
BioMed CentralBMC Genomics

ss
Open AcceMethodology article
Tests for differential gene expression using weights in 
oligonucleotide microarray experiments
Pingzhao Hu1, Joseph Beyene2,3 and Celia MT Greenwood*1,2

Address: 1Program in Genetics and Genomic Biology, The Hospital for Sick Children Research Institute, 15-706 TMDT, 101 College Street, 
Toronto, ON, M5G 1L7, Canada, 2Department of Public Health Sciences, University of Toronto, Health Sciences Building, 155 College St, Toronto, 
ON, M5T 3M7, Canada and 3Program in Population Health Sciences, The Hospital for Sick Children Research Institute, 555 University Ave, 
Toronto, ON, M5G 1X8, Canada

Email: Pingzhao Hu - phu@sickkids.ca; Joseph Beyene - joseph@utstat.toronto.edu; Celia MT Greenwood* - celia.greenwood@utoronto.ca

* Corresponding author    

Abstract
Background: Microarray data analysts commonly filter out genes based on a number of ad hoc
criteria prior to any high-level statistical analysis. Such ad hoc approaches could lead to conflicting
conclusions with no clear guidance as to which method is most likely to be reproducible.
Furthermore, the number of tests performed with concomitant inflation in type I error also plagues
the statistical analysis of microarray data, since the number of tested quantities in a study
significantly affects the family-wise error rate. It would, therefore, be very useful to develop and
adopt strategies that allow quantification of the quality of each probeset, to filter out or give little
credence to low-quality or unexpressed probesets, and to incorporate these strategies into gene
selection within a multiple testing framework.

Results: We have proposed a unified scheme for filtering and gene selection. For Affymetrix gene
expression microarrays, we developed new methods for measuring the reliability of a particular
probeset in a single array, and we used these to develop measures for a set of arrays. These
measures are then used as weights in standard t-statistic calculations, and are incorporated into the
multiple testing procedures. We demonstrated the advantages of our methods using simulated
data, publicly available spiked-in data as well as data comparing normal muscle to muscle from
patients with Duchenne muscular dystrophy (DMD), in which a set of truly differentially expressed
genes is known.

Conclusion: Our quality measures provide convenient ways to search for individual genes of high
quality. The quality weighting strategies we proposed for testing differential gene expression have
demonstrable improvement on the traditional filtering methods, the standard t-statistic and a
regularized t-statistic in Affymetrix data analysis.

Background
Affymetrix GeneChip™ microarrays are used to measure
gene expression for thousands of transcripts simultane-
ously. Each transcript is measured by 11–20 probesets,

where a probeset consists of two almost identical
sequences of length 25 bp. One member of the pair is the
perfect match (PM) probe, where the sequence is the exact
complement of a section of the mRNA. The other member
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of the pair, the mismatch probe (MM), is identical to the
PM probe except for the nucleotide in 13th position and is
intended to measure and control for non-specific binding
signals. The accuracy and sensitivity of the measurement
for any one gene or EST depends on the uniqueness and
the binding properties of the probes.

It is well known that most probesets perform consistently
and reliably, in that similar estimates of expression are
obtained from two replicates of an experiment. However,
in many cases, the signals from a probeset can be hard to
interpret. There may be substantial variability across the
probesets in the estimated level of expression, or in the
PM-MM differences. PM signals can be smaller than MM
signals suggesting high levels of non-specific binding. It is
also well known that a large proportion of the genes are
expressed in only a few tissues or at a particular develop-
mental stage, and hence many of the genes are not
expected to have a measurable transcribed product. Su et
al. [1] have estimated that in most cases, only 30–40% of
the genome will be expressed in any one tissue. In such sit-
uations, the probesets give measurements for PM and MM
that fluctuate near the lower detectable limit.

The latest release for the Affymetrix GeneChip Expression
Analysis Platform, GeneChip Human Genome U133 Plus
2.0 Array [2], provides comprehensive coverage of the
transcribed human genome on a single array. The array
includes more than 54,000 probesets with 38,500 well-
characterized human genes. When analyzing such a large
number of genes, the adjustment of significance levels
through multiple testing procedures such as the Bonfer-
roni method [3], or Benjamini and Hochberg [4], may be
dramatic enough to make it very difficult to identify differ-
entially expressed genes. However, if we knew which tran-
scripts were either not expressed in the tissue under study,
or were measured unreliably due to poor probe specificity,
we could exclude these transcripts from the analysis and
pay a smaller penalty for multiple testing.

In 2001, Affymetrix produced a new algorithm for sum-
marizing the results of a probeset, and the algorithm
includes a detection p-value, which represents the proba-
bility that the probeset (gene) expression is above zero
(i.e., turned on), and measured reliably and consistently
across the probe. In addition, "Present/Marginal/Absent"
(P/M/A) calls for each transcript are based on the detec-
tion p-value together with thresholds that can be altered
by the user [5]. The calls are often used as filters to keep
genes whose transcripts are detectable in a particular
experiment [6-8], and this filtering concept has been inte-
grated into some software such as dChip [9,10]. For exam-
ple, Blalock, et al. [7] removed a probeset from further
statistical analysis if there were > = 60% absent calls, for
that probeset, in at least one treatment group. However,

the stringency of the filtering procedure can strongly affect
downstream analyses and the final results. Too much fil-
tering may exclude some important genes, whereas too lit-
tle filtering will reduce power by increasing the number of
tests performed. Moreover, it is possible that the statistical
error introduced by imperfect filtering criteria makes the
overall error worse. Pounds and Cheng [11] recently
argued that it is better to define gene filters based on the
detection p-value than on the calls, so that more of the
available information about probeset reliability can be
used. They developed two pooled filters for each probeset
based on detection p-values.

