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The E3 ubiquitin ligase TRIP12 
participates in cell cycle progression 
and chromosome stability
D. Larrieu1, M. Brunet1, C. Vargas1, N. Hanoun1, L. Ligat1, L. Dagnon1, H. Lulka1, 
R. M. Pommier2, J. Selves1, B. E. Jády3, L. Bartholin2, P. Cordelier   1, M. Dufresne1 & 
J. Torrisani   1*

Several studies have linked the E3 ubiquitin ligase TRIP12 (Thyroid hormone Receptor Interacting 
Protein 12) to the cell cycle. However, the regulation and the implication of this protein during the 
cell cycle are largely unknown. In this study, we show that TRIP12 expression is regulated during 
the cell cycle, which correlates with its nuclear localization. We identify an euchromatin-binding 
function of TRIP12 mediated by a N-terminal intrinsically disordered region. We demonstrate the 
functional implication of TRIP12 in the mitotic entry by controlling the duration of DNA replication 
that is independent from its catalytic activity. We also show the requirement of TRIP12 in the 
mitotic progression and chromosome stability. Altogether, our findings show that TRIP12 is as a 
new chromatin-associated protein with several implications in the cell cycle progression and in the 
maintenance of genome integrity.

TRIP12 (Thyroid Hormone Receptor Interacting Protein 12) is a 225 kDa HECT (Homologous to the E6-AP 
Carboxyl Terminus) domain-containing E3 ubiquitin ligase. It is also known as ULF (Ubiquitin Ligase for ARF)1 
and UFD4 (Ubiquitin Fusion Degradation) in S. cerevisae2. TRIP12 contains protein interacting WWE (trypto-
phan and glutamate conserved residues) and β-ARM (β-Armadillo) domains3. Several functions are attributed 
to TRIP12. For instance, it ubiquitinates APP-BP1 (Amyloid Precursor Protein-Binding Protein 1) and BAF57 
(Brg1-Associated Factor 57) turn over and is therefore described as a sensor of SWI/SNF (SWItch/Sucrose 
Non-Fermentable) complex integrity4,5. TRIP12 is also known to control the histone ubiquitination after DNA 
breakage6 and to contribute to p14/ARF (Alternate Reading Frame) degradation in response to DNA damage7. 
TRIP12 ensures the proteolysis of ASLX1 (Additional Sex Combs Like 1, Transcriptional Regulator), a regulatory 
component of the ubiquitin hydrolase BAP1 (BRCA1 Associated Protein 1)8. We showed that TRIP12 is impli-
cated in the proteasome-mediated degradation of the transcription factor PTF1a (Pancreas specific Transcription 
Factor 1a) that plays an important role in the maintenance of the acinar phenotype in human pancreas9. TRIP12 
is essential for cell viability as a homozygous mutation that disrupts the ubiquitin ligase activity leads to murine 
embryonic lethality10. Importantly, TRIP12 plays an important role in the cell cycle. For instance, Trip12 mt/mt ES 
cells display reduced growth with increased expression of the p16/CDKN2A gene and an accumulation in G2/M 
phase10. Moreover, by controlling the tumor suppressor protein p14/ARF, TRIP12 impacts TP53 protein level, a 
major regulator of the cell cycle11. TRIP12 expression is altered in several types of cancer, such as breast and pan-
creatic cancer11. High expression of TRIP12 is associated with poor prognosis in hepatocellular carcinoma after 
surgical resection12. TRIP12 is involved in radio-sensitization of head and neck squamous carcinoma13. TRIP12 
mutations are also related to autism disorders14 and intellectual disability15.

Cell cycle progression is governed by sequentially organized events. Mitogen signaling pathways impose to the 
cell the exit of G1 phase to duplicate its genome. The licensing of replication (Minute Chromosome Maintenance) 
to form the pre-replication complex (pre-RC). In S phase, the origins firing is dependent of the assembly of 
other proteins and the activity of CDKs (Cyclin Dependent Kinase). A multitude of additional factors are then 
recruited such as RPA (Replication Protein A), PCNA (Proliferating Cell Nuclear Antigen) and polymerases to 
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constitute the fully functional replisome16. DNA replication is spatio-temporally ordered. Replication of euchro-
matin regions occurs in early S phase whereas heterochromatin regions in late S phase17. Subsequently, cells enter 
in a transition phase G2 that ensures the complete DNA replication. In late G2 phase, the initiation of mitosis is 
promoted by a complex comprising of the CYCLIN B1 and the Cyclin-Dependent Kinase 1 (CDK1)18. This com-
plex is inhibited by the phosphorylation of Tyrosine 15 residue on CDK1 by the WEE1 kinase19. Chromatin con-
densation, separation of duplicated centrosomes and the recruitment of proteins to the kinetochores, all mark the 
prophase. The resulting release of chromosomes activates the Spindle Assembly Checkpoint (SAC) that controls 
the proper segregation of chromosomes and inhibits the Anaphase Promoting Complex/Cyclosome (APC/C) 
complex. In metaphase, the correct attachment of chromosomes to the kinetochores inhibits the SAC allowing 
for progression and ending of mitosis20–22. Mitotic dysfunction leads to chromosomal instability and aneuploidy 
favoring the initiation of cancer23. A prolonged activation of the SAC can provoke cell death or mitotic exit with-
out separation of sister chromatids; named mitotic slippage. Improper separation of sister chromatids (anaphase 
bridges) induces the formation of micronuclei, which can be at the origin of DNA damages24. The succession of 
the different cell cycle phases requires a perfectly coordinated expression and activation of multiple proteins. 
This coordination is ensured by a multi-layer regulation including transcription, mRNA degradation, translation, 
post-translation modification and protein degradation25. For instance, protein expression of CYCLIN A begins 
in S phase, peaks during G2 phase and dramatically declines in mitosis. It combines a tight coordination of tran-
scription, mRNA translation and protein degradation.

Among the proteins that participate in cell cycle regulation, a significant proportion interacts with chromatin 
to modulate, for instance, the transcription (i.e.: transcription factors) and the chromatin structure (i.e.: histones, 
chromatin remodeling complexes, condensin). These proteins can bind to chromatin by recognition to a specific 
DNA consensus sequence via different DNA-binding domains. (i.e.: β-Helix-Loop-Helix, zinc fingers) but also 
via intrinsically disordered regions (IDR). IDRs are protein domains that lack a stable 3D structure under phys-
iological conditions. IDRs can be predicted from the amino acid sequence according to their physicochemical 
properties26. They interact with DNA in a nucleotide sequence-independent manner, thereby modifying chroma-
tin structure and regulating gene expression27.

Our findings expose for the first time that TRIP12 protein expression is tightly regulated during cell cycle, and, 
that TRIP12 interacts with euchromatin through a new functional N-terminal domain. By means of this chroma-
tin interaction, we further propose that TRIP12 participates in mitotic entry by controlling duration of DNA rep-
lication. We further demonstrate that TRIP12 is implicated in mitotic progression and in chromosome stability.

Results
TRIP12 expression is regulated during the cell cycle.  The E3 ubiquitin ligase TRIP12 was shown to 
control the expression of important regulators of the cell cycle progression. However, the regulation of TRIP12 
during the cell cycle is still unknown. To address this issue, HelaS3 cells were arrested at the G1/S boundary and 
released in the cell cycle (Fig. 1A). The experiment showed a maximal percentage (10.1%) of cells in early mito-
sis 8 h after release and a maximal percentage of cells in G1 phase (69.6%) 11 h after release. The level of Trip12 
mRNA was measured and did not fluctuate during the cell cycle kinetics (Fig. 1B). As a control, we measured the 
expression of Cyclin B1 mRNA level that is known to be up-regulated in early S phase until G2 phase28. Similarly, 
Trip12 mRNA level did not vary in G1-, early S- and G2-phase-enriched cell populations unlike Cyclin B1 mRNA 
(Fig. 1C,D), that confirms our results (Fig. 1B).

