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Simple Summary: Wilms’ tumor 1-associating protein (WTAP) is a key subunit of the N6-methyl-
adenosine (m6A) methyltransferase complex during porcine early embryo development. However,
the role of WTAP in embryonic development is still unclear. In this study, we demonstrate that
WTAP plays an indispensable role in embryonic development, and the loss of WTAP will promote
the apoptosis of embryonic cells, and reduce the rate and quality of embryonic development.

Abstract: m6A is one of the most common and abundant modifications of RNA molecules present
in eukaryotes. The methyltransferase complex, consisting of methyltransferase-like 3 (METTL3),
METTL14, and WTAP, is responsible for the m6A modification of RNA. WTAP was identified as an
mRNA splicing regulator. Its role as a regulatory subunit of the m6A methyltransferase complex
in embryonic development remains largely unknown. To investigate the role of WTAP in porcine
early embryonic development, si-WTAP was microinjected into porcine parthenogenetic zygotes.
WTAP knockdown significantly reduced the blastocyst rate and global m6A levels, but did not affect
the cleavage rate. Betaine was supplemented into the in vitro culture (IVC) to increase the m6A
levels. Betaine significantly increased the global m6A levels but did not affect the blastocyst rate.
Furthermore, the pluripotency genes, including OCT4, SOX2, and NANOG, were downregulated
following WTAP knockdown. The apoptotic genes BAX and CASPASE 3 were upregulated, while the
anti-apoptotic gene BCL2 was downregulated in WTAP knockdown blastocysts. TUNEL staining
revealed that the number of apoptotic cells was significantly increased following WTAP knockdown.
Our study indicated that WTAP has an indispensable role in porcine early embryonic development.
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1. Introduction

Methylation of the adenosine base at the nitrogen-6 position (m6A) is one of the
most common and abundant post-transcriptional epigenetic modifications of RNA in
eukaryotes [1,2]. Previous studies have shown that m6A RNA modification is regulated by
adenosine methyltransferases and demethylases [3]. The m6A methyltransferases (or the
“writers”), including METTL3 and METTL14, methylate the N6 position of adenosine [4].
The m6A demethylases (or the “erasers”), including FTO and ALKBH5, reverse the RNA
methylation process [5–7]. Furthermore, the m6A binding proteins (or the “readers”), such
as YTHDF2 and YTHDC1, recognize the m6A sites of target mRNAs and regulate the fate
of the mRNA [8,9].

WTAP was originally identified as a splicing regulator that binds to human Wilms’
tumor 1 protein [10]. It plays an important role in cell cycle progression and mammalian
embryo development [11]. The involvement of WTAP in RNA methylation was first ob-
served in studies in Arabidopsis thaliana and yeast [12,13]. In a recent study, WTAP was
reported to be the third regulatory subunit of the m6A methyltransferase complex [14]. Al-
though WTAP has no inherent methylation activity, it interacts with the METTL3–METTL14
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heterodimer and synergistically forms the m6A methyltransferase complex to promote
m6A methylation [15].

A growing body of evidence indicates that global mRNA m6A levels are associated
with embryonic development [16]. Previous studies have shown that a deficiency in
methyltransferases led to reduced global mRNA m6A levels and negatively affected embryo
development in mice [17]. Knockdown of WTAP in zebrafish embryos caused defects in
tissue differentiation and increased apoptosis [14]. However, the biological role of WTAP
in porcine early embryo development is unknown. In the present study, we investigated
the effect of WTAP on global mRNA m6A levels and subsequent embryonic development
competence by knocking down WTAP in porcine parthenogenetic embryos. Our study
demonstrates that WTAP plays an indispensable role in porcine parthenogenetic early
embryo development.

2. Materials and Methods

All chemicals and reagents in this study were purchased from Sigma-Aldrich (St.
Louis, MO, USA), unless noted otherwise.

2.1. Oocyte Collection and In Vitro Maturation

Porcine ovaries from slaughtered pre-pubertal gilts were obtained from a local slaugh-
terhouse and transported to the laboratory in 0.9% saline at 35 ◦C within 2 h. The cumulus–
oocyte complexes (COCs) were isolated from 3–8 mm antral follicles aspirated using an
18-gauge needle. COCs, with multiple layers of compact cumulus cells, were selected, and
washed three times in hydroxyethyl piperazine ethane sulfonic acid (HEPES) medium with
0.1% polyvinyl alcohol (PVA, w/v) and 0.05 g/L gentamycin. The COCs were cultured in
200 mL of in vitro maturation (IVM) medium, covered with mineral oil and incubated for
42 h at 38.5 ◦C in an atmosphere containing 5% CO2 at 100% humidity.

