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Graphic Mining of High-Order Drug Interactions
and Their Directional Effects on Myopathy Using
Electronic Medical Records

L Du1,2, A Chakraborty1,3, C-W Chiang1,3, L Cheng1,3, SK Quinney1,4, H Wu1,3, P Zhang1,3, L Li1,3* and L Shen1,2*

We propose to study a novel pharmacovigilance problem for mining directional effects of high-order drug interactions
on an adverse drug event (ADE). Our goal is to estimate each individual risk of adding a new drug to an existing drug
combination. In this proof-of-concept study, we analyzed a large electronic medical records database and extracted
myopathy-relevant case control drug co-occurrence data. We applied frequent itemset mining to discover frequent drug
combinations within the extracted data, evaluated directional drug interactions related to these combinations, and
identified directional drug interactions with large effect sizes. Furthermore, we developed a novel visualization method
to organize multiple directional drug interaction effects depicted as a tree, to generate an intuitive graphical and visual
representation of our data-mining results. This translational bioinformatics approach yields promising results, adds
valuable and complementary information to the existing pharmacovigilance literature, and has the potential to impact
clinical practice.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 481–488; doi:10.1002/psp4.59; published online on 6 July 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Drug–drug interactions (DDIs) are a major cause of
adverse drug reactions (ADEs). Most traditional pharmacovigilance studies focused on examining single-drug–single-
ADE associations. Most DDI studies examined two-way DDI on ADEs, while some studied high-order drug interactions. •
WHAT QUESTION DID THE STUDY ADDRESS? � No study has examined the relationships between high-order DDIs.
We proposed a novel pharmacovigilance problem for mining directional effects of high-order ADE-associated drug inter-
actions, and developed a graphical mining approach to efficient discovery and effective visualization of the directional
DDI patterns with large effect sizes. • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE � Using the directional search
method, we identified major contributing drugs in high-dimensional drug interaction signals that are associated with
myopathy risk. • HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS � This is a newly
proposed research problem that has never been studied before, and the identified directional DDI patterns have high
potential to aid clinical decisions.

Drug–drug interactions (DDIs), a major cause of adverse
drug effects (ADEs), are a serious global health concern,
and a severe detriment to public health.1 A recent review2,3

indicated an annual estimate of 74,000 emergency room
visits and 195,000 hospitalizations in the US associated
with DDIs. While traditional pharmacovigilance studies have
focused on examining single-drug–single-ADE associa-
tions,4–7 recent studies have started to analyze the DDI
effects on ADEs.8–11 For example, Duke et al. analyzed a
local medical records database at Indiana University and
identified five drug pairs that significantly increased the risk
of myopathy (a common muscle pathology) when compared
to the expected additive myopathy risk from taking either of
the drugs alone.9 Likewise, Tatonetti et al. developed a
novel algorithm for revealing latent ADE signals from the

US Food and Drug Administration (FDA)’s spontaneous
adverse event reporting system (AERS), successfully iden-
tifying 171 novel drug pairs for eight ADEs.10

Similar to the reports mentioned above,8–10 most pub-
lished DDI studies merely examine two-way DDIs on ADEs.
While revealing previously unknown high-order DDI effects
from the AERS or other electronic medical records data is
an underexplored area, it is becoming an emerging topic
attracting recent attention.2,12–15 For example, Harpaz et al.
applied Association Rule Mining (ARM) to the FDA’s AERS
data for discovering detrimental associations of multiple
drugs to multiple ADEs.12 To overcome the computational
challenge faced by ARM, Xiang et al. proposed an efficient
algorithm that used Unified Medical Language System
(UMLS) mapping, and frequent closed itemset mining and
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filtering for discovering multidrug interactions from the
AERS, successfully identifying numerous multidrug combi-
nations associated with ADEs.15

To estimate the significance of an identified drug interac-
tion effect, the existing studies typically calculate the overall
effect of the drug combination on the ADE. Let (D1, D2) be
a drug pair with an interaction effect on the ADE. We
hypothesize that the increased risk of taking D2 for patients
who are already taking D1 is often different from the
increased risk of taking D1 for patients who are already tak-
ing D2, although the overall D1-by-D2 interaction effect is
the same in these two cases. We sought to discover such
directional effects, providing valuable information to phar-
macovigilance studies with the potential to offer useful guid-
ance to clinical practice.

