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Abstract

Understanding essential signaling network requirements and making appropriate adjustments in culture conditions
are crucial if porcine pluripotent stem cells (PSC) are to achieve their full potential. Here, we first used two protein
factors (LIF and FGF2) and kinase inhibitor combinations in attempts to convert primed type lentiviral-reprogrammed
porcine induced PSC (Lv-piPSC) into naive-like state and developed a medium called FL6i. In addition to FGF2 and LIF,
this medium contained inhibitors of MAPK14, MAPK8, TGFB1, MAP2K1, GSK3A and BMP. Crucially, the usual TGFB1 and
BMP4 protein components of many stem cell media were replaced in FL6i with inhibitors of TGFB1 and BMP. With this
medium, Lv-piPSC were readily transformed from their original primed state into cells that formed colonies with
typical features of naive-state stem cells. The FL6i medium also assisted generation of naive-type piPSC lines from
porcine embryonic fibroblasts with non-integrating episomal plasmids (Epi-piPSC). These lines, despite retaining
variable amounts of vector DNA, expressed higher endogenous pPOU5FT and pSOX2 than Lv-piPSC. They have been
cultured without obvious morphological change for >45 passages and retained pluripotent phenotypes in terms of
upregulation of genes associated with pluripotency, low expression of genes linked to emergence of somatic cell
lineages, and ability to generate well differentiated teratomas in immune-compromised mice. FL6i conditions,
therefore, appear to support elevated pluripotent phenotypes. However, FL6i was less able to support the generation
of embryonic stem cells from porcine blastocysts. Although colonies with dome-shaped morphologies were evident
and the cells had some gene expression features linked to pluripotency, the phenotypes were ultimately not stable.
Pathway analysis derived from RNAseq data performed on the various cell lines generated in this study suggest the
benefits of employing the FL6i medium on porcine cells reside in its ability to minimize TGFB1 and BMP signaling,

which would otherwise de-stabilize the stem cell state.

Introduction

Pigs probably constitute the premier non-primate
model for biomedical testing because of their physiolo-
gical similarities to humans’. Accordingly, porcine plur-
ipotent stem cells (PSC) potentially provide powerful tools
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for evaluating the safety and efficacy of stem cell based
therapies, as well as having utility in the production of
transgenic pigs and xenografts"*. However, the derivation
of authentic porcine embryonic stem cell (pESC)*~® and
transgene free porcine iPSC (piPSC)’™*? that can readily
differentiate into all cell lineages still remains proble-
matic'®, although several promising advances have
recently been reported'®**~*¢,

Most, if not all, piPSC lines depend on ectopic genes
expressions to maintain self-renewal because of a failure
to fully activate the endogenous genes required to provide
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a pluripotent phenotype”'” ™', The persistent expression
of these reprogramming genes may complicate cell dif-
ferentiation protocols, and there is concern that they may
produce tumors in the treated animal. Various non-viral
reprogramming methods have been tested to obtain
transgene-free piPSC, but outcomes fail to up-regulate
endogenous genes and whether or not the persistence of
ectopic gene expression is required for pluripotency have
been ambiguous'®?°~*%, There have also been consistent
failures in generating pESC from the inner cell mass
(ICM) and epiblast of porcine embryos, suggesting that
special culture conditions are necessary to maintain stable
endogenous pluripotency networks in pig cells. It has long
been known that supplementation with certain cytokines
and small molecule inhibitors and other fine tuning of the
culture conditions can allow derivation of PSC from
certain “non-permissive” mouse strains and rats*>~>> and
{Buehr, 2008 #141} permit generation of human PSC in
various states of pluripotency26_32.

Here we report the development of culture conditions,
based on the naive human stem cell medium (NHSM)%,
that permits conversion of primed/epiblast-types of piPSC
into cultures with naive-type properties. Two other goals
were to employ similar culture conditions to produce
piPSC from somatic cells by using non-integrating epi-
somal plasmids and to generate genuine pESC from
outgrowths of porcine blastocysts.