2.2. Parthenogenetic Activation (PA) of Oocyte and In Vitro Culture

To obtain the porcine haploid embryos, parthenogenetic activation (PA) was used. PA
was performed as described in previous reports [18]. Briefly, the metaphase-II (MII) oocytes
were activated by two direct-current (DC) pulses of 120 V/mm for 60 µs in the activation
medium. The activated oocytes were transferred to PZM-5 medium and cultured in an
atmosphere containing 5% CO2 at 100% humidity. The development of the oocytes into
blastocysts was examined after 6 days.

2.3. Microinjection of siRNA into Oocytes

Before microinjection, the oocytes were cultured to MII and subjected to partheno-
genetic activation. The siRNA specific for porcine WTAP (si-WTAP) was microinjected into
the cytoplasm of the zygote using a Nikon TE2000-U inverted microscope (Nikon, Tokyo,
Japan) and an Eppendorf Cell Tram Vario system (Eppendorf, Hamburg, Germany). The
siRNA and the negative controls were microinjected into the zygotes in the same way to
serve as the negative control, while the non-injected zygotes served as the normal controls.
Approximately 10 pL of siRNAs were microinjected into the zygotes at a 20 µM concentra-
tion, and the number of zygotes used was indicated in the figure. Following injection, the zy-
gotes were transferred to PZM-5 medium until they developed into blastocysts. The siRNA
specifically targeting WTAP or its non-target negative control siRNA was synthesized by
Genepharma (Shanghai, China). siRNA sequence: 5′-GCAAGAGUGUACUACUCAATT-3′;
negative control siRNA sequence: 5′-UUGUACUACACAAAAGVUACUG-3′.

2.4. Betaine Treatment

After microinjection, porcine zygotes were cultured in vitro in IVC medium supple-
mented with betaine (B2629, Sigma, St. Louis, MO, USA) (5 mM, 10 mM, 20 mM). The
concentrations of chemical reagents were chosen first based on a previously published
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report [19], and then, preliminary experiments were performed to determine the optimal
concentrations, which were then used in subsequent experiments.

2.5. Gene Expression Analysis

Total RNA was extracted from each group of blastocysts (n = 20) using the AllPrep
DNA/RNA Micro Kit (QIAGEN, Dusseldorf, Germany) following the manufacturer’s
instructions. cDNA was synthesized using the First-Strand cDNA Synthesis kit (Promega,
Fitchburg, WI, USA). Quantitative real-time PCR (qPCR) was performed using the BioEasy
SYBR Green I Real-Time PCR Kit (Bioer Technology, Hangzhou, China) on a BIO-RAD iQ5
Multicolor Real-Time PCR Detection System (170-9780, BIO-RAD Laboratories, Hercules,
CA, USA). PCR was performed using the following parameters: initial denaturation at
95 ◦C for 3 min, followed by 40 cycles of denaturation at 95 ◦C for 10 s, annealing at 60 ◦C
for 15 s, and extension at 72 ◦C for 30 s. The 2−∆∆CT method was used to determine the
relative gene expression, which was then normalized to the amount of the endogenous
control, GAPDH. To test the stability of GAPDH, Bio-Rad iQ5 Software was used for the
analysis of amplification curves, melting curves and cycle threshold values (CT values).
The experiments were performed at least in triplicate. The primer sequences used in this
study are listed in Table 1.

Table 1. Primers used for qPCR.

Gene GenBank
Accession No. Primer Sequences

Annealing
Temperature

(◦C)

Product
Size (bp)