An alternative strategy to filtering is to treat probe-specific
variability as a quality index to measure the reliability of
each probeset. Although many summaries of Affymetrix
GeneChip expression have been proposed (e.g. MAS5 [5],
dChip [9,10], RMA [12], PLIER [13] and gcRMA [14]),
there have been few studies on quality measures for
Affymetrix GeneChip expression data. In previous studies,
typically, once a filtering decision was made, the esti-
mated intensities of each probeset were considered to be
equally well measured, so that probesets with highly vari-
able signals were considered as reliable as probesets with
inconsistent signals. However, probesets that detect tran-
scripts expressed at a very high level would be expected to
show a more robust signal with greater quality than
probesets that are performing poorly or detecting very low
level transcripts.

Seo et al. [15] used the detection p-values to develop
weighted Pearson correlations between expression meas-
urements from two different arrays. The weight was
defined to be a function of the two detection p-values for
each probeset. They incorporated these weighted correla-
tions into unsupervised clustering analysis, with the goal
of choosing the best algorithm for summarizing across the
probesets.

In this study, we focus on the problem of testing for differ-
ential expression between groups of arrays, while adjust-
ing for multiple testing in a weighted framework. We
redefine some of the widely used filtering methods [6-9]
and also propose some new methods for measuring the
quality of a particular probeset in a single array, in an
experimental group of arrays, and in an entire study.
These measures are then used as weights in t-statistic cal-
culations, and are incorporated into the multiple testing
procedures. We applied these methods to a dataset of
expression in muscle tissue [16], Choe's spiked-in data
[17] and simulated data. One of our quality measures for
an experimental group is based on the measure developed
very recently by Pounds and Cheng [11]; however, we go
further in combining measures across groups, and in dis-
Page 2 of 15
(page number not for citation purposes)



BMC Genomics 2006, 7:33 http://www.biomedcentral.com/1471-2164/7/33
cussing the usefulness of these measures when testing for
differential gene expression.

Results
Test statistics and quality measures

We propose a weighting paradigm for including quality
measures into analysis when testing for differential
expression. Suppose that an unweighted test statistic for
gene g is represented by tg, and that the quality measure is

called Qg. We propose to evaluate the significance of gene

g using the weighted test statistic  = tgQg. The impact of

the weighting on the pattern of results, across all genes, is
then taken into account when calculating significance
adjusted for multiple testing, or when estimating the false

discovery rate. Conceptually, giving a low weight, Qg≈0, to

a particular gene can be thought of as excluding that gene
from consideration. Therefore, our modifications to mul-
tiple-testing methods are based on adjusting the number
of genes tested, based on the quality measures.

Measure Qg must represent a summary across treatment
groups w ∈ {1 ...W}. We propose

where  is a treatment-group specific measure of qual-

ity. By using the maximum value across groups in equa-
tion (1), a gene that is clearly expressed in one or more
groups will be considered as a gene measured with high
quality.

We examine the performance of several choices for the

group-specific quality measure . In particular,  =

1.0 leads, after using equation (1), to a measure  that

is, in fact, no quality filtering: all genes are included in the
analysis at full weight. The common practice of analyzing

only genes with present calls can be based on {  = 1.0

when all arrays in group w have present calls, and  = 0

otherwise}. We will denote this as .

Instead of using the Affymetrix present/absent calls, more

sensitivity can be gained by basing  on the actual

detection p-values, qgiw for gene g, array i, and group w.

Since a highly-expressed gene corresponds to a small

detection p-value, we propose  = 1 - , where 
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Table 1: Test statistics and quality measures. For the quality-based tests, the summarized quality measure, across treatment groups, is 

defined by Qg = maxw∈{1...W} .

Quality Measures Array specific measure
Group-specific measure 

Notes

1.0 1.0 No filtering

All arrays must have present call 
to be included

qgiw = detection p-value nw is the number of arrays in group 
w

qgiw = detection p-value
 for sensitivity 
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is the mean detection p-value for group w, leading to a

quality measure that we call . The mean may not

give enough weight to small p-values, therefore we also
investigated two measures that are based on parametric
model assumptions for the distribution of detection p-val-
ues. Firstly, we assumed that -log(qgiw) follow an exponen-

tial distribution with group-specific mean λqw. Under this

distribution, the probability that the detection p-values

will be smaller than a threshold ν can be written as

, with corresponding  following

from equation (1).

Although, under the null hypothesis of no signal, the
detection p-values can be expected to follow a uniform
distribution (so that -log(q) is exponential with mean
1.0), when there is a signal, the p-value distribution is bet-
ter described by the two-parameter Beta distribution.
However, detection p-values are based on rank tests and
there is often little variability in the p-values across arrays
for highly expressed genes. This leads to difficulties in esti-
mating two parameters. Pounds and Cheng [11] proposed
a one-parameter Beta distribution for detection p-values,

so that , and we

incorporate this measure into our corresponding across-

group quality measure .

For comparison, two very different test statistics were also
used: (1) Weights based on the detection p-values were
incorporated directly in the calculation of group-specific
means and standard deviations – we refer to this test sta-

tistic as  to follow our naming convention, although

no quality measure is defined; (2) In addition, we used
the local pooled error (LPE) test [18], which is based on
pooling errors within genes and between replicate arrays
for genes in which expression values are similar. This test

is referred to as . Unweighted multiple testing cor-

rections were implemented for these two tests. Table 1
summarizes the different test statistics and quality meas-
ures used in the paper.