Materials and methods
Routine maintenance and culture conditions of PSC

For routine maintenance, piPSC and pESC like cells
(pESCLC) were cultured on irradiated mouse embryonic
fibroblasts (iIMEF) in 10 cm-culture dish (Corning), six-
well tissue culture plates (Thermo Scientific) or twelve-
well culture plates (Thermo) under 5% CO,, 5% O,, and
20% N, atmosphere in O,/CO, incubator (Heracell150,
Thermo) with daily medium exchange. We employed an
antibiotic-free culture condition, which provides an on-
going means of monitoring aseptic technique by labora-
tory workers. Mycoplasma infections are regularly sur-
veyed (every quarter) by MycoAlert™ Mycoplasma
Detection Kit (Lonza). The cells used in the study were all
infection free. The medium included: [1. F] standard
hESC medium supplemented with 4 ng/ml human (h)
FGF2 (in house produced from yeast)*> and 20% v/v
knockout serum replacement (KOSR, Invitrogen)7’34. [2.
NHSM] knockout-DMEM (Invitrogen) with 20% KOSR,
1mM glutamine (Invitrogen), 1% nonessential amino
acids (Invitrogen), 100 ug/ml primocin (InvivoGen),
12,5 ug/ml recombinant human insulin (Sigma) and
20 ng/ml IGF1 (ProSpec) as basal medium. Cytokine and
small molecules include 20 ng/ml hLIF (Millipore), 8 ng/
ml hFGF2, 2ng/ml TGEFB1 (Prospec), 2uM p38i
(MAPK14 inhibitor, BIRB796, Selleckchem), 5uM JNKi
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(MAPKS8 inhibitor, SP600125, Tocris), 0.4uM BMP
inhibitor (LDN193189, Axon), 3 uM GSK3A inhibitor
(CHIR99021, STEMCELL Technologies), and 1uM
ERK1/2i (MAP2K inhibitor, PD0325901, Selleckchem)?’.
[3. FLB2i] 10ng/ml hLIF, 8 ng/mL hFGF2, 10 ng/ml
BMP4 (R& D Systems), 3 uM GSK3A inhibitor, and 2 uM
TGFBL1 inhibitor (A83-01, Xcessbio)'?. [4. FL6i] modified
from NHSM by replacing TGFB1 with 1M TGFB1
inhibitor. ~Additionally, FGFR inhibitor PD173074
(STEMCELL Technologies) and JAK Inhibitor I (CAS
457081-03-7, Calbiochem) were tested in Lv-piPSC cul-
ture (Fig. 2b).

Generation of iPSCs from porcine fetal fibroblasts with
episomal vectors

Porcine fetal fibroblasts were reprogrammed with non-
integrating episomal vectors according to previously
described protocols®. 3 ug of combined three episomal
plasmids (Addgene #27077, 27078 and 27079) containing
human POUSFI, SOX2, KLF4, LIN28, L-MYC and
P53 shRNA were electroporated with a Nucleofector II
device (Lonza) and Amaxa NHDF Nucleofector kit
(Lonza) into 6 x 10° porcine fetal fibroblast cells derived
from day 34 conceptuses®®. The following day, the cells
were placed into three 10 cm dishes previously plated with
iMEF. Next day the culture medium was switched to
NHSM basal medium with FGF2 and LIF (FL condition in
the first dish), FLB2i medium in the second dish and FL6i
medium in the third dish. 17-day post transfection,
emerged independent colonies were mechanically isolated
from the dishes and expanded. A total of two iPSC lines in
FL, four lines in FLB2i and eight lines in FL6i conditions
were established, respectively.

Collection, production, and culture of porcine blastocysts

The collection, production and culture of porcine
blastocysts was conducted by using methods described
previously”’. Porcine blastocysts were seeded on iMEFs
and in pESC medium’, a 50:50 mixture of DMEM low
glucose and Ham’s F10 medium (Thermo), supplemented
with 15% fetal bovine serum (FBS; Hyclone), 2 mM glu-
tamax, 0.1 mM f3-mercaptoethanol, 1x MEM nonessential
amino acids, 1x antibiotic/antimycotic (Thermo) con-
taining cytokines, and 20 ng/ml hFGF2 (in house)®. Two
methods were used to generate pESCLC: plating day 7-8
of intact blastocyst and inner cell mass (ICM) isolated by
immunosurgery®®. Following 5-7 days of culture, we
observed pESCLC primary colonies derived from porcine
blastocysts. These pESCLC colonies were mechanically
dissociated into several clumps by using pulled glass
pipettes 10-15 days after seeding. Dissociated clumps
were then re-seeded on fresh iMEFs, and subsequent
pESCLC lines were routinely passaged via the pulled glass
pipette method every 5-7 days.
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Alkaline phosphatase (AP) staining and
immunocytochemistry (ICC)

AP staining was performed by the nitro blue tetrazolium/
5-bromo-4-chloro-3-indolyl phosphate method (Promega).
For ICC, cells were fixed in 4% w/v paraformaldehyde/PBS
for 12 min, washed with PBS twice, and permeabilized with
0.1% Triton X-100 (Fisher Scientific) for 20 min After
washing with PBS, the cells were incubated with 5% v/v
goat or donkey serum (Sigma) in PBS for 30 min Cells were
then incubated with primary antibody overnight at 4-°C.
After washing, the cells were incubated with secondary
antibody. Nuclei were stained with 6 ng/ml 4',6-diamidino-
2-phenylindole (DAPI) (Invitrogen). For POUS5F1 staining
on teratoma tissues, maximum-intensity projection of 3D
montage images were obtained by using a Leica
SP8 spectral confocal microscope (research.missouri.edu/
mcc/leica_tcp_sp8_mp.php) to cover the large (mm size)
area. Other Fluorescence images were taken under an
Olympus IX70 inverted microscope at the Molecular
Cytology Core at University of Missouri. Primary anti-
bodies include: POUS5F1 (1:1000 in house®® or 1:100; Santa
Cruz Biotechnology, catalog no. sc-9081), SOX2 (1:1000;
R&D Systems, MAB2018), NANOG (1:200; Abcam,
ab109250), SSEA1 (1:50; Developmental Studies Hybri-
doma Bank [DSHB], MC-480), SSEA4 (1:50; DSHB, MC-
813-70), KRT7 (1:100; DAKO, M701801-2), DESMIN
(1:100; Santa Cruz Biotechnology, sc-14026), NESTIN
(1:100; Abcam, ab6320), SOX17 (1:100; R&D Systems,
AF1924),