Next, TRIP12 protein level was measured following the same kinetics (Fig. 1E). Present in S phase, TRIP12 
expression gradually increases to reach a maximal expression in G2 phase and mitosis. Interestingly, TRIP12 
protein level decreased to reach a minimal expression when cells enter in G1 phase. TRIP12 protein level was also 
measured in enriched cell populations in G1, early S, and G2 phase (Fig. 1F). As expected, TRIP12 protein was 
barely detected in G1 phase, appears in early S phase to reach a maximal expression in G2 phase. These results 
clearly demonstrate that TRIP12 protein expression varies throughout the cell cycle while its mRNA remains at a 
constant level and, they suggest that TRIP12 protein is degraded during G1 phase, or Trip12 mRNA translation is 
tightly regulated, or a combination of both.

TRIP12 is a cell cycle-regulated nuclear protein associated with chromatin.  We tested whether 
TRIP12 cell-cycle regulation correlated with its sub-cellular localization. First, we first showed that TRIP12 is 
a nuclear protein but it is not present in all cells (Figs. 2A,B and S1A). The specificity of TRIP12 nuclear stain-
ing was verified (Fig. S1B). Interestingly, TRIP12 nuclear staining did not colocalize with dense DAPI regions 
that correspond to peri-nuclear and peri-nucleolar heterochromatin regions (Fig. 2B), suggesting that TRIP12 
preferentially colocalizes with euchromatin regions. TRIP12 nuclear localization was assessed during the cycle 
of asynchronous HelaS3 cells. We found that TRIP12 is barely detectable in late G1 cells and appears in early S 
phase cells reaching a maximal detection in late S and G2 cells (Fig. 2C). TRIP12 absent-cells observed in Fig. 2B 
correspond to cells in G1 phase. It is known that euchromatin regions are replicated early during S phase and are 
stained homogenously after EDU incorporation. On the contrary, heterochromatin regions are replicated late in S 
phase and form punctiform staining with EDU. Interestingly, TRIP12 staining corresponds to DNA regions with 
homogenous and not punctiform EDU staining (Fig. 2C), corroborating the localization of TRIP12 on euchroma-
tin regions (Fig. 2B). Cell cycle-dependent presence of TRIP12 in the nucleus was confirmed in G1-, early S- and 
G2-phase enriched cell populations (Figs. 2D and S1C). We clearly visualized TRIP12 association with chromatin 
in mitotic cells in which chromatin is subject to condensation and decondensation (Fig. 2E). TRIP12-chromatin 
association was also confirmed by chromatin-bound protein fractionation (Fig. 2F). The colocalization with 
chromatin during metaphase was also observed using a HA-tagged TRIP12 construct (Fig. S2A). Chromosome 
spreading experiments revealed that TRIP12 colocalizes with chromatin on full-length chromosomes (Figs. 2G 
and S2B).
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TRIP12 is associated with chromatin through a N-terminal intrinsically disordered region.  We 
identified several IDRs in the TRIP12 sequence that could potentially act as chromatin interacting-domains, 
notably one in the N-terminus located between the amino-acids 1 and 440 (Fig. 3A). An analysis in metaphasic 
cells showed that TRIP12 colocalization with chromatin is mediated by its N-terminal IDR. Whereas the dele-
tion of the C-terminal HECT domain (TRIP12(1-1552)-GFP) does not affect the capacity of the fusion protein 
to colocalize with chromatin, the deletion of the IDR (TRIP12(446-1992)-GFP) abolishes it (Fig. 3B). In paral-
lel, the subcellular localization of full-length TRIP12-GFP and four TRIP12-GFP deletion constructs in cells in 
interphase led us to conclude that, similar to endogenous TRIP12, TRIP12(1-1992)-GFP localizes exclusively in 
the nuclear compartment. More importantly, the TRIP12(1-445)-GFP localizes in the nucleus demonstrating 
that the N-terminal IDR is sufficient for the nuclear localization of TRIP12; suggesting that this region contains 
a nuclear localization signal (Fig. 3C). Moreover, IDR alone can ensure a physical direct interaction with naked 
DNA (Fig. 3D) and the localization of GFP on full-length metaphasic chromosomes (Figs. S2A and S3B). The 

Figure 1.  TRIP12 expression is regulated during the cell cycle. (A) Distribution of cells in the different phases 
of the cell cycle and the percentage of pHH3-Ser10 positive cells (black bars) were assessed by flow cytometry 
in HelaS3 cells arrested in early S phase using a double thymidine block and released in fresh medium for the 
indicated times. The bars represent the mean ± SEM obtained from three different experiments. (B) Expression 
level of Trip12 and Cyclin B1 mRNA was measured by RT-qPCR in HelaS3 cells arrested in early S phase 
using a double thymidine block and released in fresh medium for the indicated times. The bars represent the 
mean ± SEM of mRNA levels (expressed as 2exp-ΔCt) obtained from three different experiments. (C) Distribution 
of HelaS3 cells in the different phases of the cell cycle after serum starvation, double thymidine block and 
RO-3306 treatments was determined by flow cytometry. The bars represent the percentage expressed as a 
mean ± SEM obtained from three different experiments. (D) Expression level of Trip12 and Cyclin B1 mRNA 
was measured by RT-qPCR in HelaS3 cells were arrested in G1, early S, and G2 phase using serum starvation, 
double thymidine block and Ro-3306, respectively. The bars represent the mean ± SEM of mRNA levels 
(expressed as 2exp-ΔCt) obtained from three different experiments. ** indicates a p value < 0.01. (E) TRIP12, 
CYCLIN B1 and pHH3-Ser10 level was measured by Western blot analysis in HelaS3 cells arrested in early S 
phase using a double thymidine block and released in fresh medium for the indicated times. GADPH protein 
level was used as loading control. Images were obtained from the same experiment and representative of 
three different experiments. (F) TRIP12 and CYCLIN B1 levels were measured by Western blot analysis in 
HelaS3 cells arrested in G1, early S and G2 phase using serum starvation, double thymidine block and Ro-3306 
treatments, respectively. GADPH protein level was used as loading control. Images were obtained from the 
same experiment and representative of three different experiments.
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Figure 2.  TRIP12 is a cell cycle-regulated nuclear protein associated with chromatin. (A) TRIP12 protein level 
in cytosolic and nuclear fractions of HelaS3 cells was measured by Western blot analysis. SP1 and 4EBP1 protein 
levels were used as purity controls of subcellular fractions. Images were obtained from the same experiment 
and representative of three different experiments. (B) TRIP12 subcellular localization in HelaS3 cells was 
determined by immunofluorescence using TRIP12 antibody (Sigma). The inset represents TRIP12 nuclear 
localization at a higher magnification. Nuclei were counterstained with DAPI. The white arrows indicate the 
peri-nucleolar and peri-nuclear heterochromatin regions. (C) TRIP12 nuclear expression in HelaS3 cells in 
the different phases of the cell cycle was determined by immunofluorescence using TRIP12 antibody (Sigma). 
Nuclei were counterstained with DAPI. Cells in G1 phase and G2 phase correspond to CYCLIN A/EDU nuclear 
negative cells and CYCLIN A nuclear positive/EDU negative cells, respectively. Cells in early G1 correspond to 
G1 cells with small oblong-shaped nucleus. Cells in early S and late S phase correspond to EDU positive cells/
CYCLIN A negative and positive nuclear cells, respectively. The graph represents the mean TRIP12 expression 
(integrated density-background) ± SEM determined at least 200 cells using FIJI software. (D) Level of TRIP12 
in cytosolic and nuclear protein fraction of G1-, early S- and G2-phase enriched HelaS3 cell populations was 
measured by Western blot analysis. SP1 and 4EBP1 protein levels were used as purity control of subcellular 
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colocalization of TRIP12 and its IDR with chromatin was confirmed in living cells (Figs. S3C). A more precise 
analysis of the IDR reveals that the region between the amino acids 107 and 325 ensures the interaction of TRIP12 
with chromatin (Fig. S3D,E). Interestingly, cells that express a high level of the IDR construct display character-
istic features of cells in prophase with condensed chromosomes covering the inner face of the nuclear membrane 
(Fig. S3F) even if they are not pHH3-Ser10 positive (Fig. S3G, bottom panel) as they should be a normal cell (Top 
panel). This suggests that TRIP12 via its IDR could participate in chromatin compaction.

