAS mutational status as a single marker has been evaluated in tissue, cyst fluid,
duodenal fluid and plasma and does not appear to diagnose IPMNs or the level of cellular
dysplasia consistently, being regarded as simply an early indicator of cell stress in pancreatic
cells [67]. The addition of GNAS to pancreatic cyst fluid KRAS testing has been shown
to increase the diagnostic accuracy of IPMN identification from 66 to 80.7%, though this
does not achieve a statistically superior result to KRAS testing alone (p > 0.05), which has
a diagnostic accuracy of 76.6% [39]. While mutational profiling of these genes may show
some promise for IPMN identification, they provide no risk stratification for these cysts,
and show little utility for MCNs compounding their lack of use in the clinical setting.

Importantly, large networks of genetic data have begun to emerge over the last two
decades that contain genomic sequencing of patients with various cancer types. The Cancer
Genome Atlas (TCGA) has executed the molecular profiling and subsequent analysis of
over 11,000 tumours, spanning 32 different cancer types [72,73]. Tumour samples are
characterised using technologies that assess the sequence of the exome, copy number
variation, DNA methylation, mRNA expression and sequence, microRNA expression and
transcript splice variation [73]. While this network has a substantial and diverse amount
of genomic data, the matching clinical data for these patients is far more limited, and is
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considered to be one of the major drawbacks of the database [74,75]. The genomic data
of PC patients are accessible on a number of online platforms, and several independent
studies have also been launched into the utility of these data to distinguish high- and
low-risk patients with PCLs. However, these single markers and panels have not yet
shown sufficient sensitivity or specificity for this purpose [26].

3.2. Transcriptomics

MicroRNAs (miRNAs) are small, non-coding RNA molecules that function as RNA
silencers and regulators of gene expression at the post-transcriptional level [76]. These
molecules have been extensively studied in the context of cancer, and many miRNAs
have been identified as having differential expression levels between high- and low-risk
IPMNs [76]. Indeed, a 9-miRNA model developed by Matthaei et al. has shown SN/SP
of 89%/100% for the distinction of high- and low-risk IPMNs by both tissue and cyst
fluid (Table 1) [51]. Similarly, Lee et al. identified a 4-miRNA panel (miR-21-5p, miR-
485-3p, miR-708-5p, and miR-375) that appears to distinguish IPMNs from PC, with a
SN/SP of 95%/85%, though these results have not been independently validated [77].
Three long non-coding RNAs (lncRNAs) that have shown promise as risk stratification
markers in the tissue of IPMN patients are CTD-2033D15.2, HAND2-AS1 and lncRNA-TFG
(Table 1). A recent study conducted by Ding et al. indicated a negative correlation with
tumorigenesis in IPMNs for CTD-2033D15.2 and HAND2-AS1, while a positive correlation
was observed for lncRNA-TFG [41]. These results suggest a protective role of HAND2-AS1
and CTD-2033D15.2 expression in IPMNs, while lncRNA-TFG appears as a risk factor for
tumorigenesis in IPMNs [41]. MiRNAs have also been identified in the blood serum and
plasma of PC patients and have exhibited potential for the diagnosis of PC. Multiple studies
have shown elevated levels of miR-1290 in patient blood has the ability to distinguish
between PC, healthy patients, and patients with chronic pancreatitis (Table 1) [48–50]. Wei
et al. found that miR-1290 expression was upregulated in PC patients compared to all
controls, and was decreased dramatically post tumour resection (p < 0.001), indicating a
potential role in tumorigenesis [50]. Vila-Navarro et al. used NGS to conduct genome-wide
miRNA profiling and identified 30 independent miRNAs whose expression is significantly
increased in PC and IPMN lesions compared to healthy individuals, and these results were
validated in two independent sample sets [78]. Among these 30 miRNAs, 24 represent
novel biomarkers that have not been reported previously in IPMNs [78]. While such results
indicate great promise for the identification of a panel of miRNAs that could be used
in pancreatic lesion characterisation, as this panel cannot distinguish IPMN from PC its
clinical utility is greatly limited and larger, multi-centre studies will be needed to further
interrogate and validate these results.