Embryoid body (EB) formation and in vitro differentiation

Epi-piPSC lines were manually isolated from the culture
dish coated with iMEFs, dissociated with Accutase
(STEMCELL Technologies). The dissociated cells were
allowed to form EB by the hanging drop method* in a
droplet medium. The medium was that used for prior
culture but lacked supplementary cytokines and inhibi-
tors. After five days, the EBs were transferred to adherent,
gelatin-coated tissue-culture dishes and allowed to dif-
ferentiate further for 2 weeks.

Reverse transcriptase-polymerase chain reaction (RT-PCR)
analysis and quantitative PCR (qPCR)

To analyze the gene expression patterns of undiffer-
entiated or differentiated cells, total RNA from individual
samples was extracted in STAT-60 (Tel-Test Inc)
according to the manufacturer’s instructions. cDNA was
synthesized by using the SuperScript VILO kit (Life
Technologies). PCR was performed with Taqg DNA
polymerase (PCR Master Mix, Thermo) under the fol-
lowing conditions: 95 C for 15min followed by 30
amplification cycles (95 °C, 15 s; annealing temperature of
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specific primers, 30's; 72 °C, 30's) with an extension cycle
at 72°C for 1 min Quantitative PCR was performed with
SYBR Green PCR kit (Life Technologies) on an ABI 7500
Real-Time PCR System (Applied Biosystem). GAPDH was
used as a reference gene for this experiment. All the
primers used in this experiment were shown in Supple-
mentary Table 4.

RNA sequencing analysis

Total RNA was extracted from the Lv-piPSC, Epi-
piPSCs and pESCLC lines cultured in respective condi-
tions by using STAT-60. The quantitation and quality
control of RNA from all samples was performed on a
Fragment Analyzer (Advanced Analytical), and cDNA
libraries were constructed by standard methods (Illumina
TruSeq mRNA stranded kit) with index adapters (Illu-
mina TruSeq indexes). The RNA-Seq data were generated
on the Ilumina (HiSeq 2500 instrument) platform by
50 bp paired-end sequencing. The sequencing reads were
aligned onto Sscrofall.l reference genome by TopHat
v2.1.0 software*! . The mapped reads were transformed
into the count matrix with default parameters by HTSeq
v0.8.0 software*?, followed by normalization with DESeq
v2 software®, Differentially expressed genes (DEGs) were
identified by means of the same software, DESeq2, based
on negative binomial generalized linear models. GO
enrichment analysis of the DEGs was performed by using
PANTHER (www.pantherdb.org/)**. For the visualization
of enriched GO terms in ranked lists of DEGs and their
clustering, all heatmaps were generated by the Heatmap-
per (www.pantherdb.org/)** with log2 transformed values.

Teratoma formation

20 million cells of the Epi-piPSC, Lv-piPSC and Epi-
hESC lines obtained by Dispase dispersion of attached
colonies (1 mg/mL, STEMCELL Technologies) were cen-
trifuged (200xg for 5 min), resuspended in 0.2 mL of ori-
ginal culture medium, and chilled on ice before mixing
with 0.14 ml of Matrigel (Corning) supplemented with
ROCKi, Y-27632 (final 10 uM). The solution was loaded
into a 1-mL syringe (Becton Dickinson) and injected
subcutaneously into 8 to 12-week-old non-obese diabetic
SCID-y mice (for all except Lv-piPSC-F, Jackson Labora-
tories) or CD-1 nude mice (for Lv-piPSC-F, Charles River)
on their flanks through 22-gauge needles (10 million cells
of the former and 1 million for the latter per site). The
tumors were dissected out after euthanizing the mice and
fixed in 10% (v/v) neutral buffered formalin overnight.
Paraffin-embedded tissue was sectioned and then stained
with H&E. All animal experiments were approved by the
University of Missouri Institutional Animal Care and Use
Committee under Protocols 7170 and 8053.
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Statistical analysis

For qPCR results, the mRNA abundance levels of a
target gene were normalized to the internal control gene,
GAPDH, and the relative expression value were deter-
mined by comparative threshold cycle method*®. Data
were analyzed by using the relative expression tool REST
2009 version 2.0.13*”. DESeq2 was used to detect sig-
nificantly differentially expressed genes in the RNAseq
analysis*’. For cell doubling time, the comparison was
performed by permutation tests for the differences
between groups of growth curves from the R project for
statistical computing®®.