To the best of our knowledge, no studies have been per-
formed to examine these types of directional interaction
effects. To bridge the gap, we propose a novel approach for
graphic mining of high-order drug interactions and their
directional effects on an ADE. For example, to estimate the
directional effect from drug combination (D1, D2, . . ., Dn-1)
to drug combination (D1, D2, . . ., Dn-1, Dn), we wanted to
calculate the altered ADE risk of adding Dn to the existing
drug combination (D1, D2, . . ., Dn-1). For high-order drug
interaction studies, there are many different paths from the
baseline (i.e., taking none of the drugs in the studied
n-drug combination) to taking a n-drug combination, making
this directional analysis especially useful in understanding
the ADE risk introduced by each single step of these paths.

To demonstrate the proposed method, we perform a
data-mining task on a local medical records database.
Myopathy, a muscle pathology that can progress to rhabdo-
myolysis (i.e., a rapid destruction of skeleton muscle),8 is
an ADE9,16 with relatively high frequency (e.g., around 4%
in our database). It is also a known side effect for close to
80 FDA-approved drugs. Therefore, in this article we focus
on analyzing myopathy-related data, in order to demon-
strate application of the proposed novel methods for reveal-
ing high-order drug interactions and their directional effects.

Standard association measures, such as relative ratios,
proportional ratios, odds ratios (ORs), and information com-
ponents13 can all be used to quantify the specific directional
effect on an ADE from one drug combination to another.
We demonstrate our approach by using ORs to measure
the directional effect. While it is not complicated to obtain
the OR, examination of high-order DDI effects on myopathy
faces major computational challenges due to the combina-
tional escalation. A relevant issue is that the number of
subjects taking all drugs in a high-order drug combination
decreases dramatically as the order of the drug combina-
tion increases. There could be no or very few subjects tak-
ing those high-order drug combinations, making the OR
estimation impossible or imprecise. To overcome both
issues, we employed frequent itemset mining algorithm,
which has been adopted in prior ARM-based DDI
studies.12,15

Frequent itemset mining aims to find the itemsets that
occur in at least a certain portion of the database, where
the portion threshold is specified by a number called "min-
imum support." By making use of frequent itemset mining,

we could filter out all the infrequent drug combinations to
achieve the following two goals: 1) a greatly reduced com-
putational time, and 2) a reliably estimated OR, given suf-
ficient support, enabling nonzero or large enough cell
sizes in the corresponding contingency tables for calculat-
ing the OR. Furthermore, we propose to use a graphical
visualization method to plot relevant directional DDI
effects in a tree. There are many different paths of adding
individual drugs to reach a high-order drug combination.
Given a high-order drug combination, our graphical visual-
ization shows the ADE risk introduced by each single step
along specific paths, and provides an intuitive and aggre-
gated representation of all relevant results. It has the
potential to guide the domain experts to identify interest-
ing and meaningful directional DDI patterns related to
myopathy.

METHODS

Our experiments were performed in accordance with our
protocol titled "Drug Safety and Efficacy Study Using Elec-
tronic Medical Records," approved by the Indiana University
Institutional Review Board (IRB).

Indiana Patient Care Data (INPC)
The Indiana Network for Patient Care (INPC) is a health
information exchange data repository containing medical
records of over 15 million patients throughout the state of
Indiana. The Common Data Model (CDM, Version 4) is a
derivation of the INPC containing coded prescription medi-
cations, diagnoses, and observational data on 2.2 million
patients between 2004 and 2009. The CDM contains over
60 million drug-dispensing events, 140 million patient diag-
noses, and 360 million clinical observations such as labora-
tory values. These data have been anonymized and
architected specifically for research on adverse drug reac-
tions through collaboration with the Observational Medical
Outcomes Partnership project.17