One limitation of current patient sampling is that EUS-FNA is an invasive procedure
for patients, with sample yields often being of low volume. Research surrounding less
invasive protocols has investigated the utility of salivary properties for use as non-invasive
biomarkers. Salivary miRNA has been explored as a candidate for diagnostics in PC.
Xie et al. validated the salivary biomarkers miR-3679-5p and miR-940 for the distinction
of PC from healthy individuals, and found that combining both miRNAs produced the
best discriminatory power (Table 1) [52]. Another study identified four miRNAs (miR-21,
miR-23a, miR-23b and miR-29c) in patient saliva and showed them to be significantly
upregulated in the saliva of PC patients when compared to healthy controls, with a sen-
sitivity of 71.4%, 85.7%, 85,7% and 57%, respectively, and specificity at a fixed 100% [79].
However, these same miRNAs were shown to be detected in patients with pancreatitis,
while miR-23a and miR-23b were detected in patients diagnosed with IPMNs [79]. While
these miRNAs show promise in distinguishing PC from healthy controls, as patients with
pancreatitis and precursor lesions have also been shown to express these markers, further
validation is required on a larger, external cohort to fully demonstrate the utility of these
miRNAs at distinguishing various pancreatic pathologies. A 2020 systematic review and
meta-analysis interrogated the potential of various salivary biomarkers in several cancer
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types, including transcriptomic, epigenomic (v. inf.) and microbiomic markers in PC, and
found “good” diagnostic accuracy for such markers in PC with an area under the curve
(AUC) of 0.87 [80]. However, the review also highlighted the high degree of variation in
the sensitivity (31–100%) and specificity (34–100%) observed in different studies of sali-
vary biomarkers in non-oral cancers, and further interrogation of the data revealed that
the probability of a patient having some malignancy is 31% if the salivary test result is
negative [80]. While investigations into the use of salivary properties for diagnostic and
prognostic purposes appears promising, further work is required to identify more robust
biomarkers.

Transcriptomic data, as highlighted above, has profound potential for the identification
of a novel biomarkers. Compilations of transcriptomic data can be found readily available
in online repositories such as the Gene Expression Omnibus and EBI ArrayExpress [81,82].
It is evident from the expansive transcriptomic data available for PC that much research
has been conducted. However, to date, no transcriptomic biomarker among the many
identified has been approved for use in this cancer. While vast quantities of data are
often favourable, it appears that more information and progress may be gained from the
integration of different data types.

3.3. Epigenomics

A histone methyltransferase known as enhancer of zeste homologue 2 (EZH2) is
known to be overexpressed in many cancers, including PC, and has also been detected in
IPMNs with moderate to severe dysplasia [83]. A 2010 study showed that high expression
levels of EZH2 in PC were associated with increased node positivity and a larger tumour
size; EZH2 expression levels were also shown to relate to the degree of dysplasia in
IPMNs [83]. RNA interference silencing of EZH2 sensitised PC patients to treatment with
gemcitabine, resulting in significantly longer overall survival [83]. Such RNA interference
silencing of EZH2 has been utilised in a PC model and caused a decrease in tumour
growth and the incidence of liver metastasis [84]. More recent investigation into EZH2
has highlighted its role in the epigenetic repression of tumour-suppressor gene expression.
Trimethylation of H3K27 by EZH2 allows the mediation of cell proliferation, invasion
and migration [85]. Exposure of F-box and WD repeat domain-containing 7 (FBW7) to
EZH2 causes the degradation of EXH2 in PC cells and inhibits tumour migration and
invasion, indicating its role as a ligase of EZH2 that regulates EZH2 protein levels in PC and
furthermore, its potential as a treatment strategy [85]. Indeed as epigenetic alterations are
reversible and plastic, they can be regarded as more amenable to therapeutic intervention
than non-reversible genetic mutations [86]. Hata et al. identified 6 methylated DNA
markers in patient cyst fluid that could distinguish high- and low-risk PCLs with accuracies
from 79.8 to 83.6% [46]. Methylated SOX17 was shown to be the most sensitive single
marker, while a four-gene combination (FOXE1, SLIT2, EYA4, SFRP1) showed the highest
accuracy at 88% (Table 1) [46]. Furthermore, cyst fluid obtained from IPMNs with high-
grade dysplasia had significantly higher levels of methylated DNA than other mucinous
cysts [46]. A more recent study by Eissa et al. examined the cell-free DNA in patient blood,
and found the methylated gene of ADAMTS1 to have a SN/SP of 87.22%/95.8% for the
differentiation of PC and normal samples [45]. Moreover, the same study showed that the
addition of a second methylated gene, BNC1, such that either or both were detected in the
samples, showed even better SN/SP for the same purpose (Table 1) [45].