Results
Transition of primed type porcine iPSC to naive-like
pluripotency state

We examined whether the NHSM?*” could be used for
culturing the primed type lentiviral reprogrammed piPSC
(Lv-piPSC) ID6 line that has been maintained in DMEM/
F12 medium supplemented with FGF2 (termed as F;
Supplementary Table 1b)3*. The human ESC (hESC) line
(WAO01/H1) and Lv-piPSC were adapted to NHSM on a
feeder layer of irradiated mouse embryonic fibroblasts
(iMEF). After 10-day of culture, colonies of both H1 and
Lv-piPSC in F began to exhibit dome-shaped morpholo-
gies that resembled those of mouse naive type ESC
(Fig. 1la). However, unlike the hESC, Lv-piPSC were
negative for alkaline phosphatase (AP), indicating a loss of
pluripotency (Fig. 1a). Primed type Lv-piPSC were then
tested for growth on NHSM with the following mod-
ifications to identify which component in that medium
had caused negative consequences of maintaining AP
activity: 1. NHSM with FGF2 and LIF but without inhi-
bitors of MAP2K, MAPKS, MAPK14, GSK3A, and
TGFB1; 2. NHSM without the two inhibitors of MAP2K
and GSK3A; 3. NHSM without TGFB1; 4. NHSM without
inhibitor of MAPK14; 5. NHSM without inhibitor of
MAPKS; 6. NHSM without inhibitor of BMP. (Supple-
mentary Table 1a). Surprisingly, after 10-day culture, only
condition 3 (NHSM without TGFB1) provided dome-
shaped colonies that were AP-positive (Fig. 1b), suggest-
ing the presence of TGFBI that caused the loss of AP
activity in Lv-piPSC. By replacing TGFB1 with its inhi-
bitor, the proportion of compact dome-shaped, AP-
positive colonies relative to flattened colonies increased
nine-fold (Ratio in no TGFBI1, 1.08; ratio with TGFB1
inhibitor, 9.92) (Fig. 1c). As a result, we developed an
optimized medium containing a combination of FGF2,
LIF, inhibitors of TGFB1, MAP2K1, MAPK8, MAPK14,
GSK3A and BMP (termed FL6i medium) to convert the
primed type Lv-piPSC-F into naive type cells. To ratify the
whether all the components (FGF2, LIF, inhibitors of
MAPKS8, MAPK14, and BMP) were required for main-
taining the AP-positive/naive type colony morphology,
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each compound was sequentially omitted from the FL6i
medium. Only cells on the complete medium were con-
verted from the primed to naive-like state (Fig. 1d).

Characterizations of Lv-piPSC in FL6i medium

The naive like Lv-piPSC cultured in FL6i (Lv-piPSC-
FL6i) not only resembled mouse naive-type ESC (Fig. 2a),
but were dispersed into single cells for passaging and had
shortened cell doubling time (from 17 h in F to 13.5h in
FL6i, p=0.017). However unlike mouse ESC, they
appeared to rely on both FGF/ACTIVIN/NODAL and
LIF/JAK/STAT signaling for cell self-renewal (Fig. 2b).
They were positive for the pluripotency markers SSEA1,
NANOG, POUS5F1 and SOX2 (Fig. 2c), and the expres-
sions of several pluripotency-related endogenous genes
(pPNANOG, pPOUSFI, pSOX2, pMYC, pDPPA3) were
significantly increased (Fig. 2d). Despite this upregulation
of endogenous genes, the expression of the ectopic genes
(hPOUSFI hSOX2, hKLF4) used initially to drive induced
pluripotency remained relatively unchanged under the
new culture conditions (Fig. 2d). The Lv-piPSC-FL6i
formed embryoid bodies and underwent spontaneous
differentiation. The differentiated cells were positive for
ectoderm and mesoderm markers, but they failed to
express endoderm markers (Fig. 2e).

Derivation of episomal plasmid-mediated piPSC (Epi-
piPSC)

We next examined whether FL6i condition could be used
to generate transgene-free piPSC by using non-integrating
episomal plasmids®>*, Porcine fetal fibroblast cells were
transiently transfected with the plasmids® and plated onto
iMEF feeder layers under three culture conditions: 1,
NHSM basal medium with FGF2 and LIF (FL); 2, a pre-
viously reported medium claimed to generate an inter-
mediate pluripotent state in piPSC'® (FLB2i); 3, the newly
developed FL6i described above. Two to three weeks after
the transfection, primary colonies with flat morphologies
were observed in FL, mounded colonies in FLB2i, and small
dome-shaped colonies in FL6i (Fig. 3a). Individual colonies
were manually picked and propagated by passaging under
the three respective conditions (Fig. 3b), whereas colonies
from FLB2i and FL6i conditions demonstrated homogenous
POUSF1 expression and were undifferentiated (Fig. 3c).
Colonies in FL condition were comprised largely of
epithelial-like cells (Fig. 3b) with much reduced POU5F1
expression (Fig. 3c). As culture on FL was extended, the
cells stopped growing and no iPSC line was established.
However, it was possible to generate multiple piPSC in
FLB2i (Epi-piPSC-FLB2i) and FL6i conditions (Epi-piPSC-
FL6i). All were positive for AP and expressed POU5F1 and
SOX2, but all stained negatively for NANOG (Fig. 3d).
While Epi-piPSC-FL6i expressed SSEAI, the Epi-piPSC-
FLB2i cells were SSEA4 positive (Fig. 3d).
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Fig. 1. a Live cell images of H1 hESC and Lv-piPSC under F and NHSM conditions with bars, 200 um and AP staining images in NHSM condition with
bars, 5 mm. b AP staining images of LV-piPSC following removal of individual components from NHSM. AP staining was performed at Day 5 and Day
10 of culture under each condition with bar, 5 mm. ¢ Live cell (bar, 500 um) and AP staining (bar, 5 mm) images of Lv-piPSC under NHSM, NHSM
without TGFBT and NHSM without TGFB1, plus TGFB inhibitor (TGFBi) conditions. d AP staining images of Lv-piPSC under FL6i condition and FL6i in

