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Inclusions of non-bound amino acids particularly methionine, lysine and threonine, together with the
“ideal protein” concept have allowed nutritionists to formulate broiler diets with reduced crude protein
(CP) and increased nutrient density of notionally “essential” amino acids and energy content in recent
decades. However, chicken-meat production has been projected to double between now and 2050,
providing incentives to reduce dietary soybean meal inclusions further by tangibly reducing dietary CP
and utilising a larger array of non-bound amino acids. Whilst relatively conservative decreases in dietary
CP, in the order of 20 to 30 g/kg, do not negatively impact broiler performance, further decreases in CP
typically compromise broiler performance with associated increases in carcass lipid deposition. Increases
in carcass lipid deposition suggest changes occur in dietary energy balance, the mechanisms of which are
still not fully understood but discourage the acceptance of diets with reductions in CP. Nevertheless, the
groundwork has been laid to investigate both amino acid and non-amino acid limitations and propose
facilitative strategies for adoption of tangible dietary CP reductions; consequently, these aspects are
considered in detail in this review. Unsurprisingly, investigations into reduced dietary CP are epitomised
by variability broiler performance due to the wide range of dietary specifications used and the many
variables that should, or could, be considered in formulation of experimental diets. Thus, a holistic
approach encompassing many factors influencing limitations to the adoption of tangibly reduced CP diets
must be considered if they are to be successful in maintaining broiler performance without increasing
carcass lipid deposition.

© 2020, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A tangibly reduced-crude protein (CP) diet for broiler chickens
reared from 14 to 35 d postehatch contains between 2% and 3% less
CP compared to a conventional diet. The formulation of these diets
is typically based on decreases in soybean meal and increases in
iation of Animal Science and
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feed grain (maize or wheat) contents coupled with elevated in-
clusions of non-bound (crystalline and synthetic) amino acids to
meet requirements. Real benefits for sustainable chicken-meat
production using less resources will stem from the successful
development of such diets. These advantages range from reduced
nitrogen and ammonia emissions, improved litter quality and
enhanced bird welfare to less undigested protein passing into the
hind gut to fuel the proliferation of potential pathogens
(Greenhalgh et al., 2020). Whilst greater reductions of dietary CP
(40 to 50 g/kg) invariably compromise broiler performance and
increase lipid deposition, a limited number of studies have inves-
tigated both aspects. Comparing reported data is problematic due
to different bird strains, genders, ages and dietary nutrient con-
centrations used. Furthermore, body lipid is often recorded as total
body lipid or weight of abdominal fat pad rather than relative fat
pad weights. Where data on body weight rather than weight gain
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was available, the latter measure may be calculated and the data
from 19 studies is presented (Table 1). Collectively, data suggest
that a reduction in dietary CP of 55 g/kg (172 vs. 227 g/kg)
depressed weight gain by 5.1%, increased feed conversion ratio
(FCR) by 9.0% and increased fat deposition by 36%. Thus, inferior
FCR and increased fat deposition epitomise the challenges to suc-
cessfully reducing dietary CP using substantial levels of non-bound
amino acids.

Nevertheless, it has been demonstrated that moderate dietary
CP reductions (20 to 30 g/kg) without inferior broiler performance
and profitability are achievable. This was demonstrated in Van Harn
et al. (2017) where reductions in CP of 22 and 23 g/kg in the
growing and finishing phase of Ross 308 male broilers did not in-
fluence liveweight gain and feed intake but significantly improved
FCR by 3.5% (from 1.555 to 1.500; P < 0.05). However, there is a lack
of information on effect size and power analysis in studies reported
in the literature; therefore, small but economically important
impact on growth performance may not be detected in these
studies. More recently, dietary CP reductions in the order of 30 g/kg
whilst maintaining broiler performance have been possible in
modern broiler diets and substantially decrease dietary soybean
meal inclusion by over 30%. Furthermore, N excretion declines by
approximately 14% providing strong environmental incentives to
successfully reducing CP in broiler feeds by greater than 30 g/kg
(Kriseldi et al., 2018; Chrystal et al., 2020a; Van Harn et al., 2019).

Almquist and Grau (1944) appear to be the first investigators to
observe that birds offered broiler diets supplemented with non-
bound amino acids were incapable of maintaining growth perfor-
mance. Such findings imply that there is a threshold to CP re-
ductions that can be accommodated by broiler chickens. If the
factors contributing to this threshold were to be identified it should
be possible to put corrective strategies in place so that tangibly
reduced-CP diets, with their attendant advantages, will meet
acceptance. Several reasons have been advanced for the poor per-
formance of broilers offered tangibly reduced-CP diets. These
include the inherently different digestive dynamics of ‘intact’ pro-
tein, di- and tri-peptides and non-bound amino acids and direct
amino acid limitations. These limitations may include an
Table 1
Summary of 19 studies on broiler performance, live weight gain, feed conversion ratio (F
(HCP) diets supplemented with non-bound amino acids.

Reference Sex Age, d CP, g/kg

LCP diet HCP

Jackson et al. (1982) Mixed 0 to 49 160 360
Bedford and Summers (1985) Male 0 to 21 140 220
Edmonds et al. (1985) Male 8 to 16 160 240
Summers and Leeson (1985) Male 0 to 28 200 240
Fancher and Jensen (1989a) Male 21 to 42 160 215
Fancher and Jensen (1989b) Female 21 to 42 164 194
Moran et al. (1992) Male 0 to 42 193 224
Kidd and Kerr (1996) Mixed 21 to 42 168 200
Aletor et al. (2000) Male 22 to 42 153 225
Erwan et al., 2009 Mixed 21 to 42 180 200
Corzo et al. (2011) Male 21 to 42 189 202
Belloir et al. (2017, Exp. 1) Male 21 to 35 150 190
Belloir et al. (2017, Exp. 2) Male 21 to 35 160 190
Kriseldi et al. (2017) Male 0 to 41 196 220
Liu et al. (2017) Male 7 to 28 154 400
Sigolo et al. (2017) Male 0 to 42 202 207
Rehman et al. (2018) Male 0 to 42 188 193
Shao et al. (2018) Male 22 to 56 170 190
Srilatha et al. (2018) Mixed 0 to 42 182 202

1 FCR is expressed in grams of feed per gram of live weight gain.
2 Body lipid as a percentage of body weight (%).
3 Body lipid as relative abdominal fat pad weight in grams per kilogram of body weig
insufficient nitrogen (N) pool for synthesis of non-essential amino
acids, dietary imbalances between notionally essential and non-
essential amino acids and the distinct possibility that amino acid
requirements have not been identified with sufficient accuracy in
the context of reduced-CP diets (Waldroup, 2007; Siegert et al.,
2015b; Chrystal et al., 2020b). However, some groundwork has
been laid for a better understanding of feeding reduced CP diets to
broilers with respect to amino acid requirements, antagonisms, and
imbalances (Kidd et al., 2013; Wu, 2014; Kidd and Choct, 2017).