For IPMNs, the epigenetic data currently available is limited. One gene whose pro-
moter is known to be hypermethylated in almost all cancer types is the cysteine dioxygenase
1 (CDO1) gene. A recent study examined this gene in pancreatic IPMN tumour tissue and
found the CDO1 promoter hypermethylation is extremely specific to IPMNs and appears
to accumulate with tumour progression [87]. Among other pancreatic disease, low levels
of CDO1 promoter hypermethylation were seen in MCNs, with no other pancreatic cystic
disease showing DNA hypermethylation of its promoter. A pilot study in pancreatic juice
confirmed methylation in all IPMN samples (n = 6) with none detected in benign pancreatic
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diseases (n = 6, chronic pancreatitis and autoimmune pancreatitis) [87]. Furthermore,
CDO1 hypermethylation showed utility in the differentiation of low–intermediate-grade
dysplasia and high-grade dysplasia/PC [87]. While these results show promise in the
search for a biomarker to stratify IPMN patients, extremely robust thresholds for CDO1
methylation are needed to distinguish high- and low-risk patients, with little utility being
seen for other PCLs. Further analyses on a large patient cohort, examining the methylation
status of CDO1 in patients with pancreatitis, pseudocysts and a variety of pancreatic cystic
lesions would be required to further validate this marker.

The establishment of epigenomic databases such as ENCODE, The International
Human Epigenome Consortium and Roadmap Epigenomic Project, has enabled the popu-
larisation of epigenomics and allowed for the establishment of standardised sequencing
methods [88]. Furthermore, epigenome-wide association studies (EWAS) in combination
with GWAS and TWAS data have proved to be powerful tools in pinpointing disease-
relevant regulatory elements [88,89].

3.4. Proteomics

The proteome can be examined at different developmental or cellular phases, and
changes in the proteome can be evaluated at different time points. Proteomics can be a
qualitative and/or quantitative evaluation of the proteome and is generally conducted
using mass spectroscopy (MS) [90–92]. As mentioned previously, two markers currently
utilised in PC are CA19-9 and CEA, and these markers have been shown in many instances
to be insufficient in the discernment of IPMNs and MCNs, as well as their malignant
potential (Table 1) [93–95]. CEA levels in patient cyst fluid can be used to distinguish
between mucinous and non-mucinous cysts, but have limited sensitivity (58–73%) and
specificity (89–96%) [42]. Kadayifci et al. evaluated the diagnostic accuracy of adding CEA
to the KRAS and/or GNAS panel but found it did not provide better SN/SP (p > 0.05) than
the KRAS and/or GNAS panel alone [39,43]. Indeed, a recent study showed that artificial
intelligence by deep learning has better SN/SP (95.7/91.9%) for diagnosis of malignant
cystic lesions than CEA levels and cytologic analyses [95]. Serum CA19-9 is the only
FDA-approved marker for the identification of PC. However, it has been demonstrated that
CA19-9 alone failed to detect 44.1% of cancer cases in a cohort of 34 patient samples, and
added no improvement to the sensitivity of the two-gene methylation panel ADAMTS1
and/or BNC1 [45]. CA19-9 is widely regarded as not sufficiently sensitive to distinguish
PC from healthy samples as it is frequently elevated in non-malignant conditions such
as pancreatitis, and has been shown to have a SN/SP of 52.7%/90% [53]. However, the
addition of CA19-9 to a marker panel (CA19-9, ICAM-1, OPG) was shown to produce
better sensitivity and specificity for PC (78% and 94.1%, respectively) [53]. Indeed, Brand
et al. identified several 3-marker panels that offered an improved ability over CA19-9 alone
to distinguish PC from healthy controls [53]. One multi-institutional group has shown
in multiple cohorts that the combination of CA19-9 and apolipoprotein-A2 isoforms can
improve the diagnostic ability of CA19-9 alone in the detection of PC up to 18 months prior
to diagnosis under typical clinical conditions [96–98]. Another study identified how the
change in cut-off value for CA19-9 can improve the robustness of this marker, but also
showed that the addition of CA19-9 to a marker panel gave the best SN/SP when compared
to CA19-9 alone (p < 0.05) [54]. While CA19-9 appears to have limited use clinically for
diagnostic screening of patients for PC, it does have utility in predicting disease recurrence
post-treatment [55].