Altogether, our experiments identify a new functional domain of TRIP12 that permits the association of the 
protein with chromatin.

A deregulated expression of TRIP12 affects cell division and mitotic entry.  Given that TRIP12 
expression and chromatin association are cell cycle dependent, we tested the consequences of a TRIP12 ectopic 
over-expression on cell fate during 48 h. We found that only 26.7% (8 out of 30) of TRIP12(1-1992)-GFP cells 
undergo two cell divisions or more (Figs. 4A and S4A,B) with a duration in interphase of 19.2 h (Fig. 4B). The 
remaining 73.7% (22 out of 30) fail to achieve a single division and die (Figs. 4A and S4A,B). Remarkably, this 
death occurs at a time (20.1 h) that mitosis should occur (Fig. 4B) suggesting that TRIP12 overexpression is del-
eterious for the mitotic division. This inhibitory effect on cell division was also observed after expression of an 
inactive mutant as well as several TRIP12 protein domains with the exception of the IDR of TRIP12 (Figs. 4A,B 
and S4A–E) suggesting that the mitotic inhibitory effect of TRIP12 is independent of chromosome binding and 
catalytic activity. We further demonstrated that TRIP12 over-expression diminishes the percentage of cells that 
enter in mitosis (Fig. 4C). When we focused on TRIP12(1-1992)-GFP expressing cells that undergo cell divisions 
(Fig. S4A), we noticed that TRIP12 over-expression significantly delays the entry into prophase 30 min after 
Ro-3306 release (Fig. 4D, Graph).

The inhibitory effect of TRIP12 over-expression on mitotic entry led us to investigate the consequences of a 
TRIP12 depletion on mitotic entry. Toward this end, TRIP12-depleted (ShTRIP12) and control (ShScr) cells were 
created using shRNAs (Fig. 5A,B). After Ro-3306 release (30 min), we microscopically observed an accelerated 
mitotic entry in TRIP12-depleted cells (Fig. 5C) that was associated to a higher percentage of cells in late promet-
aphase and metaphase (Fig. 5D). The accelerated mitotic entry was confirmed by flow cytometry-measurements 
of pHH3-Ser10 positive cells (Fig. 5E). A normal mitotic entry of TRIP12-depleted cells was restored by a tran-
sient expression of TRIP12 or the catalytic mutant but not by an expression of the IDR (Fig. S5A).

Altogether, these experiments reveal the important contribution of TRIP12 in mitotic entry as a deregulated 
expression of TRIP12 significantly impedes the proper setting of mitotic entry-regulatory mechanisms.

A shortened duration of DNA replication explains the accelerated mitotic entry of TRIP12- 
depleted cells.  We next aimed to determine the causes of the accelerated mitotic entry of TRIP12-depleted 
cells. Mitotic entry is governed by a succession of events that leads to the condensation and the segregation 
of chromosomes into daughter cells. Among them, the Tyr15-dephosphorylation of CDK1 and the kinase 
WEE1-cytosolic translocation are essential29,30. In Ro-3306 cells, we simultaneously found a decreased level of 
phosphorylation on CDK1-Tyr15 in the nuclear fraction of TRIP12-depleted cells and a WEE1 translocation 
from the nuclear to the cytosolic fraction (Figs. 6A and S5B) which provokes the accelerated entry in prophase 
when the Ro-3306 is removed (Fig. S5C). It is reported that the cytosolic translocation of WEE1 is mediated by 
CYCLIN A nuclear import which begins early during S phase to allow DNA replication via the activation of the 
kinase CDK231,32. We measured an increase in CYCLIN A expression in the nuclear fraction that is associated 
to a decreased expression in cytosolic fraction of these cells (Figs. 6B and S5D). This corroborates with a sig-
nificant increased proportion of cells with CYCLIN A nuclear staining in TRIP12-depleted cells (Fig. 6C). The 
important role of CYCLIN A in DNA replication led us to investigate the status of DNA replication in CYCLIN 
A nuclear-positive cells. Our analyses revealed a higher percentage of TRIP12-depleted cells with achieved DNA 
replication (G2-phase cells) and therefore set for mitotic entry (Fig. 6C). More importantly, these results strongly 
suggest that a TRIP12 depletion accelerates DNA replication. By measuring the duration of S phase, we verified 
that TRIP12-depleted cells have shortened S phase as compared to controls (Fig. 6D). Euchromatin regions are 
replicated early during S phase when heterochromatin regions are replicated in late S phase. Interestingly, we 
measured in EDU-positive asynchronous cells a higher proportion of cells in late S phase in TRIP12-depleted 
cells demonstrating that the depletion of TRIP12 specifically accelerates the DNA replication of euchromatin 
regions. This result is in accordance with the fact that TRIP12 preferentially colocalizes with euchromatin regions 
(Fig. 2B,C).

fractions. Images were obtained from the same experiment and representative of three different experiments. 
(E) TRIP12 and γ-TUBULIN localization in HelaS3 cells in prophase, prometaphase, metaphase, anaphase, 
telophase and cytokinesis were visualized by immunofluorescence. Nuclei were counterstained with DAPI. 
(F) TRIP12 expression in soluble protein (SP) and chromatin-bound (Chro) protein fractions (40 µg for each 
fraction) obtained from nocodazole-treated mitotic HelaS3 cells was measured by Western blot analysis. As 
mitotic cells do not have nuclear membrane, SP fraction contains cytoplasmic and nuclear soluble proteins. 
SP1, 4EBP1 and panH3 protein levels were used as purity control of the different fractions. Images were 
obtained from the same experiment. (G) TRIP12 localization on metaphasic chromosomes was visualized by 
immunofluorescence using anti-TRIP12 antibody (Sigma) after chromosome spreading of HelaS3 cells treated 
with Ro-3306 and released in the cell cycle for 45 min. DNA was counterstained with DAPI. The inset represents 
a magnification of TRIP12 localization on two individual chromosomes.

https://doi.org/10.1038/s41598-020-57762-9


6Scientific Reports |          (2020) 10:789  | https://doi.org/10.1038/s41598-020-57762-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 3.  TRIP12 is associated with chromatin through a N-terminal intrinsically disordered region. 
(A) Prediction of intrinsically disordered and ordered regions in TRIP12 protein sequence (Protein accession 
number NP_004229.1) was determined using IUPred, GlobPlot and DisEMBL software. aa stands for amino 
acids. (B) GFP-fusion protein localization in metaphasic HelaS3 cells transfected with TRIP12 (1-1992), (1-
1552), (1-445), (446-1992) and (1553-1992)-GFP constructs was visualized by immunofluorescence using an 
anti-GFP antibody. H2B-GFP and CAT-GFP constructs were used as controls. Nuclei were counterstained 
with DAPI. IDR stands for Intrinsically Disordered Region, NLS for Nuclear Localization Signal, ARM for 
β-Armadillo domain, WWE for tryptophan and glutamate enriched domain and HECT for Homologous to the 
E6-AP Carboxyl Terminus. Numbers indicate amino acids (aa) position. (C) GFP-fusion protein localization 
in interphasic HelaS3 cells transfected with TRIP12 (1-1992), (1-445), (446-1000), (1001-1552) and (1553-
1992)-GFP constructs was analyzed by immunofluorescence using an anti-GFP antibody. H2B-GFP and 
CAT-GFP constructs were used as controls. Nuclei were counterstained with DAPI. IDR stands for Intrinsically 

https://doi.org/10.1038/s41598-020-57762-9


7Scientific Reports |          (2020) 10:789  | https://doi.org/10.1038/s41598-020-57762-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