The use of non-bound or feed-grade amino acids in linear least-
cost feed formulation started in 1950s with the rapid adoption of
methionine in poultry diets; however, the second limiting (lysine)
and third limiting (therionine) amino acid did not occur until the
1970s and 1990s (Kidd et al., 2013). The gradual acceptance of
non-bound methionine, lysine and threonine in diet formulations,
together with the “ideal protein” concept has allowed nutrition-
ists to formulate broiler diets at far lower dietary CP contents than
diets containing only ‘intact’ protein meals to meet amino acid
requirements. Formulating maize-soybean meal-based broiler
starter diets without non-bound methionine, lysine and threo-
nine, has been shown to increase CP from 200 to 356 g/kg and
soybean meal inclusion from 293 to 709 g/kg (Pesti, 2009).
Therefore, the purpose of this review is to consider the key amino
acid and non-amino acids factors limiting the adoption of tangibly
reduced CP diets and to propose strategies that may overcome
these limitations.

2. Background

The global demand for chicken-meat has been projected to in-
crease from 105.6 million tonnes at present to 181.3 million tonnes
in 2050 which is an increase of 72% (Alexandratos and Bruisma,
2012). Inevitably, this will increase the demand for poultry feed
including soybean meal and cereal grains. Indeed, Masuda and
Goldsmith (2008) factored in soybean yield improvements from
approximately 2.5 to 3.0 tonnes per hectare and concluded that an
extra 1.09 million hectares of arable land will be required annually
to sustain demand for soybeans from 2008 to 2030. However, the
CR) and body lipid in broilers offered low crude protein (LCP) or high crude protein

Live weight gain,
g

FCR1, g/g Body lipid

diet LCP HCP LCP HCP LCP HCP

e e e e 31.22 14.92

322 400 2.033 1.667 16.22 12.12

109 139 1.923 1.462 15.62 11.32

873 947 1.840 1.620 21.03 17.03

1146 1302 2.084 1.859 21.53 15.43

922 923 2.288 2.183 23.43 20.43

2042 2077 1.940 1.880 17.13 14.43

1323 1386 2.110 2.040 23.83 19.93

1539 1522 1.920 1.800 10.62 7.12

1170 1226 1.920 2.130 12.43 11.33

2030 2050 1.830 1.770 15.73 13.53

1478 1479 1.710 1.640 25.13 21.63

1374 1338 1.710 1.680 21.53 19.33

3057 3072 1.605 1.575 11.93 8.53

828 1450 2.206 1.139 36.92 10.22

1916 2250 1.754 1.709 19.03 14.33

2143 2329 2.230 2.140 23.93 24.83

2027 2020 2.540 2.580 15.13 11.63

2075 1899 1.750 1.600 22.03 15.93

ht (g/kg).
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extra land required over the past 10 years has been closer to 5.6
million hectares annually and the projection for 2030 soybean
production has already been exceeded (http://statistics.amis-
outlook.org/data/index.html). Thus, the successful development of
tangibly reduced CP broiler diets is important for sustainable
chicken meat production.

Additional benefits of reduced dietary CP include a reduction in
water intake and improved litter conditions leading to an
improvement in bird welfare issues with reduced incidences of foot
pad dermatitis and breast blisters (Garland, 2018; Lemme et al.,
2019). Furthermore, a reduction in dietary CP may improve flock
health by reducing the risk of necrotic enteritis (NE) caused by the
proliferation of Clostridium perfringens in the hind gut (Drew et al.,
2004; Wilkie et al., 2005). The reduced usage of in-feed antibiotics
has resulted in a resurgence of interest in understanding the
pathogenesis of necrotic enteritis and investigating how it can be
prevented by alternative interventions including the manipulation
of dietary CP (Mot et al., 2014; Rodgers et al., 2015; Prescott et al.,
2016).

The economic benefits of reducing dietary CP stem from re-
ductions in energy expenditure on excreting excess N as uric acid
and sparing of matrix space in feed formulation for inclusion of less
energy dense ingredients, potentially reducing feed costs (Kidd and
Choct, 2017). As non-bound amino acids become more economi-
cally feasible a greater array of these amino acids will be included in
commercial diets at increasing inclusion levels and dietary CP and
soybean meal contents will continue to decline.

3. Protein

“Crude protein” has been used for over 150 years and is simply
the N content of the feed multiplied by 6.25, based on the
assumption thatmost proteins contain 16% N (Jones,1941). Thus, CP
is somewhat misleading and it does not give any indication of the
quality of the protein (Lemme, 2018). However, the majority of
practical commercial broiler diets are formulated to digestible
(mainly essential) amino acids and CP as a measure of dietary N is
justified. Much of the research into reduced-CP diets do not define
the CP values that have been attributed to non-bound supple-
mental amino acids (Aftab et al., 2006). Presumably, the reasons for
not assigning CP values to non-bound amino acids are due to the
actual values this assigns to the individual amino acid. For example,
in some cases amino acid CP exceeds 1,000 g/kg when the factor of
6.25 is applied including glycine (1,154 g/kg CP) and L-arginine
(1,996 g/kg CP). However, with the exception of L-lysine HCl (and L-
lysine sulphate), the balance of the commercially available non-
bound amino acids has a CP value below their true protein
(amino acid) value.

Between 1960 and 2000, the “ideal protein” concept was
developed byMitchell, Scott and Baker for meat-type chickens (and
pigs) at the University of Illinois, USA. The patterns of dietary
essential amino acids were based on tissue proteins and included
all the essential amino acids that are not synthesised de novo in
animals, but excluded requirements for non-essential amino acids
due to limited knowledge of their metabolism and function (Wu,
2014). The requirements of individual amino acids and the devel-
opment of the ideal protein concept, where the nominally “essen-
tial” amino acids are expressed in a ratio to the reference amino
acid, lysine, were published by Baker and Han (1994). Similar ideal
protein ratios have been suggested by numerous other researchers
including Lemme et al. (2006), Tillman and Dozier (2013), Wu
(2014) and Rostagno et al. (2017). Wu (2014) appears to be the
only researcher who included non-essential amino acids in the
Texas A&M “ideal protein” concept, although Alhotan and Pesti
(2016) by implication set a minimum non-specific non-essential
amino acid ratio by stipulating a minimum digestible lysine to true
protein ratio. However, it is probable that ideal amino acid ratios
will be quite different in tangibly reduced-CP diets.