The identification of novel protein markers in PC has been of great interest over
the last two decades, as those markers in current clinical use are imperfect. The protein
component of pancreatic cyst fluid has not yet been well characterised, as interrogation of
the proteome is relatively new and technological advances are frequently being made [3].
Individual proteins such as thymosin-β4 and ubiquitin have been found to be signifi-
cantly overexpressed in the tissue of IPMNs with high-grade dysplasia (p = 0.011 and
0.04, respectively) [59]. Panels of proteins have also shown promise for the differentia-
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tion of mucinous and non-mucinous cysts. Elevations in any two of the 3-protein panel
MUC5AC:WGA, MUC5AC:BGH and Endorepellin:WGA has shown good SN/SP for the
identification of MCNs (Table 1) [57,58]. Porterfield et al. utilised proteomic analysis by
liquid chromatography-MS to identify seven proteins shown to be consistently increased
in the ductal fluid of PC patients compared to normal (AMYP, PRSS1, GP2-1, CCDC132,
REG1A, REG1B, and REG3A), as well as one that was decreased (LIPR2), and validated
these results by Western blot [99]. A recent meta-analysis combined publicly available
proteome and secretome data with the aim of identifying biomarkers of PC. While this
analysis did not identify any protein that was shared by all of the 55 included secretome and
proteome studies, by selecting proteins found in 2 or more studies an intersection between
the two exposed 43 proteins common between proteome and secretome analyses [100].
Notably, 31 genes related to these secretome-proteins were shown to be upregulated in
PC samples obtained from TCGA compared to control samples, while 39 such genes were
revealed to be predictors of worse overall survival in PC [100].

As IPMNs are classified as mucinous cysts, it follows that their composition is partially
composed of mucin proteins. Mucins, which are densely O-linked glycoproteins with a
high molecular weight, play many roles in the maintenance of pancreatic health and
subsequently, when altered as a result of malignancy can be important facilitators of
tumorigenicity [67]. IPMNs are known to have a unique pattern of mucin expression,
and this trait has been utilised in the subclassification of IPMNs [101]. Indeed, mucin
proteins have been extensively investigated in the context of mucinous PCLs and evaluated
as potential biomarkers but to largely no avail [67,92,101] Moreover, while many studies
have examined the mucin proteins of the cyst type, surprisingly, research has shown no
significant pattern of RNA expression of mucin proteins identified in IPMNs [102]. The
combination of mucin proteins into panels, as mentioned previously, has shown promise
in the distinction of mucinous and non-mucinous cysts with good SN/SP [57,58]. Though
not a mucin, VEGF-A is also a glycoprotein and is known to be a key mediator of vascular
growth [103]. Elevated levels of VEGF-A have been observed to indicate the presence of
a benign serous cystic neoplasms with high SN/SP (Table 1) [56,103]. Furthermore, the
addition of CEA levels to VEGF-A exhibited better still SN/SP for the identification of
these cysts [56].