Analysis of simulated data
The performance of our proposed methods was evaluated
using simulated probe level data generated from a model
incorporating probe level effects, optical noise, and non-
specific binding, as well as true signals [14]. We have run

five simulation models following the simulation proce-
dures described in Materials and Methods. Treatment
effects on the signal were varied between 0.5 (very small)
and 2.5 (very large) in the five models. To compare per-
formance, we used Summarized Receiver Operating Char-
acteristic (SROC) curves, where the test sensitivities and
specificities (true positive and true negative proportions)
for a range of p-value cutoffs (or FDR cutoffs for results
with multiple testing adjustments) were averaged over
100 simulated datasets. Figures 1 and 2 show SROC
curves of models 2 and 4, where large and small treatment
effect sizes, respectively, were chosen in the generated
models.

The SROC curve's overall behavior can be measured by
the Area Under the Curve (AUC) [19]. Table 2 shows
AUCs for five simulation models under different weight-
ing and multiple testing strategies. As seen from the table
and figures, weighted t-statistics based on quality measure

, in which a gene was excluded if one or more arrays

have an absent call, had the lowest AUC in all models.
Whether p-values were unadjusted or adjusted by the

weighted Benjamini-Hochberg (WBH) method, 

outperformed the other quality scores in models 1, 2, and
3, where a moderate to large treatment effect was chosen.

Although  had the overall best performance for

models 4 and 5, where a small treatment effect was used,

 has the best sensitivity when specificity is larger

than 95% (shown in Figure 2). We also observed that

 had similar performance to  for models 1, 2

and 3, but  outperformed  for models 4 and 5.

 has slightly worse performance than  for mod-

els 1,2 and 3, but their performance is almost the same for

models 4 and 5; conversely, the statistic  performed

better, relative to the other methods, for small effect sizes.

The performance of no filtering at all, , was also a good

choice for small changes in gene expression. Therefore,
the best choice of weighting statistic in the presence of
adjustments for multiple testing appears to depend on the
size of the treatment effects. We also found that it is better
to define quality measures directly from Affymetrix detec-
tion p-values rather than from the Affymetrix Present/
Marginal/Absent calls.
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Duchenne muscular dystrophy vs. normal muscle
Haslett et al. [16] compared gene expression between 12
quadriceps biopsies from Duchenne muscular dystrophy
(DMD) patients and 12 quadriceps biopsies of normal

skeletal muscle. Using a method called geometric fold
change (GFC), they identified 133 differentially expressed
genes (139 probesets) with a permutation-based false dis-
covery rate of 2.3 × 10-3; Of these, 12 genes (13 probesets)
were confirmed by RT-PCR. This set will be referred to as
the "RT-PCR" probesets.

Tables 3 and 4 compare the agreement between probesets
selected by our test statistics and Haslett et al. [16]. In
Table 3, for each test statistic, we selected the top T = 30,
50, 100 or 139 significantly expressed probesets, ranked
based on our adjusted false discovery rates, and we
counted the number of these probesets that were also in
the top T probesets identified by GFC and ranked based
on their absolute fold changes. Table 4 shows a similar
comparison for the RT-PCR set.

The measure  had the worst performance in concord-

ance for the lists of top T probesets in Table 3, and for
identifying RT-PCR probesets in Table 4. The weighted t-

statistics based on  and  performed quite simi-

larly, and gave results that were close also to three other

statistics ( ), but  showed slightly bet-

ter results in Table 3 than these other methods. Interest-

ingly, the FDR values in Table 3 associated with  are

visibly larger than for the other methods. Although there

is more agreement between GFC and  in Table 3

than for other methods when the number of selected
probesets is small (< = 100), the agreement decreases
when more probesets are selected, even though the FDR
estimates are smaller. This statistic is obviously very differ-
ent from the others. When examining Table 3 for T = 30,
agreement for all methods with the GFC paper was
slightly better using MAS5. This may not be surprising
since Haslett et al. [16] used MAS5 also, although, in
Table 3, this relationship not entirely consistent across dif-
ferent values of T. In Table 4, however, the agreement is
always better using MAS5.

Analysis of Choe's spiked-in data
The availability of data from spiked-in experiments (Choe
et al. [17]) provides an excellent opportunity to examine
the performance of our weighted statistics on real data
where the answers are known. Selected transcripts were
added at a range of known concentrations; some were
chosen to have differential expression between two
groups of samples (true positive changes in expression);
others were spiked-in at the same concentration in the
two groups (true negative changes in expression).

Qg
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exp Qg
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0 Qg
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exp
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exp
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Receiver Operator Characteristic (ROC) plots for tests of differential expression in the simulated data with treatment effect δg = 2.0Figure 1
Receiver Operator Characteristic (ROC) plots for tests of 
differential expression in the simulated data with treatment 
effect δg = 2.0. Six weighted tests and the local pooled error 
(LPE) test are compared. (a) p-values unadjusted for multiple 
testing, (b) p-values adjusted by the weighted Benjamini and 
Hochberg (WBH) multiple testing method.
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Figures 3 and 4 show the ROC curves for the comparison
of the two groups for MAS5 and RMA, respectively. Table
5 shows the AUC under different weighting and multiple
testing strategies. For both the RMA and MAS5 strategies,
it is still clear that whether p-values were unadjusted or

adjusted by the WBH method,  outperforms the

other quality scores. However, unlike the results in the
DMD as well as the simulated data, here the quality meas-

ure  had better performance than ,  and

. In general, the results based on the MAS5 strategy

are slightly better than those based on RMA for any qual-
ity-based test statistic, but the relative rankings of the dif-
ferent statistics remain almost the same across the two
summarization methods. The LPE test appears to be par-
ticularly sensitive to the summarization method. It per-
forms very well for the MAS5 method without multiple
testing corrections and very poorly when the BH multiple

testing is used. Test statistics based on  and 

had better performance than the LPE test when p-values
were adjusted by the WBH in both MAS5 and RMA.