Early work by Grau (1948) suggested that the lysine require-
ment for maximum growth at a particular CP level increases as
dietary CP increases. However, in a review of a series of papers
published between 1987 and 1992 from Reading and Natal Uni-
versities it was concluded that excess CP, in rathermodest amounts,
can depress the utilisation of the first limiting amino acid in
growing chicks (Morris et al., 1999). Additionally, the maximum
growth rate response, based on relative gain per day (%) declined as
dietary CP reduced. The optimum essential amino acid-N to total
amino acid-N ratio for maximum weight gain for rats, pigs and
poultry suggested by Heger (2003) were similar, varying between
0.55 and 0.60. Substantive reductions in dietary CP seek to chal-
lenge this paradigm by increasing digestible amino acid ratios to
reduced dietary CP.

4. Amino acid digestibility

In the quest to develop tangibly reduced-CP diets scant atten-
tion has been paid to apparent amino acid digestibility coefficients.
Indeed, the only previous study we are aware is that of Awad et al.
(2016) who reported the effects of low protein diets on ileal amino
acid digestibilities in broiler chickens raised under tropical condi-
tions. These researchers found a significant 6.18% increase (0.790 vs.
0.744) in average ileal amino acid digestibility coefficients pursuant
to a reduction in dietary CP from 210 to 165 g/kg. However, in 3
consecutive assays (Chrystal et al., 2020a, 2020b, 2020c) increases
in amino acid digestibilities were consistently observed following
reductions in dietary CP of maize-based diets but the magnitude of
these increases was variable. The most pronounced response was
observed in Chrystal et al. (2020a), where the transition from 210 to
165 g/kg CP triggered linear increases in the jejunal digestibilities of
17 amino acids (r ¼ �0.556; P < 0.005) by 29%. In wheat-based
diets, Hilliar et al. (2020) reported an average increase of 9.10% in
the ileal digestibility of 16 amino acids following the transition
from 200 to 170 g/kg CP. These substantial variations in amino acid
digestibility cofficients indicate they may trigger post-enteral
amino acid imbalances in birds offered reduced-CP diets. The
likelihood is that the genesis of these variable, but at times pro-
nounced, increases in apparent amino acid digestibility coefficients
stems mainly from attenuated flows of endogenous amino acids. It
follows that reduced-CP diets containing less ‘intact’ protein would
diminish the secretion of pepsin, trypsin and the remaining
endogenous proteolytic enzymes and, in turn, mucin which is a
prolific source of endogenous amino acids (Lien et al., 2001).
Reduced endogenous amino acid flows would increase apparent
digestibility coefficients. The increase in apparent digestibility is
also consistent with the premise that free, non-bound amino acids
are rapidly absorbed (Wu, 2009) and are notionally 100% digestible
(Lemme et al., 2005).

Several recognized amino acid limitations hinder the adoption
of reduced-CP diets. However, our contention is that additional
consideration should be directed towards threonine and the
conditionally essential amino acids, glycine and serine, the
branched-chain amino acids (BCAA) and the aromatic amino acids.
Consequently, these 3 topics are addressed in the next section.

5. Amino acid considerations

5.1. Glycine, serine and threonine

Glycine is notionally a non-essential amino acid although
glycine may become conditionally limiting in reduced CP diets

http://statistics.amis-outlook.org/data/index.html
http://statistics.amis-outlook.org/data/index.html
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(Siegert et al., 2015a, 2016, 2015b; Hilliar et al., 2017b). In Kriseldi
et al. (2017) the effects of glycine equivalents (Glyequi) and gluta-
mine supplementation on growth performance and carcass char-
acteristics of male Ross 708 broilers reared on reduced CP diets to
42 d postehatch were investigated. These authors concluded that
providing sufficient dietary glycine plus serine may be necessary to
maintain broiler performance when dietary CP was reduced by
approximately 24 g/kg.

Dean et al. (2006) described Glyequi as the sum of glycine and the
molar equivalent of serine and the interconversion of these is
considered to be unrestricted in poultry.

Glyequi may be calculated from the following equation:

Glyequi (g/kg) ¼ Glycine (g/kg) þ [Serine (g/kg) � 0.7143] .

Serine is required for the conversion of methionine into cysteine
and reducing dietary CP increases supplementation of D,L-methio-
nine and usually ignores specific requirements for cysteine which
may be important. Each molecule of methionine not converted to
cysteine reduces the requirement for Glyequi. As a result, during the
conversion, ammonia is produced and one molecule of glycine is
required for the de novo synthesis of one molecule of uric acid in
the excretion of ammonia-N. It has been suggested that responses
to Glyequi will vary depending upon the CP content of the diet
(Siegert et al., 2015b; Siegert and Rodehutscord, 2015; Hilliar et al.,
2017). In a meta-analysis of 10 studies, Siegert et al. (2015b)
concluded that Glyequi had significant positive effects on weight
gain, feed intake and feed conversion efficiency (FCE). Also, that
methionine to methionine plus cysteine ratios were important in
maximising responses in FCE with Glyequi. Data from the Siegert et
al. (2015b) meta-analysis is provided in Tables 2 and 3.

Somewhat surprisingly, threoninewas not included as a variable
in Siegert et al. (2015b) as the authors reasoned that dietary vari-
ations in threonine were low and that most studies had essential
amino acids meeting or exceeding NRC (1994) requirements.
Increasing glycine plus serine from 15.5 to 16.5 g/kg in a 182 g/kg CP
diet increased weight gain by 4.94% from 21 to 42 d postehatch in
broilers offered diets containing 5.7 g/kg digestible threonine.
However, when diets contained 6.5 g/kg digestible threonine, the
addition of glycine plus serine depressed weight gain by 3.21% in
Corzo et al. (2009). Thus, additional threonine compromised re-
sponses to Glyequi. In contrast, Chrystal et al. (2020c) observed that
in tangibly reduced CP (165 g/kg) maize-soybeanmeal diets, broiler
growth performancewas improved from the combined additions of
threonine and glycine plus serine which was not the case when
threonine or glycine plus serine were added individually to the
reduced-CP diet. This is in agreement with Ospina-Rojas
et al. (2013) who observed that increasing threonine from 7.0 to
7.7 g/kg in a broiler diet containing 14.7 g/kg glycine plus serine
increased weight gain by 3.21%, decreased feed intake by 3.26% and
improved FCR by 6.59% from 21 to 35 d postehatch. Clearly,
Table 2
Parameter estimates and goodness of fit criteria for the mixed model fitted to broiler res

Model ADG, g/d ADFI, g/d

Coefficient SE P-value Coefficien

Intercept 18.723 3.855 0.0046 38.704
Glyequi 15.869 3.037 <0.0001 8.963
(Glyequi)2 ‒3.371 0.857 0.0002 ‒2.027
Residual function* y ¼ �0.122(SE0.866) þ 0.004(SE0.026)x y ¼ �0.10
R2 0.956 0.972
Root MS error 1.300 1.550

Glyequi ¼ glycine equivalents; ADG ¼ average daily gain; ADFI ¼ average daily feed inta
*Residual against prediction; none of the slopes were significantly different from 0 (P >

1 Adapted from Siegert et al. (2015b).
interactions between threonine with glycine plus serine should not
be overlooked and may explain some of the variation in results
reported in the literature.

