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A B S T R A C T   

This article presents a systematic overview of artificial intelligence (AI) and computer vision strategies for 
diagnosing the coronavirus disease of 2019 (COVID-19) using computerized tomography (CT) medical images. 
We analyzed the previous review works and found that all of them ignored classifying and categorizing COVID- 
19 literature based on computer vision tasks, such as classification, segmentation, and detection. Most of the 
COVID-19 CT diagnosis methods comprehensively use segmentation and classification tasks. Moreover, most of 
the review articles are diverse and cover CT as well as X-ray images. Therefore, we focused on the COVID-19 
diagnostic methods based on CT images. Well-known search engines and databases such as Google, Google 
Scholar, Kaggle, Baidu, IEEE Xplore, Web of Science, PubMed, ScienceDirect, and Scopus were utilized to collect 
relevant studies. After deep analysis, we collected 114 studies and reported highly enriched information for each 
selected research. According to our analysis, AI and computer vision have substantial potential for rapid COVID- 
19 diagnosis as they could significantly assist in automating the diagnosis process. Accurate and efficient models 
will have real-time clinical implications, though further research is still required. Categorization of literature 
based on computer vision tasks could be helpful for future research; therefore, this review article will provide a 
good foundation for conducting such research.   

1. Introduction 

The global spread of the coronavirus disease of 2019 (COVID-19) 
pandemic has led to the necessity of developing machine-based tools to 
detect the disease in diagnostic imagery. The use of these tools is 
imperative to contain severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2; the virus responsible for COVID-19), screen out large 
numbers of suspected and confirmed cases, and ease patient manage
ment for hospitals. Effective COVID-19 diagnosis depends on tests done 
in laboratories, such as reverse transcription-polymerase chain reaction 
(RT-PCR), which is currently considered to be the gold standard [1–7]. 
Such laboratory procedures are time-consuming, have low sensitivity 

[8–12], and can lead to a significant number of false-negative results 
[13–15]. Furthermore, the lack of equipment and stringent re
quirements for testing bound the prompt and accurate screening of 
potentially infected subjects [16–18]. Thus, non-laboratory assessments, 
such as computer-assisted imagery analysis of chest radiographs (X-ray) 
or computed tomographic (CT) scans, have been introduced to inspect 
the lung regions to diagnose COVID-19. Contrary to the conventional 
X-ray approach (which does not provide a significant amount of detail), 
chest CT scan technology can provide a more detailed view of the lung, 
soft tissue, and blood vessels [19]. 

Therefore, artificial intelligence’s (AI) deep learning CT imaging 
models have been developed and deployed expansively to sense infected 
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or suspected patients [20]. So far, various deep learning approaches [16, 
21–27] have been proposed to aid in the fight against the COVID-19 
pandemic, though their development is still in its relative infancy. 
These techniques are just a few of the developed technologies we 
mentioned here. A typical COVID-19 AI-based diagnostic framework is 
depicted in Fig. 1. 

Conversely, the research community is continually seeking to 
develop existing diagnostic models by improving their accuracy and 
efficacy and has extensively relied on previously developed simulations 
to identify coronavirus pneumonia. Hence, it is essential to frame and 
categorize some of the most important models that could lead to further 
COVID-19 research expansion. Although the COVID-19 CT literature is 
rather extensive, it is relatively difficult to summarize such a large 
amount of research literature to provide a basis for further studies. Prior 
to our review, several review articles examined many computer-aided 
detection (CAD) models and studies related to COVID-19 identification. 

Each review article has different perspectives. For example, Samuel 
et al. [28] provided an initial review covering the machine learning and 
AI-based methods applied for COVID-19 treatment, medication, 
screening, and prediction. Nguyen et al. [29] identified several 
zones—such as medical image processing, data analytics, text mining, 
natural language processing, the Internet of Things (IoT), computational 
biology, and medicine—where AI could play a more effective role. 
Hussain et al. [30] summarized the state-of-the-art AI applications into 
the hospital management and administration and further outlined and 
classified various AI techniques for clinical data analysis, such as neural 
systems, classical SVM, and edge computing. 