A TRIP12 depletion prolongs the SAC activation, leads to chromosome segregation defects 
and cell growth inhibition.  In addition to accelerate DNA replication, we observed that a TRIP12 deple-
tion can lead to other cellular alterations such as a prolonged activation of the SAC. We observed that in con-
trol cells, the percentage of pHH3-Ser10 positive cells reaches a maximum at = 60 min before the physiological 
loss of pHH3-Ser10 at the metaphase-to-anaphase transition (Fig. 5E). In contrast, this percentage persists at 
a maximal level for 60 min (t = 30 min to t = 90 min) in TRIP12-depleted cells suggesting an inhibition of the 
metaphase/anaphase transition. This inhibition could be due to a prolonged activation of the SAC or a default of 
the APC/C complex. The use of reversine, a SAC inhibitor, proved a prolonged activation of the SAC in absence 
of TRIP12 (Fig. S5E). We confirmed the extended duration of prometaphase-metaphase by measuring a sig-
nificantly increased duration of prometaphase (from invagination of the nuclear membrane) to metaphase in 
TRIP12-depleted cells (90.1 min) compared to control cells (53.5 min) (Fig. 7A,B). Additionally, we observed that 
TRIP12-depleted cells largely fail to transit from metaphase to anaphase (32.3% vs 3.7%). Among them, 36% exit 
mitosis by mitotic slippage and 64% die (Fig. 7C). Cell death and mitotic slippage are two processes by which cells 
overcome an extended arrest in prometaphase. A long term arrest in prometaphase and cohesion fatigue can lead 
to different chromosome segregation abnormalities such as the formation of chromosome laggings, anaphase 
bridges and alterations that are visible in interphasic cells such as micronuclei or giant nuclei (consequence of 
mitotic slippage). Among cells that achieve the metaphase-to-anaphase transition, our analysis revealed a higher 
percentage of chromosome lagging, anaphase bridges, micronuclei and giant nuclei in ShTRIP12 cells (Figs. 7D–E 
and S5F). These results indicate that TRIP12 also ensures the maintenance of chromosome integrity and therefore 
the stability of the genome.

The consequences of TRIP12 depletion on S phase duration, mitotic entry and progression led us to investi-
gate the effects on cellular growth. Interestingly, a depletion of TRIP12 provokes a significant diminution of cell 
growth (30.3% after 72 h) in vitro (Fig. 7F) also visible by colony formation assay (Fig. 7G) and in vivo in SCID 
mouse model after sub-cutaneous injections (Fig. 7H). This reduced cell growth was associated to an accumu-
lation of cells in G2/M phase (Fig. 7I) that could be explained by the combination of the increased duration of 
prometaphase-metaphase (Fig. 7B) and the higher percentage of cells that exit mitosis by mitotic slippage with 4n 
DNA content (Fig. 7C). Moreover, this reduced growth is accompanied by an increased proportion of sub-G1 cells 
(Fig. 7I) which could correspond to the TRIP12-depleted cells that die at the metaphase-to-anaphase transition 
(Fig. 7C).

Discussion
The E3 ubiquitin ligase TRIP12 was linked to the control of cell cycle regulators (i.e.: p14/ARF, p16/CDKN2A)10. 
In this study, we provide evidence that TRIP12 expression varies during the cell cycle and correlates with its 
nuclear localization. More importantly, we identify a functional N-terminal domain that confers to TRIP12 the 
capacity to strongly associate with euchromatin. We demonstrate the requirement of TRIP12 in mitotic entry by 
affecting the duration of S phase. Moreover, we reveal the implication of TRIP12 in the control of SAC activation, 
proper chromosome segregation and in cell proliferation.

In line with the implication in mitotic entry, TRIP12 over-expression and depletion alter initiation of mitosis. 
Therefore, fine-tuning of TRIP12 expression and/or activity is essential for the control of this phase. Similar obser-
vations are reported for other important mitotic proteins such as CYCLIN A. Indeed, CYCLIN A over-expression 
delays chromosome alignment and sister chromatid segregation33. The knock down of CYCLIN A by siRNA 
strategy delays the entry into mitosis by postponing cells in G2 phase34. Although the mechanisms that govern 
its expression during the cell cycle need to be further studied, our findings indicate that de novo Trip12 mRNA 
expression is not involved. These observations corroborate the Whitfield et al. study, which provides an exhaust-
ing list of HelaS3 mRNAs that fluctuate during cell cycle35. Trip12 mRNA is not present in this list. It is plausible 
that induction of TRIP12 protein expression in S phase could be mediated by an IRES (Internal Ribosome Entry 
site) dependent-translational regulation as demonstrated for Aurora A kinase mRNA36. Comparative proteomics 
approaches during cell cycle identified TRIP12 as a newly synthetized protein in S phase which is in favor of a 
translational regulation of TRIP12 mRNA during cell cycle37. Moreover, the disappearance of TRIP12 from the 
nucleus in G1 phase-cells could imply its degradation by the proteasome mediated by APC/C-dependent ubiq-
uitination as TRIP12 possesses putative KEN box (aa 1496–1570/UniProt source) and Destruction boxes (aa 
859–867 and aa 1546–1554/ELM resource). This degradation mechanism may explain the decrease of TRIP12 
expression. However, other actors that ensure TRIP12 stability remain to be identified. Similar to UHRF1, 
TRIP12 is stabilized by USP712. During mitosis, CDK1 initiates UHRF1 degradation by phosphorylating the 
USP7-interacting domain38. The same mechanism could exist for TRIP12 degradation since a recent quantita-
tive phospho-proteome approach identified serine 424 residue of TRIP12 as a CDK1 phosphorylation target39. 
Moreover, our preliminary results are in favor of a role of USP7 in the cell cycle regulation of TRIP12. Therefore, 
the variation of TRIP12 expression during cell cycle likely involves different layers of regulation including trans-
lation efficiency and protein stabilization.

Another pressing question is whether TRIP12 exerts its function in mitotic entry through its catalytic activity 
or by protein-protein interaction. Our observations favor a catalytically-independent function (Figs. 4A,B and 
S4A). However, these experiments were performed in the context of over-expressing the catalytic mutant. In this 

Disordered Region, ARM for β-Armadillo domain, WWE for tryptophan and glutamate enriched domain 
and HECT for Homologous to the E6-AP Carboxyl Terminus. Numbers indicate amino acids (aa) position. 
(D) Interaction of increasing amounts of GST-TRIP12-ARM-WWE(446-1000) and GST-IDR(1-325) with 
naked plasmid DNA visualized after migration on agarose gel.
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context, we show that an over-expression of several different TRIP12 domains (except the N-terminal domain) 
leads to an inhibition of cell division (Fig. S4A–E). In these conditions, we cannot entirely be certain that TRIP12 
function in mitotic entry is independent of its catalytic activity. Moreover, TRIP12-GFP transfection leads to 
uncontrolled TRIP12 expression throughout all cell cycle phases whereas endogenous TRIP12 is tightly regulated 
during cell cycle. Formulation of a specific inhibitor of TRIP12 enzymatic activity would be required to definitely 
address this question.