Additionally, glycine can be metabolised from choline when L-
homocysteine is available, through a 5-step process, or from thre-
onine directly via threonine dehydrogenase or threonine aldehase
(Siegert et al., 2015a). However, in an instructive study, Yin et al.
(2020) offered reduced dietary CP from 215 to 165 g/kg to male,
off-sex Ross 308 broilers from 7 to 35 d postehatch. Free amino acid
concentrations were determined in the portal and systemic blood
plasma and, whilst portal levels were higher, patterns were similar.
The reduction in dietary CP generated an average 30.9% increase in
glutamine levels that may be a result of increased condensation of
ammonia plus glutamic acid into glutamine. Glyequi decreased by
23.6% which may reflect elevated demand for glycine and serine
into the Krebs uric acid cycle. In contrast, average threonine con-
centration rose by 28.0% which is not indicative of threonine being
a precursor of glycine in broiler chickens.

Dietary choline should also be considered and a study to provide
80 mg/d intake in broilers observed FCE and average daily gain
(ADG) varied based on intakes of Glyequi and threonine Siegert et al.
(2015a). Increasing threonine intake reduced the Glyequi required to
achieve targeted weight gains and linear FCR. Also, dietary choline
should always be present in sufficient quantities in studies
involving the threonineeglycineeserine axis so that it is not a
confounding factor.

Glycine is an amino acid readily susceptible to early Maillard
reactions with glucose by Hodge (1953) forming intermediate
Amadori compounds to reduce amino acid availability and subse-
quent digestibility. Typical broiler diets contain in the order of 35 to
45 g/kg sugars. This is relevant given most broiler diets are steam-
conditioned and pelleted between 80 and 90 �C which may partly
explainwhy broiler growth responses to Glyequi in reduced CP diets
are variable if glycine becomes involved in Maillard reactions.
However, there is a paucity of data on the effect of steam condi-
tioning at high temperatures on reduced CP diets containing high
levels of non-bound amino acids and further research into these
possible chemical reactions is warranted, particularly if the diets
contain added dextrose and non-bound glycine.
5.2. Branched-chain amino acids: leucine, isoleucine and valine

In addition to serving as a “building block” for protein synthesis,
leucine has been shown to regulate both protein and lipid meta-
bolism, promoting lean tissue gain in young animals and alleviate
muscle protein loss in aging adults and food-deprived animals
(Hundal and Taylor, 2009; Columbus et al., 2015; Duan et al., 2015).
Indeed leucine was identified as a possible regulator of protein
turnover in muscle decades ago (Buse and Reid, 1975). Moreover, it
is relevant that high dietary leucine levels have been shown to
ponse traits using Glyequi as an independent variable over 6 experiments1.

FCE, g/g

t SE P-value Coefficient SE P-value

5.317 0.0008 0.488 0.037 <0.0001
3.622 0.0164 0.232 0.041 <0.0001
1.023 0.0518 ‒0.047 0.012 0.0002

0(SE0.913) þ 0.002(SE0.021)x y ¼ �0.011(SE0.040) þ 0.014(SE0.053)x
0.843
0.018

ke; FCE ¼ feed conversion efficiency; SE ¼ standard error; MS ¼ mean square.
0.05).



Table 3
Parameter estimates and goodness of fit criteria for themixedmodel fitted to feed conversion efficiency using Glyequi as an independent variable andMet-to-TSAA ratio, cystine
and CPbasal respectively, as second independent variables (Var 2)1.

Model Met:TSAA Cystine CPbasal2

Coefficient SE P-value Coefficient SE P-value Coefficient SE P-value

Intercept 0.295 0.105 0.0476 0.528 0.037 0.0001 0.511 0.033 <0.0001
Glyequi 0.383 0.067 <0.0001 0.180 0.044 0.0001 0.161 0.00 <0.0001
(Glyequi)2 ‒0.048 0.012 0.0001 ‒0.047 0.012 0.0002 ‒0.040 0.010 0.0003
Var2 0.276 1.131 0.0403 ns ns
(Var2)2 ns ‒0.474 0.189 0.0151 ns
Glyequi � Var2 ‒0.208 0.072 0.0056 0.204 0.061 0.0016 0.002 0.001 <0.0001
Residual function3 y ¼ �0.009(SE0.042) þ 0.012(SE0.056)x y ¼ �0.008(SE0.041) þ 0.011(SE0.055)x y ¼ �0.008(SE0.034) þ 0.011(SE0.045)x
R2 0.842 0.846 0.882
Root MS error 0.017 0.017 0.015

Glyequi ¼ glycine equivalents; TSAA ¼ total sulfur amino acids; ns ¼ non-significant; SE ¼ standard error; MS ¼ mean square.
1 Adapted from Siegert et al. (2015b).
2 CP concentration (%) of the respective basal diets.
3 Residual against prediction; none of the slopes were significantly different from 0 (P > 0.05).
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activate the mammalian target of rapamycin (mTOR) signalling
pathways that stimulate protein synthesis in young broiler chickens
(Deng et al., 2014).

Practical wheat-based broiler diets exceed the minimum ideal
protein ratio of leucine to lysine and this is even more pronounced
withmaize and sorghum-based broiler diets. Diets that include raw
materials such as maize gluten, maize dried distillers’ grains plus
solubles and blood meal that are high in leucine will only increase
leucine excess (Waldroup et al., 2002; Rostagno et al., 2011).
Optimal ratios of lysine to leucine, valine and isoleucine of 109, 80
and 69, respectively, were proposed by Wu (2014). However, in
modern practical broiler diets, with small decreases in dietary CP of
10 g/kg, leucine to lysine ratios of between 120 and 130 in wheat-
soybean meal-based diets and 150 to 170 in maize-soybean meal-
based diets are quite standard. Thus, by default the minimum
“ideal” protein ratio is achievable for valine and isoleucine but
leucine is usually supplied in excess.