Data description and preprocessing
We analyzed a case–control dataset extracted from INPC
CDM based on the myopathy-related cohort study design
previously described in Duke et al.9 Incidences of all myop-
athy symptoms were recorded. The study data consisted of
125,275 case events and 6,263,399 control events. Any
event belonging to either group had one or more drugs
taken in the corresponding 1-month event window (Supple-
mental Figure 1). Around 50 control events were randomly
selected and included to match the event window of each
case event. Given a patient, any follow-up myopathy event
was included as a new case event if and only if there is a
washout period (i.e., 6 months of no drug exposure) after
the previous myopathy event. We preprocessed the raw
data and converted it to a binary matrix such that each row
represented an event and each column denoted a drug.
The resulting dataset was an n-by-m matrix, including n
events and m drugs. For a row, its nonzero entries indi-
cated all the drugs taken by the corresponding subject dur-
ing the event window. Each row associated with either a
myopathy event (i.e., case) or a nonmyopathy event (i.e.,
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control). Supplemental Figure 1 shows a schematic repre-
sentation of an example timeline and the corresponding
event-drug matrix.

Measuring directional drug interaction effects
Generally, the OR, also called the cross-products ratio, is a
measurement of correlation between an exposure (with/
without target drug) and an outcome (with/without target
ADE). In this study we used ORs, coupled with their 95%
confidence interval,18 to measure the size of a directional
drug interaction effect. The OR for a directional drug inter-
action from drug combination (D1, D2, . . ., Dn-1) to drug
combination (D1, D2, . . ., Dn-1, Dn) was defined as the ratio
of the following two odds: 1) the odds that myopathy occurs
when a patient takes Dn together with drug combination
(D1, D2, . . ., Dn-1); and 2) the odds that myopathy occurs
when a patient takes (D1, D2, . . ., Dn-1) but not Dn. Table 1
shows the definition of the OR. It is easy to observe that
OR values range from 0 to infinity. For a specific value,
OR 5 1 means that the myopathy risk is not affected by the
status of whether or not the target drug is taken; OR >1
means that taking the target drug tends to increase the
myopathy risk; and OR <1 means that taking the target
drug decreases the myopathy risk.

Mining frequent itemsets
Our task was to identify directional DDIs with large OR
values. It is straightforward to compute the ORs for all
possible one-way directional drug effects (i.e., from no
drug to one drug). However, we faced a major combinato-
rial escalation challenge for estimating the effects of high-
order DDIs. The number of all possible n-drug combina-
tions increases exponentially with regard to n. In practice,
not all these possible n-drug combinations could exist in
our database. Furthermore, the OR estimate of any rare
n-drug combination could be statistically underpowered,
due to its small a and b values in the contingency table
(Table 4).

To address the above challenges, we proposed to focus
our analyses only on the “frequent” drug combinations.
Given a combination, we defined its “support” as the num-
ber of its occurrences in our data (i.e., number of rows con-
taining this combination). We set a minimum support
threshold MinSup, and regarded a drug combination
"frequent" if its support is � MinSup. In our study, we only
estimated ORs for directional effects related to frequent

drug combinations, greatly reducing computational costs
and yielding well-powered OR estimates.

To identify frequent drug combinations, we apply the
classical Apriori algorithm for mining frequent itemsets in a
transactional database19–21 (see Algorithm 1 below).
We used a k-itemset to denote an itemset containing k ele-
ments, and used a k-subset to denote a subset containing
k elements.

Algorithm 1 (mining frequent itemsets)

Input: (1) D, a collection of drug combinations (i.e., the
binary event-drug matrix); (2) MinSup, a user-specified
minimum support.
Output: F, a set of all frequent itemsets (i.e., frequent drug
combinations)
1. C1 5 the set of all 1-itemsets; k 5 1; F 5 empty set;
2. while Ck is not empty
3. Count supports for all itemsets in Ck by a

pass over D;
4. Fk 5 {x | x and the support of Ck � MinSup};
5. Ck11 5 {x | x is a (k11)-itemset such that any of its

k-subsets � Fk};
6. F 5 F [ Fk; k 5 k 1 1;
7. return F;

Briefly, after initialization in Step 1, we computed frequent
itemsets in passes. At pass k, we found all frequent k-itemsets
(i.e., all the k-drug combinations with support � MinSup; see
Steps 2, 3). Let Fk be the set of all frequent k-itemsets. In
Step 5, Fk is used to generate Ck11, the candidate itemsets
for whom support is counted in the (k11)-th pass. The key
idea is that an itemset x can be pruned from Ck11 if any of its
k-subsets does not belong to Fk because any subset of a fre-
quent itemset must also be frequent. This iterative procedure
terminates either when k reaches the total number of items or
when Ck is empty.