An important aspect of proteomic work in mucinous PCLs is the depletion of larger
proteins, which in this case is not just IgG and albumin, but also the mucin proteins. The
exclusion of larger, more abundant proteins by such immunodepletion steps increases
assay sensitivity for smaller proteins that may not otherwise be detected. Depletion based
on molecular weight is frequently employed. However, the purity of the protein samples
obtained by this method is generally poor. Indeed, the discovery of mucin-specific proteases
that could aid depletion of these proteins appears to be making strides. A recent study by
Malaker et al. identified a mucin-selective protease, StcE, which shows great promise in the
selective digestion of human mucins from biological samples [104]. Interestingly, a recent
study examined the protein component of IPMN cyst fluid supernatant and cell pellet,
reporting that the cell pellet contains twice as many proteins as the supernatant and even
contained over two thousand that were not identified in the supernatant [3]. This study
opted to omit the immunodepletion step that is routinely used in proteomic analyses, and
in doing so identified almost 4000 proteins previously unknown in pancreatic cyst fluid [3].
This large, proteomic dataset has been deposited into the ProteomeXchange database,
with the hope that it may prove a rich source of information for further IPMN studies [3].
Other online platforms of proteomic data, such as the Clinical Proteomic Tumour Analysis
Consortium and PRoteomics IDEntification database allow users to upload their own data
or examine those datasets submitted by others to supplement new research [105,106].

Often overlooked in proteomic studies is the part that genomic changes play in the
alteration of the proteome. A 2014 study integrated proteomic and TCGA data for colon and
rectal tumours, and found that messenger RNA transcript abundance did not correspond
with the difference in protein abundance observed between tumours [107]. Similar research
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conducted in 2016 showed how the integration of proteomic and phosphoproteomic
analyses with TCGA data for 77 genomically annotated breast cancers enabled the discovery
of novel functional consequences of somatic mutations in this cancer type, and subsequently
narrowed the scope of potential candidates for driver genes [108].

3.5. Metabolomics

Metabolomic alteration of cancer cells has been regarded for nearly a century as one
of the hallmarks of cancer [109]. Indeed, the switch of metabolic pathways observed
in cancer cells is regarded as key for tumour growth, and is suspected to be selected
for during transformation [109]. Recent studies conducted by Mayerle et al. identified
a biomarker signature of nine metabolites alongside CA19-9 in the blood using mass
spectrometry (MS) for the distinction of PC and chronic pancreatitis [110]. While not
validated, this study showed the potential of this panel in both a training and test cohort,
with SN/SP of 89.9%/91.3% [110]. Fahrmann et al. also utilised MS for the identification
of a metabolite panel in the blood [44]. This panel was observed to distinguish PC from
normal samples with moderate SN/SP (Table 1) [44]. Metabolic profiling combining MS
and liquid chromatography techniques enabled the discovery of 55 metabolites that were
differentially expressed in pancreatic tumours as compared to non-tumours (p < 0.01) [111].
Further examination of these metabolites using weighted co-expression network analysis
highlighted eight fatty acid hubs that are highly connected and in a conserved lipid module
that are decreased in PC tumours compared to the surrounding non-tumour tissue [111].
Integration of transcriptomic data revealed 157 gene surrogates for this fatty acid set
and showed that the expected lipid metabolism, particularly in the lipolytic pathway
involving these gene surrogates, is significantly altered in PC [111]. These data suggest a
dysregulation of the lipolytic network in PC which may play some role in tumorigenesis.
Kynurenine, a metabolite known to be synthesised in response to immune activation,
has shown promising ability to discern mucinous from non-mucinous PCLs with high
SN/SP 90%/100% [42]. This metabolite, is surprisingly detected in lower levels in the
cyst fluid of MCNs compared to non-MCNs, suggesting some dampening of immune
activation in MCNs. In that same study, Park et al. identified 10 metabolites that were
differentially abundant in their validation cohort, 8 of which could not be matched to
any known metabolite and mass spectrometry analysis was unsuccessful due to the low
abundance [42]. Importantly, glucose levels in the cyst fluid have also been observed to
discriminate MCNs from non-MCNs, and a standard patient glucometer has been shown
successful in this manner [42,43]. If cystic glucose levels could be correlated to same in
patient blood samples, this methodology could prove a less invasive manner of determining
cyst type. However, such correlations would be highly unlikely given the plethora of factors
which can influence blood glucose levels, such as the presence of diabetes and patient
fasting status.