Leucine-induced BCAA antagonism was first observed in ani-
mals decades ago as the addition of L-leucine (30 g/kg) to a low-
protein (90 g/kg casein) diet was found to cause marked growth
depression in rats that could be partially overcome by supple-
mentation with isoleucine (Harper et al., 1984). Antagonistic BCAA
interactions have been reported to change BCAA concentrations in
blood plasma and body tissues whilst high intakes of leucine
depress valine and isoleucine concentrations in blood and muscle
(Harper et al., 1984). The antagonistic effect of disproportionate
amounts of BCAA on broiler and rat performance has been well
documented; excess leucine disrupts the utilisation of isoleucine
and valine, especially when these 2 amino acids are marginal or
limiting (Harper, 1956; Harper et al., 1970; D'Mello and Lewis, 1970;
Boldizsar et al., 1973; Smith and Austic, 1978; Burnham et al., 1992).
For broiler chickens offered a valine deficient diet (6.3 g/kg) with
adequate levels of isoleucine and leucine, poor weight gains were
associated with a high incidence of feather and leg abnormalities.
However, birds offered diets adequate or deficient in total BCAA did
not exhibit these signs and it was proposed by Farran (1987) that
the BCAA requirement for broilers is influenced by BCAA
antagonism.

Dietary levels of 11.6 g/kg for leucine, 9.0 g/kg for valine and
7.8 g/kg for isoleucine have been proposed to support maximum
weight gain and FCE in male broilers to 21 d postehatch (Farran
and Thomas, 1990). More recently, Ospina-Rojas et al. (2017)
comprehensively investigated responses of BCAA in Cobb 500
male broilers from 21 to 42 d postehatch. A basal maize-soybean
diet with reduced CP was formulated according to the nutritional
recommendations for male broiler chickens proposed by Rostagno
et al. (2011) excluding digestible leucine and valine levels. A
factorial treatment array consisted of 5 digestible leucine levels
(10.0, 12.0,14.0,16.0, or 18.0 g/kg) and 5 digestible valine levels (5.2,
6.7, 8.2, 9.7, or 11.2 g/kg). Dietary digestible lysine in the basal diet
was 10.4 g/kg and digestible isoleucinewas fixed at 7.1 g/kg (ratio of
68.3 to digestible lysine) since these authors reasoned that the
antagonistic effects between leucine and valine were more severe
than with isoleucine. The ratio of digestible leucine to digestible
lysine ranged from 96 to 173 and for digestible valine from 50 to
108. Increasing dietary digestible leucine resulted in linear
(P < 0.001) decreases in feed intake, weight gain and FCE. In
contrast, increasing dietary digestible valine resulted in quadratic
increases (P < 0.001) in these performance parameters. Addition-
ally, there were significant interactions between digestible
leucine � digestible valine for feed intake and weight gain but not
for FCE. Interestingly, there was a linear decline in breast meat yield
and abdominal lipid with increasing dietary digestible leucine.
Furthermore, increasing dietary digestible valine resulted in a
quadratic increase (P < 0.001) in thigh yield and a linear decline in
abdominal lipid.

The hypothesis that dietary leucine, in excess of standard rec-
ommendations, increases protein synthesis and decreases protein
degradation in broiler muscle was recently investigated in Ross 308
and Cobb 500 male broilers offered typical, standard 3 phase
diets � 3 levels of BCAA to 34 and 35 d postehatch respectively
(Zeitz et al., 2019a, 2019b). In the Ross 308 study, the ratio of iso-
leucine:valine remained constant within each phase over the 3
diets investigated and leucine was incrementally increased by 22%,
15% and 11% in the starter, grower and finisher phases. In the Cobb
500 study, the ratios of leucine:isoleucine:valine were maintained
constant within each phase offered whilst, on average, absolute
levels were increased by an average 30% between treatments
within each phase. In the Ross 308 study, the data indicated that
dietary leucine concentrations that exceeded the broiler re-
quirements by as much as 60% neither influenced protein synthesis
nor degradation nor muscle growth in growing broilers. Similarly,
in the Cobb 500 study, BCAA did not influence protein synthesis or
degradation pathways leading to the conclusion that elevated
levels do not increase muscle growth at fixed BCAA ratios.

Despite the findings of Zeitz et al. (2019a,b) a potential imbal-
ance of BCAA in reduced CP diets should be considered particularly
when valine and isoleucine are at minimum dietary levels with
correspondingly high leucine levels from maize protein. Whilst
antagonism between the BCAA is unlikely to result in depressed
broiler performance when practical type diets are offered this may
not be the case with reduced-CP diets (Waldroup et al., 2002).
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Branched-chain amino acids are actively degraded in extra-hepatic
and extra-intestinal tissues and leucine stimulates muscle protein
synthesis in mammals. Therefore dietary leucine, isoleucine and
valine should be present in an appropriate ratio to prevent amino
acids imbalances in meat-type chickens (Wu, 2014).

5.3. Aromatic amino acids: phenylalanine, tyrosine and tryptophan

Phenylalanine is often overlooked by nutritionists as it is seldom
limiting in conventional broiler diets. However, phenylalanine is an
essential amino acid and a precursor for tyrosine. Phenylalanine
tyrosine and tryptophan are aromatic amino acids and phenylala-
nine influences metabolic processes via its role in the synthesis of
thyroid hormones. These hormones have a profound effect on
growth performance in broilers by direct effects on oxygen con-
sumption and, in turn, the metabolism of dietary protein, carbo-
hydrates and lipids. Furthermore, they play a crucial role in
thermogenesis and adaptation to changes in environmental tem-
peratures (Gropper and Smith, 2012). Of the total phenylalanine
plus tyrosine requirement, it was recommended that at least 58%
should be supplied in the form of phenylalanine by D'Mello (2003)
and similar recommendations of 55% and 57% have been proposed
by Rostagno et al. (2011) and Wu (2014), respectively.

The suggested ideal ratio of phenylalanine plus tyrosine to
lysine ranged from 95% to 119% in early work (Dean and Scott,1965;
Huston and Scott, 1968; Sasse and Baker, 1972). More recently, ideal
ratios of 115% (Dorigam et al., 2013) and 105% (Wu, 2014) have been
proposed whilst Franco et al. (2017) suggested a ratio of 113%
(10.5 g/kg digestible lysine) to maximise weight gain and breast
weight in Cobb 500 male broilers reared from 8 to 17 d postehatch.
These researchers found a significant quadratic response in weight
gainwhen broilers were offered graded levels of phenylalanine plus
tyrosine where the regression equation was as follows:

ybody weight gain (g) ¼ 19.21 � [(Phenylalanine þ Tyrosine)/Lysine(%)]
e 0.0849 � [(Phenylalanine
þ Tyrosine)/Lysine(%)]2 � 695.14 (r2 ¼ 0.99).

Decreasing dietary CP from 210 to 165 g/kg in maize-soybean
meal diets reduced phenylalanine plus tyrosine from 163% to
117% where phenylalanine provided 57.6% of total in the 165 g/kg
CP diet, suggesting that these levels were within the optimum
range (Chrystal et al., 2020a). However, in wheat-soybean meal
diets with tangible CP reductions there may not be sufficient
phenylalanine plus tyrosine. Indeed, in a recent study (unpublished
data) in our laboratory, a reduction from 222 to 165 g/kg dietary CP
resulted in markedly inferior growth performance in male Ross 308
broilers offered wheat-soybean meal diets from 7 to 35 d post-
ehatch. The formulated ratio of phenylalanine plus tyrosine to
lysine was only 67% suggesting there may have been a deficiency in
these 2 amino acids that might partly explain the poor performance
observed. The ideal ratio of phenylalanine plus tyrosine to lysine to
support optimal growth performance in broilers offered tangibly
reduced CP diets warrants further investigation.