Discussion
In traditional gene selection methods, pre-filtering and
selection are two separate procedures, and commonly
used pre-filtering methods are based on Affymetrix calls
[6-9]. We unified gene filtering and gene selection proce-
dures together, where the importance of a gene is meas-
ured by its quality score, defined across all arrays and
experimental groups, rather than by a given cutoff call
value. The methods, therefore, overcome the shortcom-
ings of the traditional methods to filter out genes before
any high-level data analysis, such as gene selection, is car-
ried out.

Our measure  is essentially the same as the tradi-

tional method of keeping only probesets where all arrays
record a present call. Our results clearly demonstrated that

the weighted t-statistic based on  has the worst per-

formance in the real data and all simulation models;
Pounds and Cheng [11] also found that simple filtering
based on Present/Marginal/Absent calls was a poor
choice. However, this statistic performed well in the
spiked-in data. This artificially-created dataset contained
only transcripts that were added in known concentrations,
therefore the expression signals are likely to be much
more consistent across arrays than signals from different
individuals.

The best choice of weighting statistic in the presence of
adjustments for multiple testing appears to depend on the
size of the treatment effects. The exponential model meas-
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Receiver Operator Characteristic (ROC) plots for tests of differential expression in the simulated data with treatment effect δg = 1.0Figure 2
Receiver Operator Characteristic (ROC) plots for tests of 
differential expression in the simulated data with treatment 
effect δg = 1.0. (a) p-values unadjusted for multiple testing, 
(b) p-values adjusted by the weighted Benjamini and Hoch-
berg (WBH) multiple testing method.
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ure, , appears to have a slight advantage over the

one-parameter beta distribution , although for small

effect sizes they perform very similarly. The distribution of
quality scores for the exponential model gives, in general,
lower weight to probesets with small detection p-values
than the beta distribution. This may lead to a small reduc-
tion in sensitivity – the effect of these lower weights can
be seen when examining the FDR cutoffs in the DMD
data, and in the figures. However, these lower weights also
improve specificity which tends to lead to better overall
prediction.

For quality measures  and , the performance of

the weight depends on the sensitivity parameter ν. In
order to analyze the effect of different values of parameter

ν on our results, we did another simulation study. Table 6
summarizes the sensitivity and specificity of the proposed
test procedures to detect differentially expressed genes
(using the weighted Benjamini-Hochberg procedure to

control the false discovery rate at 5%), as a function of ν
when the treatment effect was set to 2.0. The sensitivity

decreases and specificity increases as ν gets smaller. The

sensitivity associated with  is slightly better than

 across this table, but the specificity is worse. It can

be argued that the optimal choice of ν is the one that

comes closest to perfect prediction. For ν = 0.05 and 0.01,
the Euclidean distances from the point where sensitivity =

1 and specificity = 1 are 0.153 and 0.157, for the exponen-
tial distribution, and 0.219 and 0.221, for the beta distri-

bution, respectively. Therefore, we fixed ν = 0.05 in our
analysis; this choice can be thought of as a p-value of 0.05,
leading to the interpretation that a representative tran-
script from a particular experimental group will be called
present when the expected (under the assumed distribu-
tion) p-value <0.05. In fact, the significance level of 0.05
is widely used in statistical hypothesis testing and is com-
parable to the thresholds for Present/Marginal/Absent
calls used in the Affymetrix software.

It is now a common practice to use procedures for control-
ling multiple testing when identifying differentially
expressed genes. Various procedures, such as the Bonfer-
roni correction, the Benjamini and Hochberg false discov-
ery rate [4], or the Benjamini and Yekutieli false discovery
rate [20], have been widely used. Due to the quality
adjustment in our proposed t-statistics, we can no longer
assume that the p-values ptg have a uniform distribution
under the null hypothesis, and we can not assume that the
test statistics have identical distributions. Therefore, we
developed weighted multiple testing procedures. Our
findings showed that the proposed weighted Benjamini
and Hochberg (WBH) adjustment procedure is better
than the weighted Bonferroni (WB) and weighted Ben-
jamini and Yekutieli (WBY) adjustment procedures
(results not shown). However, we also observed that the
proposed t-statistics using WB and WBY had poor sensitiv-
ity, regardless of the type of quality measure score (data
not shown). We are planning to further extend weighted
multiple testing methods in order to redefine Storey and
Tibshirani's positive false discovery rate (pFDR) [21],

Qg
exp

Qg
beta

Qg
exp Qg

beta

Qg
beta

Qg
exp

Table 2: Area under the curves (AUCs) for five simulation models *

Model Multiple 
Testing

Quality Measures

Model 1 δg = 2.5 Unadjusted 0.777 0.380 0.925 0.892 0.871 0.743 0.924
WBH 0.812 0.382 0.929 0.895 0.885 0.772 0.932