As metabolomics is a relatively new field of study, there is little research performed in
the context of PC. The establishment of large metabolic databases, such as the Metabolomics
Workbench, could enable large metabolic studies in PC and subsequent integration of this
information with other omics data to produce a robust biomarker panel [112].

4. Multi-Omics as the Key to Biomarker Identification

In the case of PCL and PC characterisation, though these new ‘omics’ techniques have
been utilised to analyse the pancreatic cyst fluid, blood serum and even saliva of patients,
no single methodology has proven to be a sufficiently sensitive method for delineating
these patients into defined categories. Multi-omics involves the integration of multiple
layers of omics-type data to augment our understanding of disease and helps researchers
to elucidate the flow of information, from the origin of the disease to the biological and
functional consequences [37]. By investigating multiple aspects of the PCL fluid or blood
serum, and treating these data as an interconnected system, rather than distinct and
independent pieces, multi-omics could allow researchers to identify key pathways and
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players in disease stratification. CompCyst is a comprehensive test developed using
machine learning techniques to guide the management of patients with PCLs [113]. This
test utilises selected clinical features such as symptoms, cyst size and location, as well as
cyst fluid genetic and biochemical markers, including cyst CEA levels and KRAS and GNAS
mutation status [113]. Interrogation of multiple levels of patient data enabled cut offs for
each marker to be determined based on the needs of the test, and the level of importance
given to the sensitivity or specificity of each individual marker. The results of this study
suggest that if CompCyst were applied to general PCL management, 60% of unnecessary
surgeries could be avoided [113]. While these results seem promising, it is important to
note that patients evaluated in this study were those most concerning for cancer and do
not represent patients seen in routine clinical practice [113]. While more research is needed
to examine the utility of this test in a normal clinical setting, this study shows that layering
multiple levels of patient data can potentially improve management strategies for PCLs.
Interestingly, a 2018 report describes a multi-analyte blood test called CancerSeek, which
assesses levels of circulating proteins and mutations in cell-free DNA to detect one of eight
common cancer types (ovarian, liver, stomach, pancreatic, oesophageal, colorectal, lung,
or breast) [114]. When combined with supervised machine learning, this test was able to
localise the source of the cancer to two anatomic sites in a median of 83% of patients (n =
626). While not specific to PC, this test shows the stark advantage of combining distinct
approaches to create a robust diagnostic tool.

In terms of PCLs and PC, multi-omics opens the door to the possibility of a biomarker
panel for characterisation, such that combined thresholds of several markers could prove
more sensitive than a single marker alone. A 2020 systematic review examined novel
biomarkers for upper GI cancers, identifying 431 biomarkers, of which more than half
(n = 231) were for PC [115]. Only one-fifth of the biomarkers reported in this review were
examined in more than one study, and of those that were, there were only two single
markers and one panel of markers for PC. Such reviews of the literature show the current
state of PC research, where most of those markers that are identified are not examined
further and as such never become clinically useful. As mentioned previously, the addition
of GNAS to KRAS testing for the diagnosis of IPMNs does not significantly increase
diagnostic accuracy. However, the same study found that the combination of GNAS and
KRAS mutational status with CEA testing does produce a significantly better accuracy of
86.2% (p < 0.05) [39]. A 2015 multi-centre study retrospectively examined the cyst fluid of
130 patients and identified molecular markers and clinical features that classified PCLs
with a sensitivity of 90–100% and a specificity of 92–98% [116]. Using the Multivariate
Organisation of Combinatorial Alterations (MOCA) algorithm to identify composite clinical
and molecular markers (subtle mutations, loss-of-heterozygosity, aneuploidy) of PCL
type and grade, this study identified a panel of both clinical and molecular markers for
the distinction of serous cystadenomas (SCA), solid-pseudopapillary neoplasm (SPN),
MCNs and IPMNs. Furthermore, it was shown that these features could identify 67
of the 74 patients who did not require surgery, resulting in a reduction in unnecessary
procedures by 91%. These results show great promise for the characterisation of PCLs and
the stratification of patients for subsequent referral to surgery, and further studies in more
robust, experimental validation cohorts will help to further elucidate the potential of this
panel in the context of PC.