To examine whether any of the reprogramming genes
and the plasmids persisted in the established Epi-iPSC, six
lines of Epi-iPSC (three from FLB2i, three from FL6i)
were randomly selected from each culture condition after
80 days of continuous culture (15-20 passages). Specific
PCR primers were designed to provide a comparison
between transcript levels from endogenous pluripotency
genes and those from the exogenous reprogramming
genes. Although each reprogrammed cell line was weakly
positive for expression of pPOUSFI and pSOX2, values
were quite variable. The levels of pNANOG transcripts
were higher in FL6i than in FLB2i. As observed with the
Lv-line in F, all six cell lines robustly expressed #POUSF1
and ASOX2, (Fig. 4b). Detection of hPOUSF1, hSOX2, and
hLIN28 with the vector backbone DNA (performed with
gene specific primer and the vector-specific primer)
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(Fig. 4c; plasmid POUSF1, - SOX2, - LIN28), suggests that
the episomal-plasmids had persisted in the cells, possibly
through integration into host DNA.

Teratoma formation from Epi-piPSC generated under
different culture conditions

To evaluate the pluripotency of the newly developed
Epi-piPSC and compare their ability in generating differ-
entiated cell types, teratoma studies were conducted in
immunodeficient mice. Teratomas from two Epi-piPSC-
FLB2i and three Epi-piPSC-FL6i sublines were compared
with those from three well characterized iPSC lines (a
transgene free human iPSC, Epi-hiPSC and two Lv
reporgrammed piPSC (Lv-piPSC-F) and Lv-piPSC-FL6i)
(Supplementary Table 3). All were able to produce
encapsulated solid tumors that were removed between
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Fig. 2 a Live cell images of Lv-piPSC under F and FL6i conditions with bar, 400 um. b Cell proliferation curve (upper panel) and live cell images
(bottom panel, bar, 500 um) of Lv-piPSC treated with 1 uM PD173074 (FGFRi), 0.6 uM JAK Inhibitor | (JAKi) or control in F and FL6i conditions. ¢ ICC of
pluripotency markers, POU5F1, SOX2, SSEA-1 and NANOG, in Lv-piPSC under F and FL6i conditions with bars, 200 and 100 um. d The relative
expression level of pluripotency genes in Lv-piPSC under FL6i conditions determined by gPCR. The expression value of each gene in Lv-piPSC under
F condition was arbitrarily set to 1. Asterisk symbol (*) represents significant differences (p < 0.05) in gene expression level between Lv-piPSC under F
and FL6i conditions. The experiments were replicated three times. e The formation of embryoid bodies (EB, left) and adherent outgrowths of EB
(right) derived from Lv-piPSC-FL6i (upper panels, bar, 500 um) and the expression of differentiation markers representing three germ layers (CRABP2,
PAX6, NESTIN: ectoderm, AFP, SOX17, GATA6: endoderm, DESMIN, ACTCT: mesoderm) determined by reverse transcription PCR (bottom panel). The

product sizes in bp are listed

days 38~ 90 after the injection. As expected, the Epi-
hiPSC teratoma (Fig. 5a) included tissue representative of
ectoderm, endoderm, and mesoderm, and POUS5F1
expression was almost absent (Fig. 5a). The tumors pro-
duced by Epi-piPSC-FLB2i, Epi-piPSC-FL6i and Epi-
hiPSC were softer than the Lv-piPSC teratomas and
contained hemorrhagic areas when they were examined in
cross-section (Figs. 5a—c). The tumor derived from Epi-
piPSC-FLB2i lacked apparent endoderm derivatives but
contained ectoderm and mesoderm (Fig. 5b). The tissue
contained islands of POU5F1 expression between more
differentiated areas (Fig. 5b). However, the tumors from
Epi-piPSC-FL6i had overall lower POU5F1 expression
than those from the Epi-piPSC-FLB2i and also contained
diverse tissue types representative of ectoderm, endoderm
and mesoderm (Fig. 5¢). By contrast, the Lv-piPSC-F and
Lv-piPSC-FL6i lines formed homogeneous tumors when
viewed in cross section (Figs. 5d, ). The tumors were also
largely undifferentiated, with a majority of POU5F1-
positive cells. Nevertheless, islands of ectoderm, meso-
derm and endoderm were scattered throughout the tissue
from the Lv-piPSC-F lines (Fig. 5d). Tumors from Lv-
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piPSC-FL6i lines had a largely undifferentiated morphol-
ogy and were POU5F1-positive throughout, except in
diffused eosinophilic cells of connective tissue (Fig. 5e).