Ozsahin et al. [31] categorized 30 studies based on the classification 
tasks. The selected studies were grouped into different classes such as 
COVID-19/normal, COVID-19/non-COVID-19, COVID-19/non-COV 
ID-19 pneumonia, and severity. Shao et al. [32] investigated the sensi
tivity and utility of chest CT scans based on 20 articles for diagnosing 
COVID-19 and its potential application to surgical settings. The study 
acknowledged and addressed the interrogation of CT’s sensitivity for the 
diagnosis of symptomatic and asymptomatic COVID-19-positive pa
tients. According to their reported outcomes, chest CT sensitivity can 
range from 57% to 100% for symptomatic and 46%–100% for asymp
tomatic COVID-19 patients, whereas that of RT-PCR ranged from 39% to 
89%. Recently, Islam et al. [33] presented a taxonomy of deep learning 
techniques by targeting CT scans and X-ray modalities. Their review 

highlighted the data partitioning techniques, various performance 
measures, and well-known datasets developed for COVID-19 diagnosis. 

Readers can acquire substantial knowledge by examining these 
studies. However, the available studies do not provide a categorical 
procedure to classify the available literature based on computer vision 
tasks; thus, critical technical divisions are left out. For example, in 
computer vision, classification, segmentation, and detection are 
considered standard and significant tasks. In the classification task, the 
required job depends on the labels. On the other hand, detection can be 
achieved by marking a region of interest with a bounding box or local
izing an area of interest. Segmentation is treated differently because it 
requires pixel-wise delineation of the desired object or region. 

Our review article aims to present a realistic review of content based 
on computer vision tasks and catalog the responsive systems (empow
ered by AI) developed for COVID-19. A flow diagram of our review is 
depicted in Fig. 2, which shows the major parts and a collection of se
lective information for each category based on the collected studies and 
models. Our review article’s contributions include: 

1: A review and categorization of COVID-19 CT-based diagnosis 
methods in terms of computer vision tasks (i.e., classification, segmen
tation, and detection/localization). 

2: A summary of the most important aspects of the selected studies’ 
frameworks, findings, and data structure. 

3: A comprehensive list of open-source datasets and resources for 
COVID-19 CT research. Critical parameters and information are 
described and presented for each dataset/database. 

For this purpose, Google Scholar, Baidu, and five reliable data
bases—IEEE Xplore, Web of Science, PubMed, ScienceDirect, Kaggle, 
and Scopus—were used to obtain pertinent studies on the given topics. 
The entire literature search process is shown in Fig. 3 (a), with 
approximately 500 searches for datasets, 200 searches for classification 
methods, 200 searches for segmentation-based approaches, and 300 
searches for detection-based methods. Using various filtering and 
scanning schemes, 30 classification-based articles, 29 segmentation- 
based articles, 25 detection-based articles, and 29 datasets were cho
sen from roughly 1200 searches, as shown in Fig. 3 (b). Most of the 
collected literature was selected according to their citations. 

The selected studies were analyzed with respect to their abstracts, 
methodologies, datasets, results, and conclusions. Moreover, most of the 
research articles were chosen based on citations to cover the baseline 

Fig. 1. AI-based COVID-19 diagnostic pipeline.  
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Fig. 2. Flow diagram of the proposed study.  

Fig. 3. Literature selection and browsing.  
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works. To the best of our knowledge, we are the first to categorize and 
organize COVID-19 CT-based diagnosis techniques based on the three 
basic computer vision tasks (classification, segmentation, and detec
tion). The rest of the article is organized as follows: COVID-19 CT 
classification-based approaches are covered in Section 2, segmentation 
is covered in Section 3, and detection-localization-based methods are 
covered in Section 4. Section 5 offers descriptions of and information on 
the datasets, and Section 6 includes a discussion of the findings and 
future research prospects. 

2. Classification-based methods 

Image classification is the process of predicting a particular class, or 
mark, for anything identified by a collection of data points. Such clas
sification is a subset of the classification problem in which a mark is 
assigned to an entire image. The marked image could be further classi
fied as an object or entity that belongs to a specific category. With the 
rise of COVID-19 pneumonia, many researchers have taken advantage of 
CT imaging features and developed AI-based systems [19]. 