6. Peptides

Only a small percentage of proteins are digested by endogenous
proteolytic enzymes into individual constituent amino acids and
the majority remain as di- and tri-peptides in rats. Thus, a signifi-
cant amount of the amino acid transport across the gastrointestinal
wall occurs as oligopeptides rather than single amino acids (Bai,
1994). Furthermore, absorption of amino acids in a protein-free
diet containing only non-bound amino acids has been reported to
be less efficient than in diets containing peptides (Gilbert et al.,
2008; Ekmay, 2011; Vahdatpour et al., 2016). This is likely
because intestinal uptakes of oligopeptides are more rapid than
single amino acids (Gilbert et al., 2008). The active transport
mechanisms for the transcellular route of peptides include Naþ

coupled glucose and Hþ coupled dipeptide transporters and anti-
porters (Vahdatpour et al., 2016). Transport of di- and tri-peptides
takes place primarily via the oligopeptide transporter 1 (PepT1)
but also may be absorbed via transcellular movement of cell-
penetrating peptides and paracellular movements (Gilbert et al.,
2008). A tangible reduction in dietary CP causes fundamental
changes to the balance as it decreases di- and tri-peptides derived
from ‘intact’ protein but increases single or non-bound amino acids.
The relative abundance of chicken PepT1 mRNA expression was
investigated in broilers offered diets containing different CP levels
by Chen et al. (2005) and a CP � time interaction (P < 0.0001) of
PepT1 mRNA expression was observed in broiler chickens reared to
35 d postehatch. Broilers reared on 120 g/kg CP diets decreased
PepT1 mRNA expression whilst it increased in broiler offered 180
and 240 g/kg CP diets. Dietary protein may have a regulatory effect
on chicken PepT1 expression at the transcriptional level and pep-
tides, amino acids growth factors and insulinmay influence peptide
transport through PepT1 in chickens (Chen et al., 2005). Thus, these
authors suggest that peptides and amino acids may control
expression of PepT1 and conclude that mechanisms by which di-
etary CP regulates PepT1 gene expression in chickens requires
further elucidation. Additionally, studies on the kinetics of glycyl-
proline transport in intestinal brush border vesicles have shown
that dipeptides transport is a saturable process and follows
MichaeliseMenten kinetics suggesting theremay be an appropriate
balance between protein-bound and non-bound amino acids for
optimum broiler performance (Le Ray et al., 2014; Vahdatpour
et al., 2016).
7. Digestive dynamics

Non-bound amino acids do not require digestion, are immedi-
ately available for absorption in the small intestine and appear in
the portal circulation more rapidly than protein-bound amino acids
(Wu, 2009). The extent, rate and site of nutrient digestion should be
considered collectively so that glucose and amino acids are made
available in appropriately balanced quantities at sites of protein
synthesis for efficient growth performance (Liu and Selle, 2015).
Digestive dynamics of starch and protein may be described as a 3-
tiered process. Firstly, digestion of starch and protein, secondly,
absorption of glucose and amino acids from the gut lumen and
finally, the transition of these nutrients across enterocytes to enter
the portal circulation (Liu and Selle, 2017).

The rate of protein digestion in human nutrition has received
attention, particularly with respect to young and elderly subjects
(Dangin et al., 2001, 2002; Tang et al., 2009). However, Truong et al.
(2017) contended that there should be a greater focus on protein
digestion rates for rapidly growing broiler chickens and their
application in least-cost feed formulation. Furthermore, non-bound
amino acids in broiler diets have inherently different digestive
dynamics to protein-bound amino acids (Selle et al., 2015). Indi-
vidual digestibility coefficients measured at the distal ileum are
static, whilst the digestion of starch and protein and subsequent
absorption of glucose and amino acids is a dynamic process and is
therefore not reflected in these static measurements (Liu and Selle,
2015; Selle et al., 2015). Reducing dietary CP reduces soybean meal
content, increases feed grain (and thus starch) and axiomatically
increases the content of non-bound amino acids in broiler diets
(Selle et al., 2015). Therefore, beyond the supply of adequate dietary
amino acids, consideration of digestive dynamics is pivotal to



Fig. 1. The quadratic relationships between starch:protein disappearance rate ratios in
the proximal jejunum and weight gain (r ¼ 0.849; P < 0.001) or feed conversion ratio
(FCR; r ¼ 0.838; P < 0.001) in broiler chickens from 15 to 28 d postehatch (Sydenham
et al., 2017).

Fig. 2. Predicted digestion curve of starch, nitrogen and amino acids in broilers offered
sorghum/soybean meal-based diets (Liu and Selle, 2017).
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successful implementation of reduced CP diets utilising substantial
quantities of non-bound amino acids.

It has been proposed that rapidly digestible starch could flood
the anterior small intestine with glucose to the extent that amino
acids compete with glucose co-absorption with sodium and intes-
tinal uptakes via their respective Naþ-dependent transport systems
(Liu and Selle, 2017; Moss et al., 2018a,b). This was unequivocally
demonstrated in Moss et al. (2018b) whereby Ross 308 male
broilers were offered reduced CP diets (219 to 189 g/kg) accom-
panied by increased dietary starch (269 to 439 g/kg) using maize
starch from 7 to 28 d postehatch. These authors observed signifi-
cant (P < 0.05) negative correlations between starch digestibility
coefficients and 11 amino acids in the distal ileum. The transition
from high to low CP diets increased average starch digestibility
coefficients by 23.5% (0.908 vs. 0.735) in proximal jejunum, by
30.3% (0.951 vs. 0.730) in distal jejunum, by 15.9% (0.964 vs. 0.832)
in proximal ileum and by 10.9% (0.968 vs. 0.873) in distal ileum. The
rate of starch digestion may be important whereby slowly digest-
ible starch may promote catabolism of glucose rather than amino
acids in the gut mucosa thereby sparing amino acids and increasing
their entry into the portal circulation (Moss et al., 2018b). Thus, in
tangibly reduced CP broiler diets with large amounts of supple-
mental, non-bound amino acids, slowly digestible starch may
favour absorption of amino acids into the portal circulation.