We further demonstrate that TRIP12 interacts with chromatin via an IDR. IDRs are found in a multitude 
of proteins and participate in protein-, DNA-, or RNA-protein interactions40,41. DNA binding proteins are sig-
nificantly enriched in disordered domains in Eukaryotes42. Many IDRs are functional, adopting a well-defined 
conformation upon interaction with target molecules. IDRs constitute important regulatory regions such as the 
N-terminal part of histones that are subject to numerous post-translational modifications to control the chroma-
tin compaction41. To our knowledge, TRIP12 is the first demonstrated E3 ubiquitin ligase interacting with chro-
matin through an IDR domain. The staining on full-length chromosomes demonstrates that TRIP12 interacts 
through its IDR with the entire genome suggesting a widespread role of TRIP12 on genome organization and 
potentially on global gene expression.
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Figure 4.  An over-expression of TRIP12 affects cell division by delaying mitotic entry. (A) The graph represents 
the percentage ± SEM of GFP-cells that overcome at least two cell divisions or die over a 48h-period. * and 
*** indicate a p value < 0.05 and < 0.001, respectively. (B) The graph represents the average duration ± SEM 
in interphase between two mitoses (white bars) and between mitosis and cell death (grey bars) in the different 
GFP positive cells. (C) Percentage of pHH3-Ser10 positive HelaS3 cells transfected with TRIP12(1-1992)-
GFP or control CAT-GFP constructs and arrested by Ro-3306 treatment was assessed by flow cytometry after 
release in inhibitor free medium every 30 min for 2 h. The graph represents the mean ± SEM of three different 
experiments. * indicates a p value < 0.05. (D) Proportion of cells in G2, prophase, early prometaphase, late 
prometaphase and metaphase in HelaS3 cells previously transfected with TRIP12(1-1992)-GFP or control CAT-
GFP constructs was determined by immunofluorescence using anti-GFP (top panel) and anti-pHH3-Ser10 
(middle panel) antibodies. Forty-eight hours after transfection, cells were arrested in G2 phase by a Ro-3306 
treatment and released in inhibitor free medium for 30 min. GFP-positive cells that were negative for pHH3-
Ser10 staining were considered in G2 phase. DNA was counterstained with DAPI. The graph represents the 
percentage of cells in the different phases expressed as mean ± SEM obtained from a minimum of 300 cells of 
three different experiments. ** indicates a p value < 0.01.
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Figure 5.  A TRIP12 depletion accelerates mitotic entry. (A) Expression of Trip12 mRNA was determined by 
RT-qPCR in HelaS3 cells transduced with 3 shRNAs directed against Trip12 mRNA (ShTRIP12) or scramble 
control shRNA (ShScr). β-Actin, Gapdh and Cyclophilin A mRNA level was used for normalization. Results 
are the mean ± SEM obtained from three different experiments and expressed as percentage of expression 
compared to ShScr control cells. ** indicates a p value < 0.01. (B) Expression of TRIP12 protein in HelaS3 
ShTRIP12 and ShScr cells was determined by Western blot analysis. GAPDH protein level was used as loading 
control. Images were obtained from the same experiment and representative of three different experiments. 
(C) Percentage of cells in metaphase in TRIP12-depleted (ShTRIP12#1, #2 and #3) and control (ShScr) 
HelaS3 cells arrested by a Ro-3306 treatment and released in the cell cycle by medium replacement (t = 0) 
was determined by cell live microscopy. The graph represents the percentage of cells in metaphase phenotype 
expressed as mean ± SEM relatively to total number of cells. A cell was considered in metaphase phenotype 
when the equatorial plate was microscopically visualized. A representative cell in metaphase phenotype is 
indicated by the white arrow. The quantification was performed from 9 different fields from three different 
experiments representing an average of 650 analyzed cells. * and ** indicates a p value < 0.05 and 0.01, 
respectively. (D) Proportion of cells in prophase, early prometaphase, late prometaphase and metaphase in 
TRIP12-depleted (ShTRIP12#1) and control (ShScr) HelaS3 cells arrested by a Ro-3306 treatment and released 
in the cell cycle by medium replacement was determined by immunofluorescence using anti-pHH3-Ser10 
antibody after 30 min. DNA was counterstained with DAPI. The graph represents the percentage of cells in 
the different steps of early mitosis expressed as mean ± SEM obtained from a minimum of 300 cells of three 
different experiments. * and ** indicate a p value < 0.05 and 0.01, respectively. (E) Percentage of pHH3-Ser10 
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We showed that TRIP12 depletion accelerates mitotic entry by shortening the DNA replication phase. DNA 
replication is a highly ordered process that ensures cells replicate their genome. It requires the sequential assembly 
of protein complexes such as the pre-replication complex, the pre-initiation complex and the replisome. TRIP12 
could participate in the regulation of DNA replication by interacting or controlling the expression of replica-
tion complex components. Interestingly, TRIP12 was found in the RPA interactome43. Our personal comparative 
proteomic analysis (SWATH-MS) identified an increased expression of the cyclin dependent kinase CDK6 in 
TRIP12 depleted cells (Fig. S6A–C). It is known that CDK6 activity is a critical determinant of pre-RC assembly44. 
Therefore, TRIP12 could control DNA replication initiation by regulating CDK6 level. The progression through 
the different phases of DNA replication can also be controlled by chromatin structures45. Our data showed that 
TRIP12 IDR has the capacity to modify the chromatin structure when expressed at a high level (Fig. S3F,G). It is 
also reported that TRIP12 associates with chromatin remodeling complex components4,46,47. By modifying the 
structure of chromatin, TRIP12 could regulate S phase progression. In summary, it is likely that TRIP12 controls 
the duration of DNA replication by multiple complex mechanisms. Their complete discovery will require further 
investigations.

Our results strongly suggest that in addition to its role for the entry into mitosis, TRIP12 exerts other func-
tions during the progression of mitosis. The interaction of TRIP12 on chromosomes could participate in regu-
lating the kinetics of chromosome condensation or act as a competitor to other chromatin-interacting proteins. 
The identification of TRIP12 as a potential substrate of CDK1 could also support its role in chromosome con-
densation. Indeed, it is known that CDK1 substrates, such as CAP-D3 (Chromosome associated protein-D3), are 
implicated in this process39,48. Moreover, histone ubiquitination varies during cell cycle progression. Both histones 
H2A and H2B are ubiquitinated in S and G2 phases, deubiquitinated in prophase and then reubiquinated in 
anaphase49. Also, the promoter of certain active genes remains ubiquitinated during the entire mitosis to facilitate 
their transcriptional reactivation in post-mitosis50. Although the ubiquitin ligase RNF20 is associated to genome 
ubiquitination, potentially TRIP12 also participates in this epigenetic modification of histones during mitosis.

Finally, our findings show that TRIP12 is localized and sequestered in the nucleus for a short duration. This 
strict temporal control may act to limit the period during which TRIP12 can exert its nuclear functions, precisely 
from S to early G1. This is of particular importance for the TRIP12 inhibitory function on the DDR by promoting 
RNF168 degradation6. DDR is repressed during mitosis51 and reactivated in G1 phase to repair DNA damages 
that pass the G2/M checkpoint or created during mitosis. Given its inhibitory role on DDR and nuclear locali-
zation during the cell cycle, TRIP12 could participate in the mechanisms of DDR inhibition during mitosis by 
interacting with chromatin and therefore by preventing chromatin accessibility to RNF168. In contrast, TRIP12 
disappearance of the nucleus in G1 phase could be part of DDR reactivation in the cell cycle.