Most of the developed COVID-19 diagnosing approaches search for 
specific CT scan patterns and classify them as COVID, non-COVID, 
COVID-positive, COVID-negative, community-acquired pneumonia, 
bacterial pneumonia, other pneumonia, or healthy, normal, abnormal, 
healthy, infected, non-infected, and so on. In this section, we collected 
the eligible studies/models based on the classification tasks and ar
ranged them according to the above classes. For instance, a baseline 
study [34] used the pre-trained DenseNet to classify cases as COVID or 
non-COVID. The authors adopted transfer learning and data augmen
tation for training new image data. The study uses a dataset that was 
made publicly available. Xuehai et al. [35] developed a model based on 
the Self-Trans approach. The authors anticipated self-supervised 
learning with a transfer learning strategy to reduce the risk of over
fitting to learn dominant and unbiased features—the proposed frame
work classified chest CTs as COVID (+ve) and COVID (− ve). Moreover, 
the authors created a publicly available dataset containing hundreds of 
positive COVID-19 CT scans. 

Aayush et al. [36] established a model to classify COVID-positive and 
COVID-negative cases. The proposed model utilized pre-trained Dense
Net-201 [37] for the classification task. The authors’ results show that 
DenseNet-201 performs better than VGG [38], Inception ResNetX [39, 
40], ResNet 152V2 [41], and other models. Wu et al. [42] extracted lung 
regions from CT slices by using a threshold segmentation method and 
further established a deep learning model for the classification of COVID 
(+ve) and COVID (n). The method used axial, coronal, and sagittal views 
of CT images to gather more information. Wang et al. [43] established a 
transfer learning neural network–based inception network to classify 
COVID-19-positive/-negative cases. They randomly selected regions of 
interest (ROIs) of the lung and trained their model to extract important 
features. The model’s final phase made predictions by taking advantage 
of a fully connected network. Mishra et al. [44] proposed a system that 
combined the predictions of each of the individual deep convolutional 
neural network (CNN) models for improving their predictive perfor
mance. The proposed framework better overcomes false predictions 
compared to the single model and predicted COVI 
D-19-positive/-negative classes. 

Shah et al. [45] introduced a deep learning model termed CTnet-10 
to classify COVID-19-positive/-negative cases. They found that VGG-19 
has the highest accuracy, and their model performed well in terms of 
training convergence and inference time. Liu et al. [46] proposed a 
lesion-attention deep neural network (LA-DNN) to predict 
COVID-19-positive and -negative cases. The proposed technique made 
multi-label predictions based on five lesions of COVID if the CT was 
positive. The authors claimed that their model could achieve clinical 
standards and is capable of being applied in practice. Ning et al. [47] 
developed a system based on VGG-16 and used it to discriminate be
tween negative, mild, and severe cases. They used lung extraction from 

CT and clinical features data to train two systems. The final output 
predictions were achieved through a penalized logistic regression al
gorithm. Pathak et al. [48] also developed a model based on an 
Image-Net pre-trained ResNet-32 [41] variant to classify cases as 
COVID-19 positive/negative. The results of their proposed method 
showed that their transfer learning–based model could achieve a better 
classification accuracy than the models that relied on supervised 
learning. Aniello et al. [49] used ADECO-CNN to classify cases as COVID 
+ ve/− ve. A normalization method was utilized to eliminate image 
noise and improve image quality. Compared with other models (such as 
GoogleNet [40], VGG19, and ResNet), the method achieved a high ac
curacy of 99%. Dilbag et al. [50] assembled a deep transfer learning 
model based on densely connected convolutional networks (DCCNs), 
ResNet152V2, and VGG16 to classify the suspected subjects as 
COVID-19 (+), tuberculosis, pneumonia, or healthy. 

Several models have also been developed to distinguish between 
COVID-19 pneumonia and other pneumonia types. Xu al [51]. classified 
influenza-A viral pneumonia (IAVP) and irrelevant infection from CTs of 
618 patients. The proposed method used 3D ResNet-18 for segmenting 
the infectious areas and the location attention model for the classifica
tion task. In the final stage of their proposed algorithm, the authors used 
a noisy-OR Bayesian function to predict the infection type and overall 
confidence score for each CT case. To differentiate COVID-19 from 
community-acquired pneumonia (CAP), one system [52] used a 
dual-sampling attention network and VB-Net toolkit segmentation [53] 
for pneumonia infection regions to ensure that decisions were made 
based on infected areas. Wang et al. [54] proposed a novel multi-task 
prior-attention residual learning model to screen out COVID-19 and 
identify pneumonia types between COVID-19 and interstitial lung dis
ease (ILD). The proposed model coupled two 3D-ResNets into a single 
model to perform the mentioned tasks. Polsinelli et al. [55] proposed a 
SqueezeNet model [56] to classify COVID-19, CAP, and healthy cases 
from CT images. The framework has a strong classification ability and is 
performed rapidly on a medium-speed computer without GPU acceler
ation. Perumal et al. [57] classified COVID-19 CT scans into CAP and 
normal CT images. For improved data analysis, the suggested system 
was compared against a variety of machine learning and deep learning 
classifiers. The proposed model achieved an accuracy of 96.69%, 
sensitivity of 96%, and specificity of 98%. 