Model 2 δg = 2.0 Unadjusted 0.840 0.387 0.934 0.907 0.898 0.809 0.932
WBH 0.878 0.387 0.937 0.912 0.911 0.846 0.937

Model 3 δg = 1.5 Unadjusted 0.895 0.394 0.933 0.918 0.922 0.868 0.932
WBH 0.925 0.395 0.937 0.923 0.932 0.902 0.936

Model 4 δg = 1.0 Unadjusted 0.918 0.399 0.921 0.913 0.926 0.889 0.915
WBH 0.935 0.401 0.917 0.918 0.934 0.912 0.891

Model 5 δg = 0.5 Unadjusted 0.876 0.408 0.875 0.876 0.884 0.850 0.850
WBH 0.882 0.410 0.858 0.861 0.882 0.860 0.770

For  and , the sensitivity parameter ν was set to 0.05.

* Simulated probe level data was summarized using RMA
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where the test statistics are assumed to be identically dis-
tributed.

Several other modified t-statistics, such as SAM [22],
penalized t-statistics [23], or the local pooled error
method used here [18], have been developed for microar-
ray data analysis. All of these methods focus on overcom-
ing the shortcoming of the ordinary t-statistics for ranking
genes, due to unstable variance estimates that may arise
when sample size is small. Each method used a slightly
different strategy to estimate a penalty parameter for
smoothing unstable variance estimates, using informa-
tion from all genes rather than relying solely on variance
estimates from an individual gene. However, as we dis-
cussed in the "Background" Section, the quality of this
information is not the same across genes. Therefore, the
estimate of the penalty parameter may not be reliable if
we assume that all gene-specific information has the same
quality. Here, we take another strategy to improve the per-
formance of ordinary t statistics by putting a high weight
for the genes with high quality and a low weight for those
with low quality in the t-statistic calculations. The initial
comparison of our strategy with the LPE test demon-

strated that our weighted tests based on  and 

are promising – AUC results were fairly similar, and better
in several cases. Although our weighting strategy could be
combined with a revised variance-smoothing algorithm

to potentially improve the performance of the test statis-
tics in small samples, this was not the focus of this work.

It should be noted that the probe-level data analysis (such
as background correction, normalization and summariza-
tion methods) may influence the results of the test proce-
dures we discussed. Our initial analysis of real data and
spiked-in data show that the weighted test statistics based
on the MAS5 strategy may have slightly better perform-
ance than those based on the RMA strategy. In future
investigations, we plan to explore how different probe-
level data analysis methods, such as MAS5, dCHIP, RMA,
PLIER and gcRMA, and different detection p-value calcu-
lation methods [17], may influence our weighting strategy
in detail.

Our results showed that some true differences are missed
with any filtering method, as was noted by others [11]. It
is known that the mismatch probes measure some true
signal [12], and therefore is possible that, especially for
genes expressed at a low level, quality scores for real data
are lower than in our simulated data. Defining an alterna-
tive to the detection p-value that does not depend on the
mismatch data may lead to better sensitivity. However, if
mismatch probes do contain signal, and a study wishes to
identify small changes in gene expression, the decision to
use any filter at all must be carefully considered, given that
some true effects are likely to be excluded. In addition,
when effects are small, it must be realized that using mul-
tiple testing corrections will also lead to the exclusion of
real effects.

Qg
exp Qg

beta

Table 3: Agreement in probeset selections between our methods and Haslett et al. [16]: Given a chosen number of selected probesets, 
how many of the probesets selected by GFC were also selected by the methods in this paper (corresponding false discovery rate 
WBH-FDR)

Summarizatio
n Method

Number of 
probesets 
selected

MAS5 30a 10b (3.6e-06c) 6 (7.6e-06) 10 (6.2e-04) 10 (4.9e-06) 10 (3.6e-06) 11 (3.6e-06) 17 (2.3e-21)
50 21 (1.4e-05) 13 (1.6e-05) 25 (2.3e-03) 22 (1.0e-05) 21 (1.2e-05) 22 (7.8e-06) 32 (6.0e-13)
100 56 (3.5e-05) 40 (1.5e-04) 59 (4.1e-03) 57 (2.2e-05) 56 (2.6e-05) 56 (1.9e-05) 61 (3.3e-09)

139 (2.3e-03) 94 (1.1e-04) 65 (3.3e-04) 96 (9.2e-03) 95 (8.4e-05) 94 (9.3e-05) 94 (6.1e-05) 76 (4.1e-07)
RMA 30 8d (1.3e-05) 7 (2.5e-05) 9 (1.9e-03) 8 (7.5e-06) 8 (9.7e-06) 8 (5.6e-06) 20 (1.8e-18)

50 24 (4.3e-05) 13 (5.0e-05) 26 (3.4e-03) 24 (2.8e-05) 24 (3.2e-05) 24 (2.0e-05) 30 (1.8e-11)
100 60 (1.4e-04) 42 (3.3e-04) 63 (1.1e-02) 60 (9.8e-05) 60 (1.3e-04) 59 (8.0e-05) 62 (3.5e-07)
139 85 (2.5e-04) 69 (7.4e-04) 92 (1.9e-02) 92 (2.0e-04) 89 (2.2e-04) 85 (1.5e-04) 77 (2.2e-05)

a The top 30 probesets were selected by each method.

b 10 probesets overlapped between the top 30 probesets selected by GFC and the top 30 probesets selected by , when data were summarized 

using MAS5.

c The WBH-FDR for the top 30 probesets selected by  was 3.6e-06.

d 8 probesets overlapped between the top 30 probesets selected by GFC (data normalized by MAS5) and the top 30 probesets selected by  

(data normalized by RMA).
e Sensitivity parameter ν = 0.05.
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The proposed quality measures may also be useful in
other applications of microarray experiments. For exam-
ple, in microarray meta-analysis we could weight based
on not just the quality of a study [24], but the quality of
each measurement [25,26].