Identifying and visualizing directional drug interactions
with large ORs
Given a minimum support threshold MinSup, we applied
Algorithm 1 to identify all the frequent drug combinations.
For each frequent drug combination (D1, D2, . . ., Dn-1,Dn),
we computed the OR for each of the following directional
drug interactions: 1) from (D2, . . ., Dn-1,Dn) to (D, D2, . . .,
Dn-1,Dn), 2) from (D1, D3, . . ., Dn-1,Dn) to (D1, D,D3, . . .,
Dn-1,Dn), . . ., and (n) from (D1, D2, . . ., Dn-1) to (D1, D2,
. . ., Dn-1,Dn). Using "D3: Data-Driven Documents" (http://
d3js.org/), a JavaScript library, we implemented a direc-
tional DDI tree visualization to present the resulting ORs
in an intuitive and organized fashion (see Figures 1–3).
The value shown on each tree node indicates the direc-
tional DDI effect on myopathy, which is the OR of the
myopathy risk associated with taking the drug shown on
the current node on top of all the other drugs shown on
the path from the root to the current node. We also report
a few top findings of directional drug interactions with
highest ORs.

Table 1 Contingency table for examining directional effects from taking drug

combination (D1, D2, . . ., Dn-1) to taking drug combination (D1, D2, . . .,

Dn-1, Dn), where Dn is a newly added drug to be co-committed with the

existing drug combination (D1, D2, . . ., Dn-1)

With

myopathy

Without

myopathy Total

With (D1, D2, . . ., Dn-1, Dn) a b a1b

With (D1, D2, . . ., Dn-1)

and without Dn

c d c1d

Total a1c b1d a1b1c1d

The odds ratio (OR) of the myopathy risk associated with adding Dn to (D1,

D2, . . ., Dn21) is defined as OR 5 (a3d)/(b3c).
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RESULTS
Data processing
We extracted myopathy-related data from the Common
Data Model, a derivation of the INPC. After preprocessing,
we obtained a n-by-m binary event-drug matrix, including
n 5 6,388,674 events and m 5 212 drugs. The nonzero
entries of a row indicate all the drugs taken during the event
window. Each row was associated with a myopathy event
(i.e., case) or a nonmyopathy event (i.e., control). This
approach yielded 125,275 cases and 6,263,399 controls.

Mining frequent drug combinations
To enable possible and precise estimates of directional
drug interactions, we computed the directional interaction

effects only for all the frequent drug combinations, i.e.,
those whose support was � MinSup (a user-specified mini-
mum support). Given a combination, we defined its "sup-
port" as the number of its occurrences in our data. In this
proof-of-concept study, our analysis was focused on one-
way, two-way, and three-way drug combinations. Thus,
given a specific MinSup, our first task was to identify all fre-
quent one-way, two-way, and three-way drug combinations.
We implemented our method using R, and performed the
experiments on a Linux Xeon 64-bit dual CPU workstation.
We compared the performance of Algorithm 1 to that of a
na€ıve method (i.e., computing the supports for all possible
combinations and then selecting the frequent ones). It took
us 312.9 hours to finish the computation using the na€ıve
method and only 6.5 hours for MinSup 5 1,000 (or 36.4
hours for MinSup 5 200) using Algorithm 1.