The method proposed by Yan et al. [58] takes advantage of 
multi-scale spatial pyramid (MSSP) decomposition [59] to classify 
COVID-19 and common pneumonia. The outputs of three CNNs were 
concatenated for better classification, and upon comparing them with 
radiologists’ opinions, the model achieved a better performance. Mat
suyama et al. [60] proposed a ResNet-50-based model to classify 
COVID-19/non-COVID-19 pneumonia. They found that using the 
wavelet coefficients of the CT images as inputs for the fine-tuned CNN 
was much better than using the pixel values of the original image. Hu 
et al. [61] used a CNN with ShuffleNet V2 [62,63] as a backbone to 
efficiently distinguish COVID-19 patients from those non-infected or 
infected by other pneumonia types (bacterial pneumonia or SARS). 
Ibrahim et al. [64] introduced a VGG-19-based method to classify 
COVID-19, pneumonia, lung cancer, and normal cases. The model 
showed that the VGG-CNN has better predictive ability. 

Rahimzadeh’s [65] proposed network used ResNet50V2 as its 
backbone and classified the input CTs as COVID-19 or normal cases. The 
proposed method applied a feature pyramid network (FPN) [66] to 
investigate various resolutions of the input image, which remarkably 
increased the classification performance. Chen et al. [67] classified the 
input CTs as COVID-19 or healthy cases based on a few CT samples used 
for training purposes. Their proposed model used a self-supervised 
learning strategy where the pre-trained encoder can effectively cap
ture the unknown image features. Shuyi et al. [68] developed a Dense
Net model to classify COVID-19 patients and healthy persons. They 
found that the model performance is better than that of radiologists in 
finding the particularly small details of some lesions with the use of class 
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activation maps [69]. Thus, the developed model can reduce the burden 
on radiologists. Alshazly et al. [70] proposed COVID-Nets to classify 
COVID-19 infections, non-COVID-19 viral infections, and healthy per
sons. The suggested model has two sub-systems: A (ResNet) and B 
(DenseNet). Images were provided as input to both systems, which 
determined the diagnosis results. The results of both systems were 
further fused and compared with the results of the separate systems; the 
joint decision-making results were better than those of the sub-systems. 
Zhu et al. [71] recycled the pre-trained ResNet-50, a feature extractor, 
and a classifier. The model was fine-tuned on the COVID-19 dataset 
using pre-trained weights from the ImageNet dataset to avoid over
fitting, ultimately differentiating between COVID-19 and non-COVID-19 
pneumonia. Tripti et al. [72] established a generative adversarial 
network (GAN) [84] and ResNet50-based model to classify COVID-19 
and non-COVID-19 cases. They used a whale optimization algorithm 
(WOA) [85] to optimize the GAN parameters to generate more CT im
ages and finally feed them into ResNet-50 for diagnosis. Bai et al. [22] 
classified CT scans into COVID-19 and non-COVID-19 by developing and 
incorporating EfficientNet into their designed architecture. Initially, the 
lungs were extracted to eliminate the non-lung areas from the CTs, and 
then each slice was stacked into three channels as the input to 
EfficientNet-B4, which completed the classification task. Next, Zhenxing 
et al. [78] proposed a model to diagnose and classify COVID-19 and 
non-COVID-19 cases. The proposed model evaluated COVID-19 severity 
by targeting 3D CT images and clinical symptom information. Sertan 
et al. [83] further proposed a model to classify the input chest CT vol
umes into COVID-19 and normal CT volumes. The suggested AI 
approach used the ResNet-50 architecture for COVID-19 prediction. 
Table 1 provides detailed selective information related to 
classification-based methods. 