In this study, we provide important findings on TRIP12 regulation and its implication in cell cycle progression. 
More importantly, we reveal for the first time its ability to interact with specific regions of the genome which can 
prefigure a critical role in the organization and the expression of the genome.

Materials and Methods
Cell culture and treatment.  HelaS3 cells, HEK-293FT, HelaS3 H2B-dsRed were grown in DMEM 4.5 g/L 
glucose medium supplemented with 10% fetal calf serum (FCS), L-glutamine and antibiotics (Life Technologies) 
at 37 °C in humid atmosphere with 5% CO2. HelaS3 and HEK-293FT were obtained from the American Type 
Culture Collection. The HelaS3 H2B-dsRed cell line was generated in the laboratory (see below). For serum 
starvation, HelaS3 cells were seeded at 80% of confluency and cultured in DMEM 4.5 g/L glucose medium sup-
plemented with 0.5% FCS for 72 h. For double thymidine block, HelaS3 cells were grown in the presence of 2 mM 
thymidine (Sigma-Aldrich) for 18 h, then in fresh medium for 8 h and further grown with thymidine for another 
18 h. Treatments are as follows: HelaS3 cells were cultured in the presence of 2 mM thymidine for 18 h, then in 
fresh medium for 5 h and treated with 100 ng/mL nocodazole (Sigma-Aldrich) for 5 h. HelaS3 cells were treated 
with 9 µM Ro-3306 (Tocris Bioscience) for 20 h; or, cells were treated with 500 nM reversine (Sigma-Aldrich) 
for 2 h. HeLaS3 cells were treated with 10 µM EDU for 15 min. The EDU incorporation was visualized using the 
Click-ItTM EdU Alexa FluorTM 647 Imaging kit (Life Technologies). The human pancreatic hPNE hTERT cell line 
was obtained from Dr M. Ouellette (University of Nebraska Medical Center, NE) and grown in DMEM 75% (Life 
Technologies)/M3 25% (InCell Biotech) medium supplemented with 10% FCS, L-glutamine and antibiotics (Life 
Technologies), 15 ng/ml EGF (Sigma-Aldrich) and 750 mg/ml puromycin. The human pancreatic cancer cell lines 
BxPC-3 and Capan-2 were obtained from the American Type Culture Collection and grown in RPMI medium 
supplemented with 10% FCS, L-glutamine and antibiotics (Life Technologies) at 37 °C in humid atmosphere with 
5% CO2.

Plasmids and transfection.  The following lentivirus shRNA lentiviral plasmids were purchased from Sigma- 
Aldrich: pLKO1-TRC1 non mammalian shRNA control SHC002-target sequence CAACAAGATGAAGAGCA 
CCAA, ShTRIP12#1 pLKO1-TRC1 TRCN0000022374-target sequence CCTGAGTCAAGGAAACATGTT, 
ShTRIP12#2 pLKO1-TRC1 TRCN0000022375-target sequence CCGGAGTTTGAATCCACCTTT and 
ShTRIP12#3 pLKO1-TRC1 TRCN0000273210-target sequence CCACTACTCAGTCACCTAAAT. HelaS3 cells 

positive cells in TRIP12-depleted (ShTRIP12) and control (ShScr) HelaS3 cells arrested in G2 phase by a Ro-
3306 treatment and released in the cell cycle by medium replacement was determined by flow cytometry at the 
indicated time. Three different ShTRIP12 (#1, #2 and #3) were used for these experiments. The results represent 
the mean ± SEM obtained from four different experiments. *, ** and *** indicate a p value < 0.05, 0.01 and 
0.001, respectively.
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Figure 6.  A shortened duration of DNA replication explains the accelerated mitotic entry of TRIP12-depleted 
cells. (A) TRIP12, WEE1, CDC25C and CDK1 protein and P-Try15-CDK1 phosphorylation levels in nuclear 
and cytosolic fractions of TRIP12-depleted and control HelaS3 cells after a Ro-3306 treatment were determined 
by Western blot analysis. 4EBP1 and panH3 protein levels were used as loading and purity controls. Images 
were obtained from the same experiment and representative of three different experiments. The asterisk and 
the arrow indicate the position of phosphorylated and non-phosphorylated forms of CDK1, respectively. 
(B) CYCLIN A level in nuclear and cytosolic fractions of TRIP12-depleted and control HelaS3 cells after Ro-
3306 treatment was determined by Western blot analysis. 4EBP1 and panH3 protein levels were used as loading 
and purity controls. Images were obtained from the same experiment and representative of three different 
experiments. (C) CYCLIN A nuclear presence in TRIP12-depleted and control cells after RO-3306 treatment 
was determined by immunofluorescence. The image illustrates representative cells with nuclear CYCLIN A 
(white arrows) or not. The graph represents the percentage of cells expressed as mean ± SEM obtained from 
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stably over-expressing histone H2B-dsRed fusion protein were generated after transient transfection of pcDNA3/
H2B-dsRed plasmid (kind gift from V. Lobjois, Advanced Technology Institute in Life Sciences of Toulouse, 
France) and selection with hygromycin (800 µg/mL). pENTA0045 plasmid containing TRIP12 cDNA (KIAA0045) 
was obtained from the Kasuka DNA Research Institute (Japan)52. TRIP12-GFP expressing vector was obtained 
by transferring TRIP12 cDNA into pCDNATM 6.2/C-EmGFP-DEST vector (Life Technologies). TRIP12-GFP 
deletion constructs were generated by PCR amplification (Primers are listed in Supplemental Materials and 
Methods Table 1) followed by insertion into pDONR-201 or pDONR-221 (Life Technologies) using Gateway 
strategy. The different fragments were subsequently inserted in frame into pCDNATM6.2/C-EmGFP-DEST vec-
tor (Life Technologies) using the same strategy. Catalytically inactive TRIP12-GFP C1959A mutant was gen-
erated using Quik Change XL Site-Directed mutagenesis kit (Stratagene) and primers listed in Supplemental 
Materials and Methods Table 1. All plasmid sequences were verified by automatic sequencing. Chloramphenicol 
Acetyl Transferase (CAT)-GFP expressing vector pcDNATM6.2/C-EmGFP/GW/CAT was purchased from 
Life Technologies and used as control. Histone H2B (H2B)-GFP expressing plasmid was a gift from D Llères 
(Institute of Molecular Genetics of Montpellier, France). pSG5-HAx2-FLAG-TRIP12 plasmid was generated by 
PCR amplification (Primers are listed in Supplemental Materials and Methods Table 1) followed by insertion 
into the Kpn I and EcoR V sites of pcDNA3 plasmid containing two HA tags, a TEV protease cleavage site and 
a FLAG motif upstream of the Kpn I site. TRIP12 cDNA fragment (1-325) and (446-1000) cloned in pDONR-
201 were transferred in pET-60-DEST plasmid (Novagen) by Gateway strategy to generate GST-IDR(1-325) and 
GST-ARM-WWE(446-1000) plasmids. The different plasmids were transiently transfected in HelaS3 cells using 
JetPEI™ reagent (PolyPlus-Transfection) following manufacturer’s recommendations with a N/P ratio of 5 or 10.

Lentiviral vector production and cell transduction.  All replication defective, self-inactivating lenti-
viral vectors were generated in a BSL-3 facility (Vectorology platform, INSERM U1037, Toulouse, France) as 
previously described by Torrisani et al.53. Briefly, transient transfection of HEK-293FT cells with packaging and 
lentiviral vector plasmids were performed using LENTI-Smart INT kit (InvivoGen) following manufacturer’s rec-
ommendations. All batches were verified replicative virus-free. Lentiviral vector concentrations were quantified 
by p24 ELISA (Innotest, Ingen, Paris). Cells were seeded at a density of 104 cells per well in a 48 well-dish. After 
24 h, cells were incubated with 150 ng of p24-equivalent of lentiviral vectors in the presence of protamine sulfate 
(4 µg/mL) for 12 h. Transduced cells were selected for 3 weeks using puromycin (5 µg/mL-InvivoGen).