Attempts to generate pESC with the modified media

First, we attempted to generate primed-type pESC in
standard FGF2-supplemented medium, i.e., pESM con-
ditions” (termed F) from either day 7—8 intact blastocysts
or immunosurgery isolated ICM>®. Both approaches
yielded similar types of outgrowth at similar efficiencies.
Higher outgrowth efficiency was achieved with embryos
that were beginning to hatch (Supplementary Table 2).
The all outgrowths were similar in morphology and were
positive for AP.

Attempts were also made to generate pESC under FL6i
(from both blastocysts and ICM, Supplementary Table 2)
and FLB2i (from blastocysts only) culture conditions.
Fewer outgrowths were observed than under F, and all the
attached colonies were unstable, i.e. quickly differentiated
and stopped proliferating within two weeks (Supplemen-
tary Fig. 1b, ¢). As an alternative to using these two
defined media, outgrowths were generated under F
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(termed pESC like cells, pESCLC-primary; Figs. 6a, b,
Supplementary Fig. 1a). These outgrowths were manually
passaged and maintained in F (named pESCLC-F)’, Some
of the primary outgrowths were also switched to FLB2i
and FL6i conditions (Fig. 6a). Further growth on FLB2i
failed, but, in FL6i conditions, small foci (50-80 um in
diameter) became visible within the colonies (Supple-
mentary Fig. 1d) and adopted dome-shaped morphologies
(Fig. 6e, Supplementary Fig. 1f). From these small foci, we
generated a continuously proliferating cell line (named
pESCLC-FL6i), whose morphologies resembled the earlier
described Epi-piPSC-FL6i. After 10-day culture under
FL6i, some of the colonies were sub-cultured into FLB2i
conditions, and they continued to proliferate, forming
mounded colonies resembling the Epi-iPSC-FLB2i colo-
nies described earlier (Fig. 6d, Supplementary Fig. le).
Thenceforth, all three lines, pESCLC-F, pESCLC-FLB2i
and pESCLC-FL6i were manually passaged every 4—7 days
on iMEF feeders. Each cell line proliferated for at least 15
passages over a ~2-month period.

All three pESCLC lines were examined for expression of
POU5F1, NANOG, SOX2 and AP at 16, ~34, and
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~46 days (passage numbers 2, 6, and 9, respectively), and
compared with initial blastocyst outgrowths (pESCLC-
primary) that had been collected at day 8~10 (Figs. 6b—e).
The pESCLC-primary outgrowths expressed all three
pluripotent markers examined (Fig. 6b). However, the cell
cultures continued in F (pESCLC-F) showed increasingly
lower SOX2 and POUS5F1 expressions although NANOG
and AP activity remained relatively constant (Fig. 6c).
When the pESCLC were maintained in FLB2i (Fig. 6d) or
FL6i (Fig. 6e), the marker expressions persisted without
obvious decline.

Comparative gene expression analysis of cell lines
Transcriptome profiles of the three putative pESC
(pESCLC-F, pESCLC-FLB2i, pESCLC-FL6i), the three
piPSC lines (Lv-piPSC-F, Epi-piPSC-FLB2i, Epi-piPSC-
FL6i), each in duplicate representing different passage
number, and two primary blastocyst outgrowths were
compared by using RNAseq. A heatmap analysis of 19
known porcine genes whose expression has been linked to
pluripotency'® was then generated (Fig. 6f). The primary
blastocyst outgrowths (pESCLC-primary) had the most
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consistent upregulation of expression of these genes,
including POUSFI and NANOG, relative to any of the cell
lines. One other feature of these primary cultures was
relatively low SOX2, ESRRB, and KLF#4 expression. How-
ever subsequent culture of these pESCLC cells in either
FLB2i or FL6i medium led to a down regulation of the
majority of these pluripotency genes, including POUSFI
and NANOG but not SOX2. By contrast, continued cul-
ture under F, had a more minor effect, although some key
genes, e.g., POUS5F1, SOX2, and ESRRB became expressed
at lower levels than in their primary progenitors. Of the
remaining cell lines, the lentivirus-transformed cells (Lv-
piPSC) cultured on F medium clustered most closely to
the blastocyst outgrowths, followed by the episomally-
transformed cells (Epi-piPSC), cultured on FL6i medium,
although in both there was marked down regulation of
TET2 and TET3 genes (Fig. 6f).
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A principle component analysis (PCA) based on RNA-
seq data showed distinct distributions according to how
the cells were created (pESCLC vs. piPSC) and culture
conditions (Fig. 7a). The pESCLC lines were clearly
separated according to the culture conditions, i.e., F vs.
FL6i/FLB2i, on the PC1 dimension while Epi-piPSC (FL6i
vs. FLB2i) lines showed differences primarily by PC2
values. Although the Lv-piPSC was grown in F, it showed
a close relationship with Epi-piPSC cultured under FL6i
conditions.