A key example of the multi-omic nature of driver mutations in the context of PC
is KRAS, which is mutated in ~90% of PC (Figure 2) [117]. Environmental factors, such
as smoking or alcohol consumption, can promote biochemical alterations to DNA at the
epigenomic level, for example hypermethylation [118]. The addition of a methyl group
to the CpG island of a DNA repair gene can cause silencing and subsequently result in
reduced DNA repair proficiency, allowing a mutated KRAS codon to proceed from the
genomic level to the transcriptomic level. The transcription of this KRAS mutation results
in altered miRNA expression levels, and the mutated mRNA cannot be bound by the
regulatory miRNA let-7, thus causing the aberrant translation of K-Ras protein [119–121].
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The marked increase in K-Ras production promotes various signalling pathways, including
phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK) and the RAL-
GEFs pathway [117]. GTP-bound K-Ras proteins can interact with, and influence the
activity of, effector proteins causing downstream effects in many cellular pathways [117].
Moreover, KRAS mutant PCLs have been shown to have increased expression of the glucose
transporter GLUT1 and subsequently elevated rates of glycolysis, indicating that KRAS
mutations play a role in the metabolic switch observed in PC [122]. Indeed, the presence
of KRAS mutations in PC has been shown to correlate with poor patient prognosis, and
this can be attributed to the downstream effects seen in multiple omics layers as a result
of this point mutation (Figure 2) [123]. This example illustrates the multi-omic nature of
mutational drivers in cancer and the importance of disentangling each aspect in order to
clearly observe the pathways affected and the impacts at each omics level.

Figure 2. The multi-omic nature of KRAS mutations in pancreatic cancer. (A) Environmental factors
cause biochemical alterations to the DNA such as hypermethylation. This can result in the silencing
of repair genes and subsequently failure in DNA repair pathways; (B) Point mutations in a KRAS
codon go unchecked as a result of DNA repair failure causing permanent activation of KRAS gene;
(C) Mutant KRAS gene is transcribed into mRNA and subsequently results in an upregulation of
miR-34a and miR-31 and a downregulation in miR143 and miR-145; (D) mutant KRAS mRNA
cannot be bound by regulatory miR let-7 and leaves the cell nucleus to be translated; (E) Mutant
KRAS causes an increase in K-Ras protein expression, which causes activation of PI3K, MAPK and
RAL-GEF pathways; (F) GTP bound KRAS interacts with various effector proteins and influences
the localisation and activities of these effectors; (G) K-Ras proteins convert GTP to GDP which
causes gene deactivations and metabolic alterations such as an increase in GLUT1 expression and
subsequently an increase in glucose uptake via glycolysis; (H) Changes to cellular protein expression,
gene activation and metabolic processes results in increased cell growth and proliferation, driving
transformation.

As discussed above, each omics discipline has its own advantages and disadvantages,
and can give information about many aspects of disease from metabolic signatures to
proteomic profiles. It is only logical therefore to examine this extensive information in
parallel with the aim of revealing those attributes that can be considered robust and
sensitive enough to work as a biomarker of patient risk. Typical analysis of a single omics
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data type is largely limited to correlations and tends to reflect the reactive processes of
disease, rather than the causative [37]. However, compilation of many data types can
enable statisticians to tease out the causative and resultant factors observed in these data by
enhancing the statistical depth and power of the dataset. In this way, sufficient statistical
power obtained by having a large cohort is required for any successful omics study, in order
to produce the most robust results [37].