Amplification
Efficiency

WTAP NM_001244241.1 F:GCGGGAATAAGGCCTCCAAC
R:TGTGAGTGGCGTGTGAGAGA 60 136 97.4%

OCT4 NM001113060 F:AGTGAGAGGCAACCTGGAGA
R:TCGTTGCGAATAGTCACTGC 60 166 98.2%

SOX2 NP_001116669.1 F:TGTCGGAGACGGAGAAGCG
R:CGGGGCCGGTATTTATAATCC 60 94 97.8%

NANOG NP_001123443.1 F:AGGACAGCCCTGATTCTTCCACAA
R:AAAGTTCTTGCATCTGCTGGAGGC 60 198 98.4%

CASPASE3 NM_214131 F:GAGGCAGACTTCTTGTATGC
R:CATGGACACAATACATGGAA 55 236 99.6%

BAX XM_003127290 F:CGCTTTTCTACTTTGCCAGT
R:GCAGAAAAGACACAGTCCAA 60 279 98.1%

BCL2 XM_021099593 F:CCTCCCATTTAGATGTGACTTT
R:ATCCTCGATGCAGAAAAAGC 60 187 97.6%

GAPDH AF017079 F:GGGCATGAACCATGAGAAGT
R:AAGCAGGGATGATGTTCTGG 60 230 99.5%

2.6. Immunofluorescence Staining

Briefly, the blastocysts were washed three times in PBS–PVA. Then, the thinning of
zona pellucida was performed using Tyrode’s Solution (Jisskang, Qingdao, China). The
embryos were fixed with 4% paraformaldehyde for 30 min at 25 ◦C. Following fixation,
the blastocysts were washed with PBS–PVA and permeabilized in PBS containing 0.2%
Triton X-100 for 30 min. The blastocysts were then incubated in PBS containing 1% bovine
serum albumin (BSA) for 1 h. Next, the blastocysts were probed with m6A antibodies
(1:500, Abcam, Cambridge, UK) and incubated at 4 ◦C overnight. The blastocysts were
washed with PBS three times for 10 min each followed by incubation with Alexa Fluor 488-
conjugated secondary antibodies (1:1000, anti-rabbit) for 1 h at RT. The DNA was stained
with 10 ng/mL Hoechst 33342 (Thermo Scientific, Waltham, MA, USA) for 15–20 min. The
blastocysts were washed thrice with PBS–PVA for 10 min each, air dried, and mounted on a
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coverslip and a glass slide using an antifade mounting medium (BOSTER, Wuhan, China).
To evaluate the average fluorescence intensity in the embryos, image analysis software
(ImageJ) was used.

2.7. TUNEL Assay

The TUNEL assay was performed as described in previous reports [20]. Briefly, the
blastocysts were fixed with 4% paraformaldehyde for 1 h at 25 ◦C. After fixation, the
blastocysts were permeabilized by treatment with 0.1% Triton X-100 for 1 h at 37 ◦C. The
blastocysts were washed three times in PBS–PVA and incubated in the dark for 1 h at
37 ◦C with TdT and fluorescein-conjugated dUTPs (In Situ Cell Death Detection kit; Roche,
Mannheim, Germany). The blastocysts were then stained with 10 µg/mL Hoechst 33342 for
15 min. The blastocysts were washed thrice with PBS–PVA for 10 min each, air dried, and
mounted on a coverslip and a glass slide using an antifade mounting medium (BOSTER,
Wuhan, China). The number of cells in the blastocysts was analyzed by using ImageJ.

2.8. Statistical Analysis

The data were analyzed using Student’s t-tests with the SPSS 16.0 software (SPSS Inc.,
Chicago, IL, USA). A p-value of <0.05 was considered statistically significant. The number
of embryos used for the statistics in each group of the experiment is equal to n in the figure.

3. Results
3.1. WTAP Knockdown Impairs Embryo Development

To investigate the role of WTAP in embryo development, si-WTAP and negative
control siRNA were microinjected into zygotes. The expression of WTAP was analyzed by
qPCR. The expression of WTAP was significantly (p < 0.005) decreased in si-WTAP-injected
embryos compared to that in the negative control siRNA-injected (NC) or non-injected
embryos (Con) (Figure 1a). The change in the WTAP level did not affect the cleavage rate
(Con, 94.00 ± 2.89%, NC, 91.30 ± 3.47%, si-WTAP, 92.06 ± 3.98%) (Figure 1b), although it
significantly (p < 0.005) reduced the blastocyst rate (Con, 49.28± 2.38%, NC, 48.28 ± 2.01%,
si-WTAP, 32.38 ± 2.76%) (Figure 1c). The m6A expression level was analyzed using im-
munofluorescence (IF) staining. The results showed that m6A expression was significantly
decreased (p < 0.005) in the si-WTAP group compared to the NC group and Con group
(Figure 1d,e). These results indicate that WTAP knockdown reduced the global mRNA
m6A levels and negatively affected embryo development.
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Figure 1. WTAP knockdown impaired embryo development and decreased m6A levels. (a) Expression of WTAP decreased 
significantly (*** p < 0.005) in the si-WTAP group compared to the Con and NC groups. (b) The cleavage rate in the si-
WTAP group did not differ compared to other groups. (c) The blastocyst rates (determined on day 6) decreased signifi-
cantly (*** p < 0.005) in the si-WTAP group compared to the other groups. (d) Representative images of m6A im-
munostained blastocysts in Con, NC, and si-WTAP groups. Blue, Hoechst 33342. Green, m6A. Merge, Hoechst 33342/m6A. 
(e) The relative m6A fluorescence intensity in blastocysts in Con, NC, and si-WTAP groups. The m6A expression was 
significantly (*** p < 0.005) lower in the si-WTAP group compared to the other groups. The data are presented as the mean 
± S.E.M. (n = 4). 
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sults indicate that betaine exposure elevated the global mRNA m6A levels, but did not 
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Figure 1. WTAP knockdown impaired embryo development and decreased m6A levels. (a) Expression of WTAP decreased
significantly (*** p < 0.005) in the si-WTAP group compared to the Con and NC groups. (b) The cleavage rate in the si-WTAP
group did not differ compared to other groups. (c) The blastocyst rates (determined on day 6) decreased significantly
(*** p < 0.005) in the si-WTAP group compared to the other groups. (d) Representative images of m6A immunostained
blastocysts in Con, NC, and si-WTAP groups. Blue, Hoechst 33342. Green, m6A. Merge, Hoechst 33342/m6A. (e) The
relative m6A fluorescence intensity in blastocysts in Con, NC, and si-WTAP groups. The m6A expression was significantly
(*** p < 0.005) lower in the si-WTAP group compared to the other groups. The data are presented as the mean ± S.E.M.
(n = 4).