Identifying directional drug interactions
We estimated the directional drug interactions of fre-
quent 1-drug, 2-drug, and 3-drug combinations for
MinSup 5 200 and MinSup 5 1,000, respectively. Shown
in Table 2 are the top 10 findings for single-drug experi-
ments. For MinSup 5 200, the OR values ranged from
23.38 for the highest-ranking drug (tizanidine) to 10.36
for the tenth highest-ranking drug (quinine). For Min-
Sup 5 1,000, three of the previous top 10 findings (i.e.,
cyclobenzaprine, naloxone, and quinine) did not meet
the minimum support requirement, and three new drugs
(i.e., chlorzoxazone, tramadol, orphenadrine) were
included in the top 10 list with OR values ranging from
9.78 to 9.18.

Shown in Table 3 are the top 10 findings for the two
drug combination experiments. For MinSup 5 200, the
directional interaction from taking ethinyl-estradiol alone to
taking both ethinyl-estradiol and tizanidine (i.e., taking tiza-
nidine on top of ethinyl-estradiol) made the top one in the
list, with an effect size of OR 5 24.68. This indicates that in

Figure 2 Directional DDI tree for 3-drug combination (hydroco-
done, acetaminophen, tizanidine). The value shown on each
node indicates the OR of the myopathy risk associated with tak-
ing the current drug on top of all the other drugs from the root to
the current node. The node size is proportional to the OR. Green
indicates OR <1, and red indicates OR >1.

Figure 3 Directional DDI tree for 3-drug combination (hydroco-
done, acetaminophen, oxycodone). The value shown on each
node indicates the OR of the myopathy risk associated with tak-
ing the current drug on top of all the other drugs from the root to
the current node. The node size is proportional to the OR. Green
indicates OR <1, and red indicates OR >1.

Figure 1 Directional DDI tree for 3-drug combination (ethinyl-
estradiol, estradiol, tramadol). The value shown on each node
indicates the OR of the myopathy risk associated with taking the
current drug on top of all the other drugs from the root to the
current node. The node size is proportional to the OR. Green
indicates OR <1, and red indicates OR >1.
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the population of patients taking ethinyl-estradiol, the addi-
tion of tizanidine was associated with an increased myopathy
risk of OR 5 24.68. For MinSup 5 200, the OR values of the
top 10 findings ranged from 24.68 (i.e., the directional effect
from (ethinyl-estradiol) to (ethinyl-estradiol, tizanidine)) to
15.84 (i.e., the directional effect from (dextromethorphan] to
(dextromethorphan, acetaminophen)). For MinSup 5 1,000,
the OR values of the top 10 findings ranged from 14.01 (i.e.,
the directional effect from (ethinyl-estradiol) to (ethinyl-estra-
diol, tramadol)) to 6.93 (i.e., the directional effect from (estra-
diol) to (estradiol, hydrocodone)).

Shown in Table 4 are the top 10 findings for our three
drug combination experiments. For MinSup 5 200, the top
10 OR values ranged from 10.96 (i.e., the directional effect
from (ethinyl-estradiol, estradiol) to (ethinyl-estradiol, estra-
diol, tramadol)) to 7.12 (i.e., the directional effect from (estra-
diol, drospirenone) to (estradiol, drospirenone, cymbalta)).
For MinSup 5 1,000, the top 10 OR values ranged from 6.77
(i.e., directional effect from (phenylephrine, chlorphenir-
amine) to (phenylephrine, chlorpheniramine, hydrocodone))
to 3.49 (i.e., the directional effect from (hydrocodone, bupro-
pion] to (hydrocodone, bupropion, acetaminophen)).

Table 2 Odd ratios (ORs) of the myopathy risk associated with taking D1: Top 10 findings for Ntake�MinSup, where Ntake is the number of events where the

drug was committed during the event window

D1 OR LCI UCI Ntake

Ranking

MinSup 5 200 MinSup 5 1,000

Tizanidine 23.38 22.37 24.44 9,345 1 1

Fentanyl 19.69 18.33 21.15 3,738 2 2

Methadone 15.32 14.11 16.63 3,207 3 3

Morphine 13.51 12.38 14.75 3,005 4 4

Tegaserod 11.60 10.34 13.01 1,911 5 5

Hydroxychloroquine 11.28 10.59 12.02 6,466 6 6

Cyclobenzaprine 11.16 8.22 15.17 274 7

Naloxone 10.69 8.67 13.17 608 8

Transdermal-Patch 10.38 9.79 11.01 7,969 9 7

Quinine 10.36 8.35 12.87 577 10

Chlorzoxazone 9.78 8.60 11.12 1,702 8

Tramadol 9.25 8.97 9.54 32,327 9

Orphenadrine 9.18 7.97 10.58 1,465 10

Drugs reported for myopathy in SIDER 2 are shown in bold. LCI and UCI indicate the lower and upper limits of the confidence interval, respectively.