The importance of starch to protein disappearance rate ratios
was demonstrated in Sydenham et al. (2017). Nutrient disappear-
ance rate was calculated as the amount of the nutrient digested or
disappearanced at a certain site of the small intestine; for example,
Protein disappearance rate at the distal jejunum ¼ Daily feed
intake � Apparanet protein digestibility at the distal
jejunum � Protein content in the diet. In Sydenham et al. (2017),
quadratic relationships were observed between proximal jejunal
starch to protein disappearance rate ratios with weight gains
(r ¼ 0.849; P < 0.001) and FCE (r ¼ 0.838; P < 0.001) in Ross 308
male broilers from 15 to 28 d postehatch (Fig. 1). It may be deduced
from the regression equations that a starch to protein disappear-
ance rate ratio in the order of 3.74:1 would support the best weight
gain and FCR outcomes but higher or lower ratios would depress
growth performance. That starch digestion rates are more rapid
than protein by a factor of 1.70 (4.17� 10�2 vs. 2.45� 10�2 per min)
in the small intestine of birds offered coarsely ground sorghum-
soybean meal diets was reported by Liu and Selle (2017) as
shown in Fig. 2. Digestion rate describes the slope of the digestion
curve in the small intestine by plotting apparent digestibilities in
different intestinal segments against their corresponding mean
retention time.

Changes in starch, lipid and protein contents as dietary CP is
reduced have a profound impact on their digestive dynamics in
broiler chickens (Liu et al., 2017). Instructively, the impact of dietary
protein on broiler performance was observed to be modified by
dietary lipid concentrations and the optimal protein concentration
for maximum weight gain was 17.5% lower in birds offered diets
with a high lipid concentration. Feed intake was 8.8% less for a diet
containing a lipid concentration of 75 g/kg compared with a diet
containing 45 g/kg lipid (1,823 vs. 1,999 g/bird). Furthermore, sig-
nificant (P < 0.001) interactions were reported between dietary
protein and lipid on growth performance and nutrient utilisation.
Higher dietary lipid inclusions may compromise pellet quality and,
in turn, feed intakes in broiler chickens. Another possible expla-
nation for the reduction of feed intake is lipid-induced triggering of
the “ileal brake”. Intraluminal infusion of lipids in poultry modu-
lates gastrointestinal motility by increasing duodeno-gastric reflux
and reverse peristalsis (Martinez et al., 1995). These researchers
suggested that these effects could delay gastric emptying and in-
crease transit time, which is consistent with the “ileal brake”
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mechanism described in mammals (Maljaars et al., 2008).
Increased retention time of digesta may increase the extent of
nutrient digestion but reduce the rate of nutrient digestion. Very
few studies have evaluated the effect of lipid on protein and starch
digestion andmore studies are required, especially in the context of
reduced CP diets. Thus, the impact of dietary lipid and starch in
reduced CP diets on digestive dynamics, partitioning of dietary
energy and broiler performance needs to be investigated (Liu et al.,
2017; Chrystal et al., 2020b).

8. Dietary energy

Iso-energetic diets with reduced CP typically contain more
grain, less soybean meal and less added lipid compared with
practical diets. Inevitably dietary energy derived from starch in-
creases at the expense of energy derived from both dietary lipid
and protein whilst relative fat-pad weight and FCR increase as a
consequence (Fancher and Jensen, 1989 a, b; Aftab et al., 2006;
Siegert et al., 2016; Liu et al., 2017; Chrystal et al., 2020a). The
implication is that broilers offered reduced-CP diets over-consume
dietary energy relative to protein and deposit this excess as body
lipid (Gous et al., 1990).

Amino acids are utilised in the gut mucosa primarily for secre-
tory and structural protein synthesis; however, tangible amounts of
amino acids undergo catabolism to supply energy to the digestive
tract. Approximately 18% of dietary amino acids undergo catabo-
lism in the gut mucosa in pigs (Stoll et al., 1998) but this issue does
not appear to have been adequately addressed in poultry. It is
possible that non-bound amino acids are less likely to undergo
catabolism in the gut mucosa because of their rapid absorption in
the anterior small intestine where more starch/glucose is available
as an alternative energy substrate (Truong et al., 2017).

The efficiency of utilisation of amino acids for N-corrected
metabolizable energy (AMEn) has been estimated to be 85% for lean
gain deposition and 60% for deamination and catabolism. Addi-
tionally, the efficiency of utilization of amino acids for net energy
(NE) was considered to be 70% for protein deposition and 30% for
deamination and catabolism, whilst reported NE values have been
determined to be 77.5% of reported AMEn values (Rostagno et al.,
2011; Tillman, 2019). Reducing dietary CP whilst maintaining a
minimum ideal amino acid ratio by adding non-bound amino acids
is therefore likely to change the efficiency of utilisation of amino
acids. Whilst the partitioning of amino acids into lean gain depo-
sition or deamination and catabolism in reduced CP diets requires
further elucidation, the concept of “ideal protein” as discussed
previously is likely to change as dietary CP is reduced and large
amounts of non-bound amino acids are added to these diets. Amino
acids absorbed into the portal blood system from the GIT and uti-
lised directly for lean protein deposition in the broiler would not
undergo catabolism and would thus not produce associated heat
increment of digestion. Thus, in theory, the reduction in heat
increment should increase the NE of reduced CP diets and this
might partly explain increased lipid deposition in broilers offered
these diets. However, in Kamran et al. (2008) broilers offered
maize-soybean-based diets from 1 to 35 d postehatch with graded
reductions in CP from 200 to 170 g/kg in which the energy-to-
protein ratio was maintained, resulted in depressed weight gains
of 13.4% (610 vs. 704 g/bird) and compromised FCE by 29.2% (337 vs.
476 g/kg). More recently, a reduction in dietary AMEn from 12.85 to
12.01MJ/kg in tangibly reduced CP (143 g/kg) maize-soybeanmeal-
based diets resulted in an 18.5% decrease (P < 0.001) in relative fat
pad weights (10.1 vs. 12.4 g/kg) but weight gain and FCR were
inferior (1,760 vs. 1,879 g/bird; P ¼ 0.024 and 1.765 vs. 1.629 g/g;
P < 0.001) in male Ross 308 broilers from 14 to 35 d post hatch
(Chrystal et al., 2020b). Thus, further research on energy
metabolism and body lipid deposition is warranted for tangibly
reduced CP diets. The associated changes in energy-supplying
substrate, competition for absorption sites and the ratios of di-
etary starch to protein, in conjunction with the rate of digestion of
these substrates will all need to be considered when dietary CP is
reduced and large amounts of non-bound amino acids are added
(Liu and Selle, 2015). Changes in nutrient utilisation as a function of
dietary lipid, starch and protein whilst enhancing digestive tract
functionwith consideration of dietary fibre, feed particle size, pellet
durability, pellet hardness and whole grain feeding may advantage
tangibly reduced CP diets by changing underlying digestion dy-
namics and energy metabolism in broilers.