We also compared the cell lines by hierarchical clus-
tering of differentially expressed genes (DEGs; fold
change > 3, adjusted p <0.05) (Supplementary Fig. 2 and
Supplementary Table 5). Here the culture conditions
appeared to provide the greatest discrimination between
groupings. Only 242 DEGs out of 17,650 genes analyzed
distinguished the pESCLC-primary and pESCLC-F. Far
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Fig. 5 Tumor tissues generated from different porcine iPSC in immunodeficient mice. Tissue generated from transgene free hiPSC, Epi-hiPSC
(@), Epi-piPSC-FLB2i (b), Epi-iPSC-FL6i (c), Lv-piPSC-F (d), Lv-piPSC-FL6i (). Inserted images in the left panels show the gross morphology of the
tumors immediately after collection from the host mice, bars 1 cm. The panels in rows 1-3 illustrate H&E staining of the histological section of the
tumors, bars, 500 um, 200 um or 100 um. Far right panels show the ICC for POU5F1 in respective tumor tissues with bars, 500 um

larger numbers of DEGs separated pESC-primary from
both pESC-FLB2i (1,945 DEGs from 18,085) and
pESCLC-primary vs pESCLC-FL6i (2,058 DEGs from
18,110), which is consistent with the PCA analysis (Fig.
7a).

Gene Ontology (GO) enrichment analysis was used to
gain insights into the degree to which the different cell
lines showed signs of differentiation. (Supplementary Fig.
3). The top 10 categories in the overall GO list for all cell
lines included developmental process, ectoderm devel-
opment, cell differentiation, mesoderm development, and
cell signaling pathways. Based on this outcome, we ana-
lyzed the relative expressions of 27 genes linked to early
embryonic differentiation®>”" (Fig. 7b). The pESCLC-
primary and pESCLC-F group were again widely sepa-
rated from the others, largely due to the high expression
of genes of all the principal early embryonic lineages with
the exception of ectoderm. The cell line that showed the
lowest expression of differentiation markers was the Epi-
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piPSC-FL6i. In fact, differentiation markers for mesoderm
and endoderm were relatively low in all FLB2i and FL6i
cultures and in the Lv-piPSC-F, although there appeared
to be some up-regulation of ectoderm markers.

We next focused on DEGs linked to seven major sig-
naling pathways (Fig. 7c)°"* Genes associated with
TGFB and BMP signaling were upregulated in pESCLC-
primary and pESCLC-F group, whereas low Notch and
BMP signaling distinguished the Lv-piPSC and the Epi-
piPSC grown on FL6i medium from the rest (Fig. 7c).

Discussion

Here we have demonstrated that primed type Lv-piPSC
transition to naive-like pluripotency under the FL6i con-
ditions. One major change made in FL6i relative to the
original NHSM?” is the replacement of TGFB1 with a
TGEB inhibitor, SB431542. TGFB1 activates ERK/MAPK
signaling by SHC1 (SHC-transforming protein 1) phos-
phorylation as well as via SMAD2/3 signaling, both of
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Fig. 6 Porcine ESC like cell (pESCLC) generation under F, FLB2i and FL6i conditions. a Schematic diagram illustration how the pESCLC were
generated under F, FLB2i and FL6i conditions. Representative live cell image and POU5F1, NANOG and SOX2 ICC plus AP staining for cell colonies
generated under the different culture conditions: pESCLC-primary (b), pESCLC-F (c), pESCLC-FLB2i (d) and pESCLC-FL6i (e). Bars are 100 um in (b)
200 pm in (c-e). f Heatmap analysis of 19 porcine genes whose expressions are linked to pluripotency in the ESC-like cells generated under different

» PESCLC-F

which are crucial for the maintenance of pluripotency in
epiblast-type human PSC****, In contrast, TGFB1 is dis-
pensable for the maintenance of naive state mouse ESC>,
although inhibition of TGFB signaling improves iPSC
reprogramming efficiency’® and helps prevent rat PSC
from spontaneously differentiating®”>®. The role of TGFB
signaling in maintaining porcine pluripotency is less clear.
TGFB/ACTIVIN/NODAL signaling is required for self-
renewal of primed-type piPSC® and putative porcine
epiblast stem cells®. On the other hand, the TGFB/
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ACTIVIN inhibitor, SB431542, used in our experiments
has been employed in a number of other protocols for
generating piPSC'>®*®! Interestingly, all the piPSC gen-
erated in presence of SB431542 had morphologies similar
to naive state mouse ESC, whereas piPSC and pESCLC
dependent on TGFB were in the primed state. Thus, like
human and mouse, primed state pluripotency in porcine
cells is probably dependent on the activation of
SMAD2°>%%, while naive state pluripotency requires
inhibition of TGFB signaling®®.
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In contrast to TGFB1, BMP4 signaling favors SMAD1/
5/8 signaling, which, in turn, causes the activation of
inhibitors of DNA binding proteins (IDs). In mouse naive-
type ESC, for example, BMP4 suppresses differentiation
and, in combination with LIF, sustains self-renewal®.
BMP4 inhibition also assists the stabilization of human
ESCs in what is sometimes considered to be a ground
state, i.e. naive-type®®. The NHSM also contains BMP
inhibitor as an optional component to boost human naive
pluripotency”’. FL6i, described in this paper, contains
both inhibitors of TGFB1 and BMP. Under such condi-
tions the Lv-piPSC demonstrated more compact, dome-
shaped colony morphology, a shortened cell doubling
time, increased AP activity, and tolerance to single cell
passage, which are hallmarks of mouse, naive state, PSC.
FL6i also enhanced the expression of endogenous plur-
ipotent genes, including NANOG, POU5F1, SOX2, MYC,
and ZFP42, although the expression of the ectopic
reprogramming genes remained high (Fig. 2d). We
inferred that FL6i promoted porcine pluripotency and
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might, therefore, support the derivation of piPSC without
accompanying transgene integration.