Table 3 Odd ratios (ORs) of the myopathy risk associated with taking D2 on top of D1: Top 10 findings for Ntake�MinSup, where Ntake is the number of events

where both drugs were co-committed during the event window

D1 D2 OR LCI UCI Ntake

Ranking

MinSup 5 200 MinSup 5 1,000

Ethinyl-Estradiol Tizanidine 24.68 20.04 30.39 431 1

Bupropion Tizanidine 24.01 19.43 29.66 367 2

Singulair Tizanidine 22.64 18.56 27.62 411 3

Loratadine Tizanidine 19.33 14.75 25.33 217 4

Quetiapine Tizanidine 18.01 14.07 23.05 269 5

Phenylephrine Acetaminophen 17.91 12.39 25.90 208 6

Estradiol Tizanidine 17.80 14.15 22.39 350 7

Risperdal Acetaminophen 16.32 12.29 21.66 267 8

Hydrochlorothiazide Tizanidine 15.94 12.48 20.35 296 9

Dextromethorphan Acetaminophen 15.84 12.66 19.83 446 10

Ethinyl-Estradiol Tramadol 14.01 12.12 16.19 1,249 1

Loratadine Acetaminophen 10.09 8.88 11.45 1,379 2

Estradiol Cymbalta 9.06 7.82 10.50 1,312 3

Ethinyl-Estradiol Cymbalta 8.96 7.82 10.26 1,924 4

Ethinyl-Estradiol Acetaminophen 8.83 7.75 10.07 2,134 5

Loratadine Hydrocodone 8.58 7.50 9.81 1,262 6

Estradiol Acetaminophen 8.36 7.27 9.62 1,555 7

Phenylephrine Hydrocodone 7.64 5.97 9.77 2,791 8

Loratadine Alprazolam 7.49 6.51 8.62 1,190 9

Estradiol Hydrocodone 6.93 5.93 8.10 1,365 10

Drugs reported for myopathy in SIDER 2 are shown in bold. LCI and UCI indicate the lower and upper limits of the confidence interval, respectively.
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Visualizing directional drug interactions
Given a high-order drug combination (D1, D2, . . ., Dn) with
a sufficient support, we were interested in an overall picture
of all individual directional drug interactions traversing differ-
ent paths from baseline to (D1, D2, . . ., Dn). Here, the base-
line event indicated an event where none of (D1, D2, . . .,
Dn) were taken during the event window. To achieve this
goal, we implemented a directional DDI tree visualization to
present the resulting ORs in an intuitive and organized
fashion (see Figures 1–3).

Shown in Figure 1 is a visualization of an example 3-
drug combination: (ethinyl-estradiol, estradiol, tramadol).
For example, given the path ("baseline" ! "ethinyl-estra-
diol: 0.92" ! "estradiol: 1.19" ! "tramadol: 10.96"), we
have the following observations. First, the OR of myopathy
associated with taking ethinyl-estradiol was 0.92, indicating
a decreased risk. Second, the OR of myopathy associated
with taking estradiol on top of ethinyl-estradiol was 1.19,
indicating a slightly increased risk. Third, the OR of myopa-
thy associated with taking tramadol on top of ethinyl-
estradiol and estradiol was 10.96, indicating a significantly
increased risk. Note that this OR is the top finding in the
experiment of MinSup 5 200 shown in Table 4. Such visual-
ization has the potential to provide valuable information and
guidance in clinical practice. For a patient who is currently
taking ethinyl-estradiol and estradiol, a doctor may want to
be careful on prescribing the additional drug tramadol,
since this could significantly increase the myopathy risk
with OR 5 10.96.