3.2. No Effect of Betaine on WTAP-Knockdown Embryo Development

WTAP knockdown reduced the global mRNA m6A levels and the blastocyst rate in
porcine parthenogenetic embryos. The IVC medium was supplemented with betaine to
investigate its effects on WTAP-knockdown embryo development. However, there was
no change in the blastocyst rate following treatment with 5 mM, 10 mM, or 20 mM of
betaine (Figure 2a). We used 20 mM of betaine for subsequent studies. The qPCR results
showed that the expression of WTAP was not altered in embryos treated with betaine
(Figure 2b). However, the results of the IF staining showed that m6A expression was
significantly (p < 0.005) increased following treatment with betaine (Figure 2c,d). These
results indicate that betaine exposure elevated the global mRNA m6A levels, but did not
affect WTAP-knockdown embryo development.
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in Con, si-WTAP, and si-WTAP + betaine groups. m6A expression was significantly (*** p < 0.005) higher in the betaine 
and si-WTAP + betaine group compared to the Con group. The data are presented as the mean ± S.E.M. (n = 4). 

3.3. WTAP Knockdown Promoted Embryonic Apoptosis 
The mRNA expression of pluripotency- and apoptosis-related genes was analyzed in 

the blastocysts. The qPCR results showed that compared to the NC and Con groups, the 
expression of the pluripotent genes SOX2, OCT4, and NANOG were significantly (p < 
0.005) downregulated in the si-WTAP group (Figure 3a). In addition, our study showed 
that the expression of the apoptotic genes CASPASE 3 and BAX were significantly (p < 
0.005) upregulated, in contrast to the expression of the anti-apoptotic gene BCL2 (Figure 
3b). To investigate the effect of WTAP knockdown on embryonic cell apoptosis, the blas-
tocysts were analyzed by TUNEL staining. TUNEL staining showed that the number of 
apoptotic cells was increased following WTAP knockdown (Figure 3c). Moreover, WTAP 
knockdown significantly (p < 0.005) decreased the total number of cells in the blastocysts 
compared to the NC and Con groups (Figure 3d). Our results showed that the loss of 
WTAP promoted apoptosis in the embryos. 

Figure 2. Betaine increased m6A levels, but had no effect on WTAP-knockdown embryo development. (a) Effect of betaine
treatment (5 mM, 10 mM, and 20 mM) on the blastocyst rate of porcine embryos during IVC. The blastocyst rate in si-WTAP
+ betaine group did not show any increase compared to the Con group and si-WTAP groups. (b) The expression of WTAP
decreased significantly (*** p < 0.005) in the si-WTAP + betaine group, while it did not change in the si-WTAP group.
(c) Representative images of m6A immunostained blastocysts in the Con, betaine, and si-WTAP + betaine groups. Blue,
Hoechst 33342. Green, m6A. Merge, Hoechst 33342/m6A. (d) The relative m6A fluorescence intensity in the blastocysts
in Con, si-WTAP, and si-WTAP + betaine groups. m6A expression was significantly (*** p < 0.005) higher in the betaine
and si-WTAP + betaine group compared to the Con group. The data are presented as the mean ± S.E.M. (n = 4). ns: no
significantly.