Methods
Quality measures
The quality of a probeset may depend on many quantities
such as spatial arrangement on arrays, upper and lower
threshold effects, etc. Here we focus on measuring reliabil-
ity and consistency of a probeset's expression using the
probeset's detection p-value. The distribution of expres-
sion within a probeset, leading to a detection p-value, is
influenced by all stages of the microarray process includ-
ing scanner brightness, background, RNA quality, chip
design, etc. [5]. Therefore, it can be thought as a synthesis
index to represent the probeset's quality.

In this paper, we defined quality measures hierarchically
at 3 levels (Table 1): (a) gene and array level, (b) gene and
group level, summarizing across arrays within each group,
(c) gene level, summarizing across arrays as well as
groups. Suppose there are i = 1, 2, ..., I arrays in total, each
containing g = 1, 2, ..., G genes. Further, assume that there
are W treatment groups, each consisting of nw arrays, for w

= 1, 2, ..., W. Therefore, for the first aspect (a), we meas-
ured the quality of the measure of expression for one tran-
script based on the detection p-value or the Affymetrix
Present/Absent/Marginal call [5]. Two measures were

defined, which we denote by qgi, the detection p-value,

and , based on the present/absent call (see Table 1).

Approaches for summarizing across a set of arrays take
two forms. Firstly, the quality of a gene's measurement
across a particular group of arrays can be defined; we call

this . Several different quality scores are described in

Table 1, with more detail below for the exponential and
beta distributions. Secondly, group-level quality scores
can be used to create a single summary measure that
applies to all arrays being analyzed. For the latter, we use

Qg = maxw∈{1 ...W}[ ] . Use of the maximum leads to the

desirable property that genes present under one set of
experimental conditions but absent under another will be
retained for analysis with a high quality score.

To develop a model-based quality measure, we argued as
follows: if a gene is not expressed or cannot be measured,
then the detection p-values (qgi) are expected to follow a

uniform distribution. Equivalently, if a gene's expression
cannot be detected, then we can assume a common distri-
bution for this gene for all arrays in group w, such that -
log(qgi) ~ Exp(1). That is, the negative log(qgi) follows an

exponential distribution with a rate parameter value of 1
[25]. We therefore made the assumption that the qgi for

gene g and array i follows the one-parameter exponential

distribution with a group specific mean λgw, w = 1, ..., W,

qgi
*

Rg
w

Rg
w

Table 4: Comparison of our methods and Haslett et al. [16]. Identification of differentially-expressed probesets validated by RT-PCR: 
given a chosen number of probesets selected by GFC, and the number of probesets validated by RT-PCR within this set, how many of 
the RT-PCR probesets were selected by the methods in this paper.

Method # of probesets selected: 
# of GFC selections validated by RT-PCR

MAS5 30a : 8b 5c 1 5 5 5 5 4
50 : 11 8 2 7 7 8 7 6
100 : 12 11 3 10 10 11 10 11
139 : 13 12 4 11 11 12 12 12

RMA 30 : N/A 2d 1 4 2 2 2 6
50 : N/A 6 2 7 6 6 6 7
100 : N/A 9 4 9 9 9 8 8
139 : N/A 10 4 11 10 10 10 11

a The top 30 probesets were selected by each method.
b 8 probesets in the top 30 were validated by RT-PCR in Haslett et al. [16].

c 5 RT-PCR probesets were among the top 30 probesets selected by . The 5 RT-PCR probesets are among the 8 RT-PCR probesets selected 

by GFC.

d 2 RT-PCR probesets were among the top 30 probesets selected by  (data normalized by RMA). The 2 RT-PCR probesets are among the 8 

RT-PCR probesets selected by GFC, using the MAS5 normalization.
e Sensitivity parameter ν = 0.05.
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so that -log(qgi) ~ Exp(λgw). The maximum likelihood esti-

mate of λgw is the inverse of the group-specific sample

mean. Define ν, a sensitivity parameter, to be a desired
threshold for the detection p-values, representing 1 minus
the probability that any probeset in a particular treatment

group shows a detectable signal. Then P(qgiw ≤ ν) leads to

. Although the

distribution of the qgi may not follow an exponential dis-

tribution exactly, this simple assumption may give ade-
quate results for developing quality measures.

Theoretically, p-values are expected to follow a two-
parameter Beta distribution. However, estimating these
two parameters is occasionally impossible due to the fact
that the detection p-values are derived from rank tests,
and all arrays may have exactly the same p-value when
genes are highly expressed. Pounds and Cheng [11]
recently proposed a one-parameter Beta distribution to
model detection p-values within each experimental

group, , with

sensitivity parameter ν. The parameter  can be esti-

mated by [27], where

Tests of differential expression with quality weights

In traditional meta-analysis, quality measures are often
used when combining results from different studies [28].
Without loss of generality, we can assume that we are
comparing two groups of microarrays (with NA arrays in

group A and NB in group B), and testing for differentially-

expressed genes with the two-sample Welch t-statistic, not
assuming equal variances. For gene g, the test statistic is

therefore , where  and 

denote the sample average intensities in groups A and B,

respectively, and  and  denote the corresponding

sample variances. For more than two groups, an F statistic
could be used instead. The quality measure (Qg) for gene

g is then incorporated by  = tgQg. Therefore,  = tg when

Qg = 1, and  goes to zero with low quality scores.