3. Segmentation-based techniques 

Image segmentation involves partitioning a digital image into 
several segments (e.g., sets of pixels, also referred to as image objects). 
Segmentation aims to make an image more meaningful and easier to 
interpret by simplifying and changing its representation [86]. Image 
segmentation is an essential task in analyzing medical images and 
obtaining further diagnostic insights and includes measuring the area 
and volume of segmented structures. As a result, lung CT image seg
mentation is extensively used for COVID-19 detection and diagnosis. 

It is crucial to segment pneumonia lesions from COVID-19 patients’ 
CT images. Therefore, several segmentation models and tools have been 
developed to diagnose COVID-19 by targeting lung lesions and different 
manifestations [21]. The segmented lesions can identify coronavirus, 
determine the severity of pneumonia, and ensure that patients follow up. 
For example, an AI system [87] was developed to diagnose COVID-19 
and differentiate it from other common pneumonia types and normal 
controls. The proposed framework is comprised of two models: the 
lung-lesion segmentation model and a diagnosis prediction model. The 
proposed system successfully identified important clinical markers and 
correlated coronavirus lesion properties. 

Most COVID-19 researchers have utilized segmentation by three 
means: 1) only segmenting the COVID-19 lung lesion or infection, 2) 
combining classification results with segmented lesions for joint diag
nosis, or 3) segmenting COVID-19 lesions along with quantifying 
severity (less common). In the following sections, we arrange the 
collected literature in the same order. 

3.1. COVID-19 lung lesion or infection segmentation 

Most procedures have exploited segmentation for identifying COVID- 
19 lesions or infection regions. The segmented lesions can help deter
mine the severity of pneumonia and may ensure that patients follow up. 
Wang et al. [88] performed COVID-19 pneumonia lesion segmentation 
by utilizing noisy training labels. Zhou et al. [89] used U-Net as the 

backbone and included an attention mechanism for segmenting the 
COVID-19 infection. The attention mechanism was added to the U-Net to 
improve feature representation. The focal Tversky loss was also 
employed to train the model to enhance small ROI segmentation 
performance. 

To handle the diversity of COVID-19 infection in CT images, Yan 
et al. [90] created a novel system that includes a feature variation block 
in their framework that adjusts the global properties of the features for 
COVID-19 infection segmentation. In addition, they created a dataset 
(comprising 21,658 chest CT images from 861 patients with confirmed 
COVID-19 pneumonia) to train their proposed model—Voulodimos 
et al. [91] semantically segmented COVID-19 infection. In comparison 
to U-Nets, they first demonstrated that fully convolutional neural net
works (FCNs) could segment accurately despite class imbalance and 
human-made annotation errors. They further devised a light U-Net 
model trained on a personal computer (PC) with a limited dataset to deal 
with class imbalance problems. 

Yao et al. [92] exploited a label-free method for COVID-19 lesion 
segmentation to alleviate the scarcity of annotated images. To distin
guish healthy tissue from probable COVID-19 lesions, the authors 
created a NormNet (voxel-level) anomaly modeling network. Their 
training technique requires only a large-scale healthy CT lung dataset 
(with no tagged COVID-19 lesions) and produces better results. Simi
larly, Laradji et al. [93] presented an algorithm that also solves the 
scarcity of labeled CT scans, performing as well as those with full su
pervision. Qiu et al. [94] built an extremely minimal network termed 
MiniSeg. The proposed network is a lightweight deep learning model 
optimized for efficient COVID-lesion segmentation. The model out
performs state-of-the-art image segmentation approaches not only in 
terms of efficiency but also accuracy. Chen et al. [95] suggested a 
technique to segment numerous COVID-19 infection locations by 
employing aggregated residual transformations to learn robust and 
expressive feature representation. A soft attention mechanism was 
further applied to efficiently distinguish a range of COVID-19 symptoms. 