Shown in Figure 2 is the DDI tree visualization for
another 3-drug combination: (hydrocodone, acetaminophen,

tizanidine). Given the path “baseline” ! "hydrocodone:
6.77" ! "acetaminophen: 2.7" ! "tizanidine: 4.99", we
know that 1) adding hydrocodone to the baseline increased
myopathy risk with OR 5 6.77; 2) adding acetaminophen to
hydrocodone further increased myopathy risk with
OR 5 2.7; and 3) adding tizanidine to the existing 2-drug
combination (hydrocodone, acetaminophen) further
increased myopathy risk with OR 5 6.77 (i.e., the third top
finding in the MinSup 5 1,000 result shown in Table 4).

Shown in Figure 3 is the DDI tree visualization for
another 3-drug combination (hydrocodone, acetaminophen,
oxycodone). This combination has been ranked in the sec-
ond place in the list of top 3-drug combinations showing
increased risk based on false-discovery rate (FDR) values,
reported in the companion article.16 In this example, no
matter which path was taken from the baseline to the 3-
drug combination, each single step always increased myop-
athy risk to various degrees of effect size.

DISCUSSION

Previous pharmacovigilance studies examined ADEs,
including single-drug–single-ADE associations,4–7 two-way
DDI effects,8–10 and recently multidrug–multi-ADE associa-
tions.2,12–15 For DDI effects, the existing studies typically
evaluated the overall effect of the drug combination on the
ADE.2,8–10,12–15 In this study we proposed and studied a
new pharmacovigilance problem, i.e., estimation of the direc-
tional DDI effect on an ADE when co-committing a new drug

Table 4 Odd ratios (ORs) of the myopathy risk associated with taking D3 on top of D1 and D2: Top 10 findings for Ntake�MinSup, where Ntake is the number of

events where all three drugs were co-committed during the event window

D1 D2 D3 OR LCI UCI Ntake

Ranking

MinSup = 200 MinSup = 1,000

Ethinyl-Estradiol Estradiol Tramadol 10.96 8.60 13.96 481 1

Ethinyl-Estradiol Estradiol Oxycodone 10.53 7.65 14.49 272 2

Ethinyl-Estradiol Estradiol Cymbalta 10.51 8.65 12.78 813 3

Ethinyl-Estradiol Loestrin Cymbalta 9.64 6.75 13.78 242 4

Estradiol Loestrin Cymbalta 9.64 6.75 13.78 242 5

Ethinyl-Estradiol Estradiol Acetaminophen 7.87 6.40 9.67 871 6

Hydrocodone Loestrin Acetaminophen 7.37 0.98 55.76 203 7

Topamax Butalbital Acetaminophen 7.30 0.98 54.32 317 8

Ethinyl-Estradiol Drospirenone Cymbalta 7.12 4.55 11.15 212 9

Estradiol Drospirenone Cymbalta 7.12 4.55 11.15 212 10

Phenylephrine Chlorpheniramine Hydrocodone 6.77 4.84 9.47 1,046 1

Hydrocodone Warfarin Acetaminophen 5.67 0.77 41.67 1,168 2

Hydrocodone Acetaminophen Tizanidine 4.99 4.49 5.55 1,553 3

Hydrocodone Loratadine Acetaminophen 4.54 2.68 7.71 1,077 4

Hydrocodone Pioglitazone Acetaminophen 4.42 1.07 18.24 1,061 5

Ethinyl-Estradiol Estradiol Alprazolam 4.41 3.49 5.58 1,008 6

Hydrocodone Celebrex Acetaminophen 4.32 1.34 13.91 1,308 7

Hydrocodone Hydrochlorothiazide Acetaminophen 3.75 1.51 9.28 1,362 8

Hydrocodone Acetaminophen Topamax 3.70 3.26 4.20 1,142 9

Hydrocodone Bupropion Acetaminophen 3.49 1.68 7.26 1,362 10

Drugs reported for myopathy in SIDER 2 are shown in bold. LCI and UCI indicate the lower and upper limits of the confidence interval, respectively.
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with an existing drug combination. We strongly believe that
the solution to this problem can precisely estimate the ADE
risk of any prescribed new drug while taking into considera-
tion all the drugs a patient has already been taking.