We converted this modified t-test statistic to a p-value by
reference to a standard t-distribution with degrees of free-
dom based on Satterthwaite's approximation [29], assum-
ing unequal variances between groups A and B. Of course,

it is clear that  will no longer follow the t-distribution,

since the kurtosis will be substantially altered as Qg gets

closer to zero. However, the next section describes how
these altered p-values were used in modified adjustments
for multiple testing.

This simple approach of weighting the t-test statistics can
be contrasted with the approach of weighting the expres-
sion intensities within the test statistic. Using standard
formula for weighting based on quality, we constructed

, where  and  are

the group-specific weighted means and standard devia-
tions [30], weighted by 1 - qqi. Here, w = A, B. We obtained

pqtg from a t-distribution with degrees of freedom based on

Satterthwaite's approximation [29]. For brevity, we refer

to this approach as  even though there was no specific

quality measure attached to each gene.

R P q eg
w

giw
gw= − ≥ − =( log( ) log )

logν λ ν

R p q Beta q a dqg
w

giw gw
agw= ≤ = =∫( ) ( ; )ν ν

ν

0

âgw

ˆ /( )a q qgw gw gw= −1

q q ngw giw
i w

w=
∈
∑

t
x x

s N s N
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=
−

+2 2/ /
xgA xgB
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2
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* tg

*
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*
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t
x x

s N s N
qg
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=
−

+2 2/ /
xqgw sqgw

2

Qg
we

Table 5: Area under the curves (AUCs) of Choe's spiked-in data (ν = 0.05)

Method Multiple 
Testing

Quality Measures

RMA Unadjust 0.800 0.881 0.885 0.882 0.850 0804 0.854
WBH 0.779 0.871 0.874 0.868 0.832 0.776 0.847

MAS5 Unadjust 0.815 0.889 0.901 0.896 0.869 0.814 0.922
WBH 0.800 0.877 0.895 0.884 0.856 0.789 0.653
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Multiple hypotheses testing with weights
Several authors have considered the problem of including
weights in multiple hypothesis testing situations [31-33].
Often, weights have been introduced when some of the
hypotheses Hi are deemed more important than others.
For example, Holm [31] first introduced weights into his
sequentially rejective multiple hypothesis testing proce-
dure, where weight was used to indicate the importance of
the hypotheses. In that spirit, testing for differences in
genes that are not expressed or non-specific in such genes
should be considered less important than testing for dif-
ferences among genes that are specific and well-expressed.

To give another perspective, our quality-weighted statis-
tics t* can also be considered as an implementation of a

filtering method. For example,  is a straightforward

implementation of filtering based on including only
genes with present calls on all arrays, and our other meas-
ures effectively exclude genes with small quality measures
when the weighted statistic t* is close to zero. Therefore,
we propose to adjust the effective number of genes tested
to correspond to the number of tested genes of high qual-
ity.

Assume that quality measures Q1, Q2, ..., QG and signifi-

cance values p1, p2, ..., pG have been calculated for all G

genes. Let  denote the ordered signifi-

cance values, and let  denote the quality

measures in the same order. We redefined the Benjamini
and Hochberg (BH) multiple testing procedure as

. The sums of the

quality measures in this formula estimate the number of
high quality genes instead of the number of genes. We call
this approach the Weighted Benjamini and Hochberg
(WBH) method. Similar modifications lead to a weighted
Benjamini and Yekutieli (WBY) procedure (not shown).

We applied WBH to the t-statistics modified by the quality

measures , ,  and . For the t-statis-

tics modified by quality measures  and  as well as

local pooled error (LPE) test , the standard form of

the Benjamini and Hochberg (BH) multiple testing proce-
dure was used.

Qg
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p p pG1 2
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Receiver Operator Characteristic (ROC) plots for tests of differential expression in Choe's spiked-in data summarized by MAS5Figure 3
Receiver Operator Characteristic (ROC) plots for tests of 
differential expression in Choe's spiked-in data summarized 
by MAS5. (a) p-values unadjusted for multiple testing, (b) p-
values adjusted by the weighted Benjamini and Hochberg 
(WBH) multiple testing method.
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Simulation method
Affymetrix probe level data were generated based on a
unified model proposed by Wu et al. [14]. When treat-
ment effects are considered for different conditions, such
as cancer and normal tissues, gene expression across these
conditions can be modeled as:

where Ygij and Wgij are the PM and MM intensities for the

probe j in probeset g on array i respectively; O denotes
optical noise. N represents non-specific binding (NSB)
noise. S is a quantity proportional to RNA expression and

the coefficient 0 < Φ < 1 accounts for the fact that for some
probe-pairs the MM detects signal. Following Wu et al.

[14], we simulated  and  using independent

draws from log2( ) ~ N(5, 0.1) and log2( ) ~

N(5, 0.1). We set  =  = 4.6, and assumed that

 and  follow a bivariate normal distribution

with mean 0, variance 1, and correlation 0.88. We then
generated identically and independently distributed ran-

dom variates e ~ N(0,0.08), so that  and

similarly . When mismatch probe j of

gene g is attached by picking up stray signal, Φgi is gener-

ated as Φgi ~ Beta(0.5,5), otherwise, Φgi = 0. The propor-

tion of attached probes among total probes was set to
0.01. Since S follows a power law, we set its base to 2.