To accurately segment COVID-19 infected regions, and to solve the 
problem of the diversity of lesion shapes and areas, Pei et al. [96] pre
sented an architecture referred to as the multi-point supervision network 
(MPS-Net). Multi-scale feature extraction and sieve connection were 
used to extract features of various sizes. A training system was also 
created to exploit the ground truth. Chen et al. [97] segmented the 
COVID-19 lung lesions by using the ROI to verify the applicability of the 
3D network and remove the inappropriate background. Further, a 3D 
network was adopted to extract spatial features. A combination loss 
function was proposed for faster convergence. To segment COVID-19 CT 
irregularities, Paluru et al. [98] proposed a lightweight CNN model 
called Anam-Net. The authors claimed that Anam-Net has 7.8 times 
fewer parameters than the state-of-the-art UNet (or its variants), thus 
making it lightweight. Müller et al. [99] devised a model for segmenting 
the COVID-19 infectious regions that relied on the on-the-fly generation 
of unique and random image patches. The model was trained using 
several pre-processing methods and data augmentation technique. 

Similarly, to locate COVID-19 multi-class lung infection areas, Fan 
et al. [16] created the Inf-Net network. The network improved the 
representation of lesion boundaries by employing reverse attention and 
boundary attention. The proposed network did not require a large 
amount of labeled data due to the semi-supervised structure. 

Abdel et al. [100] developed a few-shot segmentation algorithm, 
FSS-2019-nCov. The study’s primary goal was to produce accurate 
segmentation from a small amount of annotated lung CT data. The 
proposed FSS architecture allowed for learning from small support 
samples and improved query sample generalization. In addition, the 
Res2Net50-based encoder [101] resulted in improved network conver
gence. Using CT images, Saeedizadeh et al. [102] constructed a model to 
perform COVID-19 lesion segmentation. The U-Net architecture served 
as the fundamental basis of the method, and the model could recognize 
pathologic COVID-19 regions with a high degree of accuracy. Xie et al. 
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Table 1 
COVID-19 classification methods and their selective information.  

Source/Author Performed Tasks No. of CT Scans/Images/Slices/ 
Patients 

Framework/Approach Classes Performance 

Zhao et al. [34] COVID/non-COVID 
Classification 

746 CT images Pre-trained DenseNet 1. COVID-19 
2. Non-COVID-19 

On Test Set 
F1-score: 0.90, AUC: 0.98, 
ACC: 0.89 

Xuehai et al. 
[35] 

Classification of COVID +ve 
and COVID − ve 

349 positive CT scans 
397 negative CT scans 

Train DenseNet-169 by a method 
called Self-Trans 

1. COVID-19 
positive 
2. COVID-19 
negative 

On Test Set 
ACC: 0.86, F1-score: 0.85, 
AUC: 0.94 

Aayush et al. 
[36] 

Classification of COVID +ve 
and COVID − ve 

2492 CT scans, 68% for training, 
17% for validation 15% for test 

Pre-trained DenseNet201 1. COVID-19 
positive 
2. COVID-19 
negative 

On Test Set 
AUC: 0.97, ACC: 0.998, SPE: 
0.992 
F1-score: 0.998, Recall: 
0.997, Prec: 0.999 

Wu et al. [42] Classification of COVID +ve 
and COVID − ve 

368 CT scans of COVID-19 
patients and 127 CT scans of 
patients of other pneumonia 

Segmentation and ResNet-50 1. COVID-19 
positive 
2. COVID-19 
negative 

On Test Set 
ACC: 0.76, AUC: 0.819, SPE: 
0.615, SEN: 0.811 

Wang [43] Classification of COVID +ve 
and COVID − ve 

453 COVID CT images Inception network 1. COVID-19 
positive 
2. COVID-19 
negative 

On Test Set 
ACC: 0.829, AUC: 0.90, SEN: 
0.81, SPE: 0.84, F1-score: 
0.77 

Mishra et al. 
[44] 

Classification of COVID +ve 
and COVID − ve 

360 +ve scans 
397 –ve scans 

VGG16, ResNet50, InceptionV3, 
ResNet-50, DenseNet121, 
DenseNet201 

1. COVID-19 
positive 
2. COVID-19 
negative 

On Test Set 
ACC: 0.883, AUC: 0.883, F1- 
score: 0.867 

Shah et al. [45] Classification of COVID +ve 
and COVID − ve 

349 COVID CT scans and 463 
non-COVID CT scans 

CTnet-10 1. COVID-19 
positive 
2. COVID-19 
negative 

On Test Set 
ACC: 0.821 

Liu et al. [46] Classification of COVID +ve 
and COVID − ve 

Total 1224 patients 
564 COVID +ve CT scans 
660 COVID − ve CT scans 

LA-DNN based VGG16 1. COVID-19 
positive 
2. COVID-19 
negative 
3. Csld, GGO 
4. InSepThi 