To that end, we employed the Apriori algorithm to effi-
ciently identify frequent drug combinations from an elec-
tronic medical records database, evaluated all the
directional drug interaction effects associated only with
those frequent drug combinations, to reveal the top direc-
tional interactions with the largest effect sizes measured by
ORs. Our empirical studies, performed using myopathy-
relevant data extracted from the INPC database, yielded
promising results. We also devised a novel visualization
method to plot all the directional DDI effects in a tree to
provide an intuitive representation of our data-mining
results to help us identify interesting and meaningful direc-
tional DDI patterns related to specific ADEs.

In a previous two-way DDI study, Duke et al. analyzed
the same data and identified five drug pairs that signifi-
cantly increased the risk of myopathy, as compared to the
expected additive myopathy risk from taking either drug
alone.9 For example, one of the five drug pairs was "lorata-
dine and simvastatin." Although we knew the overall myop-
athy risk associated with this drug pair is significantly
increased (compared to the baseline), we were not sure
about the directional effects of adding one drug to another.
This current work can help provide such useful information.
In our analysis, we found the following OR values for myop-
athy risk: 1) OR 5 1.71 for simvastatin alone; 2) OR 5 2.59
for loratadine alone; 3) OR 5 5.11 for adding loratadine on
top of simvastatin; and 4) OR 5 3.47 for adding simvastatin
on top of loratadine. This information is complementary to
the overall effect, and can help further dissect the overall
effect.

In the top findings of the current work, shown in
Tables 2–4, we replicated a few drugs reported for myopa-
thy in the SIDER 2 database (sideeffects.embl.de), includ-
ing fentanyl, hydroxychloroquine, and tramadol. In addition,
we also reported many novel findings that warrant further
investigation. For example, in Figure 2, taking hydrocodone
alone has an increased myopathy risk with OR 5 6.77, and
taking tizanidine alone has an increased myopathy risk with
OR 5 23.38. The increased risk (OR 5 1.54) of taking
hydrocodone for patients who are already taking tizanidine
is much lower than the increased risk (OR 5 5.44) of taking
tizanidine for patients who are already taking hydrocodone.
Of note, since the problem we investigated in this work is
new, we expect these analyses could yield novel findings
with the potential to further our understanding of single
drug effects or multiple drug interactions on a specific
ADE(s).

In a companion article16 submitted to the same journal,
we proposed a mixture dose–response model for high-
order drug interaction effects on myopathy, validating the
model using the same data. Based on FDR values, (acet-
aminophen, oxycodone) and (hydrocodone, oxycodone)
were respectively ranked as the No. 1 and No. 6 findings in
the top 2-drug combinations showing increased risk, and
(hydrocodone, acetaminophen, oxycodone) was ranked as
No. 2 in the top 3-drug combinations showing increased

risk. This work could provide additional detailed information
to the above two findings. For example, Figure 3 shows all
the directional DDI effects associated with these three
drugs. From those, one can understand the individual
myopathy risk introduced by each single step.

The scope of this work is twofold: 1) to inform of the
drug combinations that potentially induce myopathy, and
2) to introduce a method for calculating directional DDIs.
We have included the identified top 100 DDI signals in
Supplemental Table 1 and published the software pack-
age on the web (http://www.iu.edu/�shenlab/tools/dditree/).
We believe this is the first proof-of-concept study examin-
ing and visualizing directional DDI effects for high-order
drug interactions. Based on our initial analyses and find-
ings, there are many future directions to pursue: 1) study
higher order interactions (including >3 drugs); 2) examine
directional effects for adding >1 drugs to an existing drug
combination; 3) include confounding variables in the model
and algorithm design; 4) integrate this approach with other
methods (e.g., the mixture dose–response model) to form
a unified framework for better understanding the molecular
and other underlying mechanisms; and 5) apply this
method to study directional DDI effects on other ADEs. In
the long run, we aim to further improve this translational
bioinformatics method to generate a variety of visual
atlases of directional DDI effects for different ADEs, pro-
viding valuable and complementary information to existing
pharmacovigilance knowledge, to potentially impact clinical
practice.
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