Subcellular fractionation and Western blot analysis.  Cell pellets were incubated in 100 µM Tris-HCl 
(pH 7.5), 1,5 mM MgCl2, 5 mM KCl, 5 mM DTT, 0,5% NP-40®, 0,5 mM PMSF and 10 µL/mL protease inhib-
itor (Sigma-Aldrich). After 10 min-incubation on ice, samples were centrifuged (15 min at 2 000 rpm, 4 °C). 
Supernatants containing cytosolic proteins were kept. After two washes, pellets were resuspended in RIPA 
(Radio-ImmunoPrecipitation Assay) buffer (Biotech) and centrifuged (20 min at 12 000 rpm, 4 °C), superna-
tants containing nuclear proteins were kept. The residual pellets were solubilized in RIPA buffer supplemented 
with 25 U micrococcal nuclease (Takara) and 1 mM DTT. After 20 min-incubation at 37 °C, the reaction was 
stopped using EDTA solution (44 mM final concentration). After sonication (2 cycles of 6 s, amplitude 40% with 
Vibra-CellTM sonicator), samples were centrifuged (15 min at 12 000 rpm, 4 °C). Supernatants containing chro-
matin fraction were kept. For total protein, cell pellets were incubated in RIPA buffer supplemented with 10 µL/
mL protease inhibitor (Sigma-Aldrich). After 15 min on ice, samples are centrifuged (15 min-12 000 rpm, 4 °C). 
Protein fractions were denaturated in Laemmli buffer after heating at 95 °C for 5 min. Proteins were separated by 
SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis) and transferred onto nitrocellulose 
membrane (Bio-Rad) using TransBlot Turbo (Bio-Rad) apparatus. After membrane saturation and primary/sec-
ondary antibody incubation, protein expression was detected using ClarityTM Western ECL Substrate (Bio-Rad) 
and Chemi-DocTM XRS+ (Bio-Rad) apparatus. Signal intensities were quantified using Image Lab (Bio-Rad) soft-
ware. Antibodies and dilution used for these experiments are listed in Supplemental Materials and Methods 
Table 2.

Flow cytometry.  For cell cycle analyses, cells were fixed in 70% ethanol during the exponential growth phase 
for asynchronous HelaS3 cells or after treatment for enriched HelaS3 cell populations. Fixed cells were treated 
with RNAse A (10 µg/mL) and propidium iodide (20 µg/mL) (Sigma-Aldrich) for 15 min at 37 °C. TRIP12(1-
1992)-GFP and H2B-GFP transfected cells were fixed with ethanol 70% and incubated with a pHH3-Ser10 anti-
body followed by Alexa Fluor® 555 anti-mouse secondary antibody. Data were acquired using the MACS Quant® 
VYB cytometer (Miltenyi Biotech) and analyzed with MACS Quant and ModFit software. Antibodies and dilu-
tion used for these experiments are listed in Supplemental Materials and Methods Table 2.

three different experiments. Percentage of cells in G2 phase (white bars), late S (light grey bars) and early S 
(dark grey bars) was determined by immunofluorescence using criteria defined in Fig. 2C. The bars represent 
the mean obtained from three different experiments. * and ** indicate a p value < 0.05 and 0.01, respectively. 
(D) Percentage of EDU positive cells in TRIP12-depleted (ShTRIP12) and control (ShScr) HelaS3 cells arrested 
in early S phase by a double thymidine block treatment and released in the cell cycle was determined by EDU 
incorporation at the indicated time. The graph represents the mean ± SEM obtained from a minimum of 2500 
cells for each indicated time of three different experiments. *, ** and *** indicate a p value < 0.05, 0.01 and 
0.001, respectively. (E) Percentage of early S and late S cells in EDU-positive TRIP12-depleted (ShTRIP12) 
and control (ShScr) HelaS3 cells was determined by immunofluorescence using criteria defined in Fig. 2C. 
The graph represents the mean ± SEM obtained from a minimum of 500 EDU-positive cells of three different 
experiments. * and ** indicate a p value < 0.05 and 0.01, respectively.
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Figure 7.  A TRIP12 depletion prolongs the SAC activation, leads to chromosome segregation defects and cell 
growth inhibition. (A) Representative images of the different fate of TRIP12-depleted cells during 140 min. 
TRIP12-depleted (ShTRIP12#1) and control (ShScr) H2B-dsRed HelaS3 were arrested by a Ro-3306 treatment. 
Cells were released in the cell cycle and followed by live microscopy for 6 h. The black bar represents the 
duration of prometaphase-metaphase. (B) Duration of prometaphase-metaphase was measured from the 
invagination of the nuclear membrane to the separation of sister chromatids in 125 control cells and 244 
TRIP12#1-depleted cells. The horizontal bar represents the mean ± SEM from three different experiments. *** 
represents a p value < 0.001. (C) Percentage of cells that fail the transition metaphase-to-anaphase in TRIP12#1-
depleted and control H2B-dsRed HelaS3 cells. The bars represent the mean ± SEM obtained from three different 
experiments. *** represents a p value < 0.001. Percentage of cells that exit mitosis via mitotic slippage (white 
bars) and cell death (grey bars). The bars represent the mean obtained from three different experiments. (D) 
Chromosome laggings and anaphase bridges in TRIP12-depleted and control H2B-dsRed HelaS3 cells arrested 
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Cell proliferation.  TRIP12-depleted and control HelaS3 cells were seeded in triplicate at a concentration of 
5.104/well of 6 well-plate. After 24 h (t = 0), cells were counted using a Z1 Coulter® Particle Counter (Beckman 
Coulter™). Cells were counted after 24 h, 48 h and 72 h.

In vivo experiments.  Experimental procedures performed on mice were approved by the ethical commit-
tee of INSERM- CREFRE (National Institute of Health and Medical Research-Regional Center for Functional 
Exploration and Experimental Resources) and authorized by the French Ministry of Research: APAFIS#3600-
2015121608386111v3. All experiments were performed in accordance with relevant guidelines and regulations. 
TRIP12-depleted and control HelaS3 cells (1.106 cells) were subcutaneously injected into SCID mice (n = 5). 
After 5 weeks, mice were euthanized and tumor volume was determined.

RNA extraction and RT-qPCR.  Total RNA was isolated from HelaS3 cell lines with TRIzol® Reagent 
(Life Technologies) according to supplier’s instructions. One to five µg of total RNA were reverse transcribed 
into cDNA using RevertAid H minus Reverse Transcriptase kit (Thermo-Scientific) according to manufactur-
er’s recommendations. Duplicate RT-qPCR assays were carried out in a StepOnePlus™ Real-Time PCR System 
(Applied Biosystems) with SsoFast™ EvaGreen® supermix (Bio-Rad) and specific primers (see primers listed in 
Supplemental Materials and Methods 2). Relative quantity of mRNA was calculated by the comparative threshold 
cycle (CT) method as 2–ΔCT, where ΔCT = CT Trip12 mRNA – CT Reference mRNA. Three mRNAs of reference 
(β-Actin, Gapdh and cyclophilin A) were used for normalization. Primers are listed in Supplemental Materials and 
Methods Table 1.