Accordingly, we then attempted to generate piPSC from
porcine embryonic fibroblasts in FL6i medium as well as
in two other culture conditions via non-integrating epi-
somal vectors®. The control medium containing FGF2
and LIF but no small molecule additions, did yield pri-
mary colonies (Epi-piPSC-F), although it proved impos-
sible to derive stable cell lines from these starter colonies
over extended culture (Figs. 3a—c) With both FL6i and
FLB2i conditions, colonies with a naive-type phenotypes
were readily generated and propagated successfully over
several weeks without either apparent loss of self-renewal
or signs of differentiation (Fig. 3). However, none of the
cell lines established were transgene-free at this stage
(Fig. 4), although endogenous pluripotency genes were
upregulated (Fig. 4) and expression of early differentiation
genes low (Fig. 7b). FL6i culture conditions, in particular,
provided piPSC superior to those cultured under FLB2i
conditions with upregulation of the 19-gene cohort of
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pluripotency markers (Fig. 6f) and their ability to generate
well differentiated tumors largely lacking expression of
POUSF1 (Figs. 5b, c). A recent study employed the same
episomal plasmid approach as ours with 2i plus FGF2
condition'*, Like ours, the generated piPSC showed pre-
sence of vector DNA, but integration-free piPSC could be
selected from the low passage cells by further subcloning.
We conclude that the piPSC generated under FL6i con-
ditions have considerable promise.

Reprogramming via ectopic transcription factors, as
illustrated here with episomal plasmids has been cate-
gorized into two phases®®. First, a stochastic phase in
which expression of transgenes triggers random epige-
netic events that cause global changes of the somatic
epigenome into an ESC-like status®’. Possibly, repro-
gramming in the basal FL medium initiated these events
but did not allow progression to the second, deterministic
phase, in which the presence of inhibitors, is believed to
enhance the expression of endogenous pluripotency genes
needed to sustain a stable pluripotency state®~¢%,

In the third part of this study, we attempted to generate
PESC under different culture conditions. Efforts to obtain
pESC directly from blastocysts under FLB2i and FL6i
conditions failed. By contrast, basal FGF2 medium
allowed initial attachment and colony formation, while
subsequent culture under FLB2i and FL6i conditions
permitted cell lines indistinguishable in appearance to
naive type piPSC to be isolated. Although the initial
blastocyst outgrowths demonstrated relatively robust
expression of genes associated with the pluripotent state
(Fig. 6f) they also had higher level expression of early
differentiation markers representing mesoderm, endo-
derm, primitive endoderm and extraembryonic lineages
(Fig. 7b). Although these differentiation markers were
downregulated in pESCLC under FLB2i and FL6i condi-
tions, there remained a higher level of ectoderm markers
(Fig. 7b) and relatively weak expression of the cohort of
pluripotency genes (Fig. 6f). We conclude that these cell
lines are still less than ideal as bona fide ESC.

Stable bovine ESC lines were recently derived from
preimplantation blastocysts by employing supplementary
FGF2 and a WNT signaling pathway inhibitor®. A pos-
sible explanation for why FGF and WNT signaling inhi-
bition in combination capture bovine pluripotency is their
ability to regulate the balance of lineage specification
between mesoendoderm and ectoderm’®~"% It appears
that this equilibrium is more difficult to achieve in pESC.
While FLB2i and FL6i conditions appear capable of
blocking differentiation towards mesoendoderm, the cells
seemed more prone to differentiate into ectoderm
(Fig. 7b). Additionally, it is apparent that TGFB and BMP
signaling must also be blocked in order to advance
towards a pluripotent state in pESC. For example, there
was a significant downregulation of the gene markers
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representing these two pathways in our Epi-piPSC-FL6i
and Lv-piPSC but an upregulation under other FGF2
conditions (Fig. 7c). These observations may lead to
optimized culture conditions that allow derivation of
stable pESC in the near future.

In conclusion, we report culture conditions of FL6i that
support enhanced naive-state pluripotency in Epi-piPSC.
In particular, blocking the TGFB and BMP signaling
pathways was an essential issue in reaching this goal
Although the final goal of generating transgene-free
piPSC and authentic pESC by using the FL6i medium
has not been achieved, the cell lines created point the way
to establishing protocols that will finally allow stable, fully
pluripotent porcine ESC and iPSC to be generated for
potential biomedical and agricultural purposes.

Deposition of transcriptome data

The datasets analyzed during the current study are
available in the Gene Expression Omnibus (GEO) repo-
sitory, GSE126150.
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