3.3. WTAP Knockdown Promoted Embryonic Apoptosis

The mRNA expression of pluripotency- and apoptosis-related genes was analyzed in
the blastocysts. The qPCR results showed that compared to the NC and Con groups, the
expression of the pluripotent genes SOX2, OCT4, and NANOG were significantly (p < 0.005)
downregulated in the si-WTAP group (Figure 3a). In addition, our study showed that
the expression of the apoptotic genes CASPASE 3 and BAX were significantly (p < 0.005)
upregulated, in contrast to the expression of the anti-apoptotic gene BCL2 (Figure 3b). To
investigate the effect of WTAP knockdown on embryonic cell apoptosis, the blastocysts
were analyzed by TUNEL staining. TUNEL staining showed that the number of apoptotic
cells was increased following WTAP knockdown (Figure 3c). Moreover, WTAP knockdown
significantly (p < 0.005) decreased the total number of cells in the blastocysts compared to
the NC and Con groups (Figure 3d). Our results showed that the loss of WTAP promoted
apoptosis in the embryos.
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4. Discussion

The methylation of m6A has been shown to be a reversible process, attributable to
modifications by two types of enzymes: methyltransferases and demethylases [21]. How-
ever, the identity of the enzymes responsible for each modification and the biological
consequences of these modified RNAs are largely unknown [22]. A recent study showed
that knockout of METTL3 reduces m6A in mRNAs in mice and the embryos remain in a
naive state, leading to early embryonic lethality [17]. Previous studies showed that knock-
down of WTAP in zebrafish embryos led to multiple developmental defects, including
a smaller head and eyes, a smaller brain ventricle, and a curved notochord. Moreover,
knockdown of WTAP led to a striking increase in apoptosis in zebrafish embryos [14]. In
the present study, we knocked down the expression of WTAP in pig parthenogenetic em-
bryos by microinjection of si-WTAP, which led to a reduction in the blastocyst rate. TUNEL
apoptotic staining showed a significantly increased number of apoptotic cells following
WTAP knockdown, which is in agreement with the study carried out on zebrafish.

WTAP is the third regulatory subunit in the m6A methyltransferase complex. Previous
studies showed that METTL3 and METTL14 can interact to form heterodimers to affect
m6A methylation [14]. WTAP interacts with the METTL3–METTL14 heterodimer and
synergistically forms the m6A methyltransferase complex to promote m6A methylation. A
recent study showed that reduced nucleic acid methylation could impair the maturation
and development of pig oocytes [19]. Our results showed that the global mRNA m6A
levels and blastocyst rate were reduced when we inhibited the expression of WTAP. This
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may suggest that RNA methylation plays an important role in both oocyte and embry-
onic development. Moreover, WTAP regulates transcription and alternative splicing. For
example, female-lethal (2)d, a homologue of WTAP in drosophila, regulates the sex de-
termination factor Sel by influencing the alternative splicing of pre-mRNA, and female
embryos are lethal when fl(2)d is lost [23–25]. Previous studies have shown that betaine
is usually used as a methyl donor to increase the global m6A level [19]. Treatment of the
porcine parthenogenetic embryos with a methyl donor during IVC significantly boosted
the m6A level within the embryos; however, the blastocyst rate and embryonic apoptosis
remained unchanged. This may be because WTAP is merely a regulatory subunit without
any methylation activity, and the methyl donor did not reverse the embryo damage caused
by the deficiency of WTAP (Figure 4).
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Figure 4. Working model showing that WTAP plays an indispensable role in porcine early embryonic
development. Loss of WTAP impairs early parthenogenetic embryo development and treatment of
betaine could not reverse the embryo damage.

Previous studies showed that WTAP plays an important role in early embryo de-
velopment and cell cycle regulation [11,26]. Moreover, WTAP may be associated with
apoptosis. A previous study showed that WTAP activated apoptosis in smooth muscle
cells by regulating the splicing of the apoptosis regulator [27]. Studies have revealed that
WTAP-deficient mouse embryos failed to differentiate into the endoderm and mesoderm,
and exhibited early lethality [28]. In our study, we found that the pluripotent genes SOX2,
OCT4, and NANOG were downregulated in WTAP-inhibited blastocysts. The apoptosis
genes CASPASE 3 and BAX were upregulated in WTAP-inhibited blastocysts, while the
anti-apoptotic gene BCL2 showed the opposite expression pattern. We speculate that WTAP
may affect the embryo development and quality of blastocysts by regulating the expression
of pluripotency- and apoptosis-related genes.

5. Conclusions

Our study demonstrated that WTAP plays an indispensable role in regulating RNA
methylation during porcine parthenogenetic embryo development. Knockdown of WTAP
promoted embryonic apoptosis and negatively affected embryo development. Treatment
with betaine during IVC significantly increased m6A levels in blastocysts, but it could not
improve embryo development when WTAP was lost.

Author Contributions: Conceptualization, J.H., J.Z. and X.Y.; validation, S.H. and D.W.; formal
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