9. Gizzard function, particle size, fibre and whole grain

Dietary fibre, feed particle size and whole grain have been re-
ported to enhance gizzard function and improve nutrient avail-
ability of feed for broilers. Inclusion of whole grain or coarse fibre at
30 g/kg or maintaining coarse-ground cereal (>1.0 mm) at least 200
to 300 g/kg in broiler feed achieves heavier gizzards and enhances
gizzard function (Svihus, 2011; Mateos et al., 2012; Abdollahi et al.,
2018; Kheravii et al., 2018). Furthermore, Svihus (2011) noted that
gizzards responded very rapidly to changes in dietary composition.
Enhanced gizzard function using whole grain has been demon-
strated to improve FCE in broilers (Singh et al., 2014; Liu et al., 2015;
Moss et al., 2017; Abdollahi et al., 2018). Multi-factorial mecha-
nisms underlying nutrient utilisation, improved digestibility and
broiler performance through manipulation of dietary structural
components have been proposed by Kheravii et al. (2018). However,
addition of whole maize at 250 g/kg to reduced-CP maize-soybean-
based diets had no effect on gizzard size or pH and was unable to
ameliorate the effects of reduced CP (165 g/kg) on broiler perfor-
mance parameters of Ross 308 off-sex male broilers from 14 to 35 d
postehatch (Chrystal et al., 2020a). Similarly in wheat-soybean-
based diets, the addition of 250 g/kg whole wheat post pelleting
had no impact on the performance of Ross 308 off-sex male broilers
offered reduced CP (165 g/kg) diets from 14 to 35 d postehatch,
although relative gizzard weights increased (P < 0.001) by 53.8%
(13.41 vs. 8.72 g/kg) gizzard content pH reduced (2.76 vs. 3.62;
P < 0.001) and relative abdominal fat pad weights decreased
(P < 0.05) by 14.6% (6.91 vs. 8.09 g/kg) (Yin et al., 2020).

10. Exogenous feed enzymes

Reductions in dietary CP are usually achieved by increasing the
feed grain content at the expense of protein meal (soybean meal)
with concomitant increases in dietary starch and reductions in
dietary lipid. Since exogenous feed enzymes are reported to be
substrate dependant, exogenous enzymes capable of degrading
non-starch polysaccharides in broiler diets based on “viscous”
grains, includingwheat and barley, have beenwidely adopted (Selle
and Ravindran, 2007). Thus, by implication, the contribution of
non-starch polysaccharide enzymes such as xylanase in wheat-
based, reduced CP diets may confound results and therefore they
are not normally included in these trials. However, this also limits
useful, direct comparisons of trial data with standard commercial
broiler diets.

Perhaps exogenous phytase is even more relevant since it goes
beyond releasing phytate-bound phosphorus with “extra-phos-
phoric effects” on protein/amino acids, calcium and sodium
(Shelton et al., 2004) and therefore results in even greater con-
founding effects in reduced CP diets with changing dietary phytate
levels. Phytate has the potential to form binary or ternary protein-
phytate complexes depending on the environmental pH and the
isoelectric point of the protein body (Selle et al., 2000) and Kidd
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et al. (2016) explained the interactions between phytate and thre-
onine and the formation of phytateelysine complexes. Conse-
quently, amino acid digestibilities were compromised in diets
without phytase supplementation (Selle et al., 2000). Unsurpris-
ingly therefore, most studies with reduced CP diets do not include
exogenous phytase even though it is standard practice to do so in
commercial broiler diets, often at levels providing 1,500 FTU/kg or
more. Additionally, dietary phytate and phytase influence the
digestion dynamics of starch/glucose and protein/amino acids and
exogenous phytase is likely to have a positive bearing on the post-
enteral bioavailability of glucose and amino acids via its influence
on Naþ-dependent intestinal uptake of these nutrients. Further-
more, it has been suggested that phytate and phytase may have
reciprocal impacts on Naþ, Kþ-ATPase activity adding further
complexity to the successful development of tangibly reduced CP
diets (Moss et al., 2018a). The inevitable resulting conundrum on
including exogenous phytase in reduced CP diets is the allocation of
suitable matrix values to the phytase as dietary phytate changes
and substantial amounts of supplemental, non-bound amino acids
are included. Whilst it is prudent to allocate only available phos-
phorus, calcium and sodium matrix values to phytase in tangibly
reduced CP diets, the extra-phosphoric effects cannot be ignored.

11. Dietary electrolyte balance

Dietary electrolyte balance (DEB) may be calculated from the
following equation (Mongin, 1981):

DEB (mEq/kg) ¼ Naþ (mg/kg) � 23.0 þ Kþ (mg/kg)
� 39.1 e Cl� (mg/kg) � 35.5 .

DEB plays an influential role in the homeostasis of body fluids
and in maintaining the acid-base balance. A DEB of approximately
250 mEq/kg would appear to be optimal although a wide range of
acceptable DEB has been reported in the literature; from 200 to 350
mEq/kg, depending on environmental temperature, humidity and
other factors (Borges et al., 2011).

Much of the research into reduced-CP diets has overlooked DEB.
As dietary CP is reduced so too is DEB and Waldroup (2007) sug-
gested that these lower DEB values may be contributing to the poor
performance of birds offered reduced-CP diets. This possibility was
specifically investigated in Chrystal et al. (2020b). A comparison
was drawn between 156 g/kg CP broiler diets with a DEB of either
230 or 120 mEq/kg. However, this difference in DEB did not have
any significant influence on growth performance or fat deposition
in Ross 308 off-sex male broilers from 14 to 35 d postehatch.
Nevertheless, it may be prudent to maintain DEB in reduced-CP
diets rather than allowing it to decline.

12. Conclusions

Multiple factors that include both amino acid and non-amino
acid limitations with consideration of digestion dynamics will
need to be considered for the successful development of reduced
CP diets. Conditionally essential amino acids such as Glyequi
together with threonine and choline, aromatic amino acids
(phenylalanine and tyrosine) with consideration of amino acid
antagonisms (lysine & arginine; BCAA) and possible changes in the
ratios of amino acids to lysine with reduced CP diets require further
elucidation.

The efficiency of absorption of amino acids and peptides and the
competition between amino acids and glucose for Naþ-dependent
transporters will need to be considered whilst the fate of ingested
non-bound amino acids need to be addressed. Manipulation of the
ratio of starch:protein disappearance rates in the proximal small
intestine may be a key factor in optimising the availability of amino
acids, peptides and glucose along the gastro-intestinal tract.

Finally, the ultimate solution to the successful implementation
of tangibly reduced CP diets, utilising substantial amounts of non-
bound amino acids, will be the control of excess body lipid depo-
sition in meat-type poultry offered these diets, whilst maintaining
growth rates and FCR.
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