The LinkedOmics database contains multi-omics data within and across 32 cancer
types for over 11,000 patients from TCGA [72]. This platform is the first of its kind,
and integrates data generated by the CPTAC for select TCGA tumour samples and has
therefore, over a billion data points [72]. The database allows users to apply comprehensive
analyses on these data by use of three distinct modules: LinkFinder, which identifies
associations between clinical and molecular attributes of interest; LinkCompare, which
enables comparisons of those associations obtained via LinkFinder; and LinkInterpreter,
where identified associations are further explored through pathway and network analysis.
Through the use of several case studies, examining properties of individual cancers to
reveal functional impacts of somatic mutations or copy number alteration on the expression
of mRNA and protein, or performing pan-cancer analysis to investigate survival-associated
gene expression signatures, the power of such multi-omics platforms can be seen [72].
While this database only includes data from TCGA and CPTAC, the extension of its
data collection for more cancer types and omics platforms could enable the execution of
robust and highly powered multi-omics studies for many cancer types. The TCGA data
were utilised in a recent multi-omics study of PC, where the integration of DNA copy
number variation, methylation, mRNA, and simple nucleotide variation data enabled the
identification of four distinct molecular subgroups of PC (iC1, iC2, iC3, and iC4) [124]. The
iC1 subgroup was shown to have a better prognosis, higher immune cell infiltration and
better genomic stability compared to the other groups. Furthermore, this multi-omics study
identified three new genes (GRAP2, ICAM3 and A2ML1) that were shown to correlate
with prognosis in PC. A 2019 study utilised a multi-omics approach comprising exome
sequencing, transcriptomics, quantitative proteomics, karyotyping and metabolic status
to evaluate the epithelial-mesenchymal plasticity of two sister breast cancer cell lines,
identifying novel driver mutations, chromosomal changes, gene deletions/ amplifications,
alterations in gene expression and metabolic reprogramming [125].

With the exception of somatic mutations, the original human DNA sequence is unal-
tered throughout life, being unaffected by environmental or developmental factors [37].
As such, it is generally assumed that any disease-related genetic mutation observed is
causal and not a result of disease. This assumption is often the reason for the level of
difficulty attributed to distinguishing the causative agent of disease from those effects that
are created as a result of disease [37]. The tumour profiles of clinically identical patients
have been observed to share as few as one single genetic mutation [126]. In the context of
PC, the integration of data from multiple types of omics can help to reveal the biochemical
pathways involved and ultimately those genes that are playing an active role in tumour
growth. This layering of data in a multi-omics approach can help to tease out such details
and begin to show the picture in its entirety, not only indicating the causative agent, but
also the downstream pathways and interactions involved.

5. Conclusions

PC is an aggressive disease with extremely poor survival rates. The discovery of pre-
cursor lesions often occurs too late, and patients are left with few treatment options. PCLs
are a highly diverse group of lesions containing both non-malignant and pre-malignant
subtypes, and there exists no robust method for distinguishing PCLs and subsequently,
which patients have a high-risk of developing PC and should undergo surgical resection,
and which patients are at a lower risk and can be spared this procedure. The advent of
omics has enabled significant strides in the detection and treatment of cancer. Unfortu-
nately, for patients with PCLs or PC, current individualised omics studies have produced
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little success. Multi-omics provides a more comprehensive insight into the mechanisms
and pathways involved in cancer and has great potential for use in diagnosis and treatment
of PC. The presence of many omics databases online, which are publicly available and
contain vast quantities of patient data, enables the interrogation of large datasets and the
production of highly powered studies. However, there are many facets of the integration
of data that must be acknowledged and sufficiently managed in order for these studies to
produce accurate and robust results. There is a need for standardisation of multi-omics
approaches in this way, such that more in-depth analyses can be carried out. The disci-
pline of multi-omics imparts much expectation for the further understanding of PC as a
disease, and the identification of biological markers that may aid in the characterisation of
patient PCLs.
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