Chromosome spreading.  Cells were treated with 9 µM Ro-3306 for 20 h, washed with PBS and released in 
fresh medium for 45 min at 37 °C, or in medium supplemented with 100 µM nocodazole for 4 h. Mitotic cells were 
collected by brief treatment with trypsin, rinsed with PBS and swollen in hypotonic medium (10 mM KCl, 15% 
FCS) at 37 °C for 20 min. Cell preparations were fixed with a freshly made 75% ethanol, 25% glacial acetic acid 
solution overnight at 4 °C, dropped on glass slides and air-dried. Slides were stained with DAPI or processed for 
immunofluorescence (see below).

Naked DNA interaction.  GST-IDR(1-325) and GST-WWE-ARM(446-1000) recombinant proteins were 
purified from BL21 bacteria and quantified. Increasing volumes of purified proteins were incubated with 100 ng 
of pENTR1A-GFP plasmid (made in laboratory) in Tris-HCl (pH 7.6) 10 mM-EDTA 1 mM buffer for 20 min at 
room temperature. Reactions were migrated on agarose gel 0.7% and visualized with ethidium bromide.

Immunofluorescence.  Cells were grown on cover slips then subsequently fixed and permeabilized using 
with IntraStain™ reagent (DAKO) or methanol/0.1% Triton™ X-100. Cover slips were saturated using Protein 
block™ reagent (DAKO) for 30 min and then incubated with primary antibodies overnight at 4 °C. After sev-
eral washes, cells were incubated with appropriate secondary Alexa Fluor®-488 anti-mouse, Alexa Fluor®-555 
anti-mouse or Alexa Fluor®-555 anti-rabbit antibodies for 2 h at room temperature. Nuclei were counterstained 
with 1 µM DAPI for 5 min at room temperature. Cover slips were mounted on glass slides using Fluorescent 
Mounting Reagent/Medium (DAKO). Fluorescence was visualized using LSM 780 or 880 confocal microscope 
(Zeiss) with a 63x NA 1.4 oil-immersion objective and analyzed using Zen software (Zeiss). Antibodies and dilu-
tion used for these experiments are listed in Supplemental Materials and Methods Table 2. Images were quantified 
wit FIJI software.

Bioinformatic prediction of intrinsically disordered regions.  Detection of intrinsically disordered 
region in TRIP12 protein sequence (NP_004229.1) was determined using the prediction software IUPred (iupred.
enzim.hu)54, GlobPlot (http://globplot.embl.de/)55 and DisEMBL (dis.embl.de)56.

by Ro-3306 treatment and released in the cell cycle were quantified by live cell microscopy. The images are 
representative of a chromosome lagging and an anaphase bridge observed in TRIP12-depleted H2B-dsRed 
HelaS3 cells. The graph represents the percentage of cells with chromosome segregation defects expressed as a 
mean ± SEM and obtained from 344 TRIP12-depleted and 251 control cells of three different experiments.  
* and *** indicate a p value < 0.05 and 0.001, respectively. (E) Micronucleus and giant nuclei in asynchronous 
TRIP12-depleted or control HelaS3 cells were quantified by immunofluorescence after DAPI staining. The 
graph represents the percentage of cells expressed as a mean ± SEM and obtained from a minimum of 103 cells 
of three different experiments. * indicates a p value < 0.05. (F) Cell growth of TRIP12-depleted and control cells 
was measured by cell counting. Cells were seeded at 5.104 cells/well of 6-wells plate and counted the day after 
(t = 0) and every 24 h the three following days. Results are expressed as fold change ± SEM relatively to t = 0. 
Results were obtained from 7 different experiments. ** and *** indicate a p value < 0.01 and 0.001, respectively. 
(G) Colony formation assay of HelaS3 cells transduced or not (NT) with ShScr and ShTRIP12 expressing 
lentiviral particles. Forty-eight hours after transduction, cells were seeded in a 10 cm-plate and selected with 
puromycin for 11 days. Colonies were fixed and counterstained with crystal violet. The images are representative 
of at least three different experiments. (H) In vivo tumor progression of TRIP12-depleted and control HelaS3 
cells. Cells (106 cells) were sub-cutaneously injected into Scid mice (n = 5). After 5 weeks, mice were sacrificed 
and tumor volume was determined. Results are expressed in mm3 ± SEM. * indicates a p value < 0.05. (I) 
Distribution of TRIP12-depleted and control cells in the cell cycle was determined by flow cytometry after 
propidium iodide incorporation. The percentage of cells in the different phases of the cell cycle is expressed as a 
mean ± SEM and was obtained from at least 7 different experiments. * indicates a p value < 0.05.
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Live cell microscopy.  H2B-dsRed HelaS3 cells were treated with Ro-3306 and released in the cell cycle. 
Fluorescent images were acquired (Objective 20x) every minute for 6 h using a Zeiss motorized inverted Observer 
Z1 microscope, containing LED module Colibri. Filter combinations: GFP (38 HE) DsRed (43 HE) and DAPI 
(49) with the AxioCam MRm camera system. Time-lapse imaging of living cells was performed using Pecon-Zeiss 
incubation system for temperature (37 °C) and CO2 (5%) controlled environment. Images were subsequently ana-
lyzed using ZEN SP2 software (Blue edition Zeiss). Transfected Ro-3306-treated HelaS3 cells released in the cell 
cycle were imaged every half-hour or hour using IncuCyte Zoom Kinetic Imaging System with a 10x objective.

SWATH-MS comparative proteomic analysis.  Analysis of proteins was performed using a microLC 
system Ultimate 3000 (Dionex, Villebon sur Yvette, France) coupled to a Triple-TOF 5600 + (AB Sciex, Les Ullis, 
France) in the positive ion mode. Samples were first dissolved in 16 _L of buffer (5% ACN, 0.05% trifluoroacetic 
acid) and spiked with iRT calibration mix (Biognosys, Schlieren, France). The totality of the samples was then 
injected on a YMC-Pack Pro C18 column (3.0 mm _ 150 mm; 3 _m particle size) at a flow rate of 5 _L.min−1. The 
run length was over 90 min with a gradient from 7% to 45% buffer B (buffer A: 0.1% formic acid, buffer B: 90% 
ACN, and 0.1% formic acid) in 70 min. The MS data were acquired with a SWATH mode. The source parameters 
were set as follows: IS at 5500 V, Cur gas at 25, GS1 at 5. The acquisition parameters were as follows: one 50 msec 
accumulation time MS scan followed by 50 variable SWATH windows each at 40 msec accumulation time for m/z 
400–1250. Identification was determined using an in-house SWATH library created HelaS3 cells with MaxQuant 
software, Les Ulis, France) (FDR 1%). A mass accuracy of 20ppm on precursor ions was used, and 0.5 Da on the 
fragments. Cysteine carbamidomethylation, methionine oxidation, proline hydroxylation and serine, threonine 
and tyrosine phosphorylations were taken into account. Data treatment was done with Spectronaut Software 9.0, 
Les Ulis, France). Analysis of ShScr and ShTRIP12#1 HelaS3 cells was performed on three different transductions. 
For each peptide, a triplicate with a peptide quantity <5 and a standard error >60% of the mean was excluded 
from the analysis. For each replicate, the sum of the four most abundant peptides was calculated. The mean of 
ShTRIP12 triplicate was compared to the one of ShScr triplicate. Protein with a fold change >1.2 and <0.8 com-
pared to ShScr cells were considered.

Statistical analysis.  In vitro data were analyzed by 2-tailed, unpaired Student’s t-test using a multiple statis-
tics Graph Pad Prism 5 software package and a difference was considered significant when p value was lower than 
0.05. Mean values are given ± SEM. Number of independent experiments is indicated in the figure legends. *, ** 
and *** Indicate a p value < 0.05, 0.01 and 0.001, respectively.

Data availabilty
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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