Therefore, if we denote γg as the baseline log expression

level for probeset g, we can select log2(γg) expression levels

from 0 to 12, which were generated from γg ~ 12*

Beta(1,3) + 1. δg is the expected differential expression of

gene g across different conditions, which is varied in the
simulations. bi, which describes the need for normaliza-

tion, was set to be zero. αgij is the signal detecting ability

of probe j in gene g on array i, which is assumed to follow
a normal distribution with mean zero and signal detec-

tion variance . Multiplicative errors  and 

were generated independently from N(0, ). Values of

 and  were varied in the simulations. Since the the-

oretical maximum value of an Affymetrix scanner is 216,
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Receiver Operator Characteristic (ROC) plots for tests of differential expression in Choe's spiked-in data was summa-rized by RMAFigure 4
Receiver Operator Characteristic (ROC) plots for tests of 
differential expression in Choe's spiked-in data was summa-
rized by RMA. (a) p-values unadjusted for multiple testing, (b) 
p-values adjusted by the weighted Benjamini and Hochberg 
(WBH) multiple testing method.
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we kept only generated Ygij and Wgij less than 216, that is,

 and

. The RMA algo-

rithm [12] was used to summarize simulated probe-level
data into a signal value, and the MAS5 algorithm [5] was
used to obtain the detection p-value.

Design of simulation study
The simulation design is shown in Table 7. We assumed
two groups, A and B, with NA and NB arrays, respectively.
G genes were generated, of them the proportion of
expressed genes is k, and the proportion of differentially
expressed genes is d of the G*k expressed genes. We set the
number of up-and -down regulated genes to be the same

in this study. Therefore, the G genes are divided into four
groups: a non-expressed gene group where genes are not
expressed across all arrays in group A and group B; a non-
differentially expressed gene group where genes are
expressed but not differentially between groups A and B;
an up-regulated gene group where the mean gene expres-
sion of gene g in group B is larger by δg than that in group
A; and a down-regulated gene group where the mean gene
expression of gene g in group A is larger by δg than that in
group B.

We ran five simulation models following the above
design. The specific parameters used in the five models
are: number of genes: 1000; sample size: 25 arrays in
groups A and B, respectively (for a total of 50 arrays);
number of probes within each probeset: 16; proportion of

Y O N Sgij gij
PM

gij
PM

gij
PM= + +min( , )216

W O N Sgij gij
MM

gij
MM

gij
MM= + +min( , )Φ 216

Table 7: Simulation structure of Affymetrix microarray data

Group A Group B

Array 1 ...... Array NA Array 1 ...... Array NB

Up-regulated 
Gene Group

g1 γg γg = γg + δg

...
gd*k*G/2

Down-
regulated Gene 

Group

gd*k*G/2+1 γg = γg + δg γg

...
gd*k*G

Non-
differentially 

Expressed Gene 
Group

gd*k*G+1 γg ≠ 0 
δg = 0

...
gk*G

Non- Expressed 
Gene Group

gk*G+1 γg = 0
δg = 0

...
G

Table 6: Sensitivity and specificity for detecting differentially expressed genes, as a function of the sensitivity parameter ν

ν

Sensitivity Specificity Sensitivity Specificity

0.6 0.9996 0.7562 0.9998 0.7207
0.5 0.9995 0.7763 0.9997 0.7372
0.4 0.9981 0.7930 0.9994 0.7490
0.3 0.9967 0.8070 0.9990 0.7590
0.2 0.9922 0.8211 0.9984 0.7668
0.1 0.9831 0.8373 0.9956 0.7752
0.05 0.9660 0.8507 0.9936 0.7812
0.01 0.9167 0.8665 0.9413 0.7873

Qg
exp Qg

beta
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expressed genes: 0.5; proportion of differentially
expressed genes: 0.1; signal detection variance: 0.25; mul-
tiplicative error variance: 0.05 and sensitivity parameter ν:
0.05.

Duchenne muscular dystrophy data
Haslett et al. [16] hybridized the total RNA to HG-U95Av2
GeneChips. They used MAS5 to obtain signal intensities
and normalized with a linear regression. Tests of differen-
tial expression were based on geometric fold change
(GFC) [16]. The differential expression of 12 genes (13
probesets) was confirmed by quantitative RT-PCR analysis
of seven DMD biopsies and four unaffected biopsies. We
used only 23 arrays (only 11 DMD arrays) for our re-anal-
ysis since one file was truncated. Raw data were converted
to signal estimates using both MAS5 [5] and RMA [12],
both were implemented using the affy package in Biocon-
ductor [34].

Spiked-in data of Choe et al. [17]
The 'spiked-in' experiment (Choe et al. [17]) for Affyme-
trix Genechips provides a controlled dataset of 3,860 RNA
species with known sequence and known concentration.
Two different samples were prepared and hybridized in
triplicate to Affymetric GeneChips; these are called the
'constant' (C) and 'spike' (S) samples. Out of 3,860 RNA
species, 2,551 of them were created to have the same con-
centrations in both samples while the rest (1,309) were
spiked in with different concentrations between the S and
C samples. Ten fold-change levels, ranging from 1.2 to 4-
fold, were assigned to the spiked-in RNAs. Basically, all
the RNAs with positive log fold changes can be thought of
as differentially expressed genes. In this study, we consid-
ered the top 1000 probesets as differentially expressed
genes (as did Choe et al. [17]).
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