On Test Set 
AUC: 0.94, SEN: 0.888, PRC: 
0.879, ACC: 0.886 

Ning et al. [47] Classification of COVID +ve, 
COVID − ve, and non- 
informative CT 

19685 CT slices VGG16, DNN, penalized logistic 
regression algorithm 

1. COVID-19 
positive 
2. COVID-19 
negative 
3. Non- 
informative CT 

On HUST-19 Set 
AUC: 0.994, ACC: 0.946, 
SEN: 0.936, SPE: 0.946 

Pathak et al. 
[48] 

Classification of COVID +ve 
and COVID − ve 

413 COVID +ve images 
439 images of normal or 
pneumonia infected patients 

Pre-trained ResNet-32 1. COVID-19 
positive 
2. COVID-19 
negative 

On Test Set 
ACC: 0.93, SPE: 0.95, SEN: 
0.91, PRC: 0.95 

Aniello et al. 
[49] 

Classification of COVID +ve 
and COVID − ve 

2482 CT images 
1252 positive images 
1230 negative images 

ADECO-CNN method 1. COVID-19 
positive 
2. COVID-19 
negative 

On Test Set 
ACC: 99.99%, SEN: 99.96%, 
PRC: 99.97%, Spec: 99.97% 

Dilbag et al. 
[50] 

Classification of COVID+ve, 
pneumonia, tuberculosis, and 
healthy 

2373 COVID, 2890 pneumonia 
infected, 3193 tuberculosis, and 
3038 healthy images 

VGG16, DenseNet201, and 
ResNet152V2 

1. COVID-19 
positive 
2. Pneumonia 
3. Tuberculosis 
and healthy 

On Test Set 
AUC: 98.29%, ACC: 98.94%, 
SEN: 98.84%, SPE: 98.83%, 
F1-score: 98.31% 

Xu et al. [51] Classification of COVID-19, 
IAV, and irrelevant to 
infection 

349 COVID positive and 397 
COVID negative CT scans 

Res-Net18, location attention 
classification model and noisy-OR 
Bayesian function 

1. COVID-19 
2. IAV 
3. Irrelevant 

On Test Set 
F1-score: 86.7%, PRC: 86.7%, 
ACC: 86.7% 

Ouyang et al. 
[52] 

Classification of COVID-19, 
CAP, and non-pneumonia 

4982 CT scans from 3645 
patients 

3D ResNet34 and VB-Net 1. COVID-19 
2. CAP and non- 
pneumonia 

On Test Set 
AUC:0.944, ACC:0.875, 
SEN:0.869, SPE: 0.901, F1- 
score: 0.82 

Wang et al. 
[54] 

Classification of non- 
pneumonia, COVID-19, 
interstitial lung disease 

Total 4657 CT scans 
936 Normal CT scans 
1315 COVID CT scans 
2406 ILD scans 

3D-UNet 
3D-ResNet 

1. Non-pneumonia 
2. COVID-19 
3. Interstitial lung 
disease 

On Test Set 
ACC: 0.933, SPE: 0.955, SEN: 
0.876 

Polsinelli et al. 
[55] 

Classification of COVID-19, 
CAP, and non-pneumonia 

360 COVID-19 CT scans 397 CT 
of other illnesses and healthy 
scans 

SqueezeNet 1. COVID-19 
2. CAP 
3. Non-pneumonia 

On Test Set 
ACC: 0.853, SEN: 0.876, SPE: 
0.820, PRC: 0.850, F1-score: 
0.862 

Perumal et al. 
[57] 

Classification of CAP and 
normal patients 

From different sources including 
coronacases [73] and 
radiopaedia [74] 

Pre-trained models VGG-16 [38], 
Resnet-50 [41], InceptionV3 [75], 
and AlexNet [76] 

1. CAP 
2. Normal 

ACC: 96.69%, SEN: 96%, and 
SPE: 98% 

Yan et al. [58] Classification of COVID and 
common pneumonia 

Multi-scale spatial pyramid 
(MSSP) decomposition 

(continued on next page) 

H. Hassan et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 141 (2022) 105123

7

[103] used relational two-stage CNNs to segment pulmonary lobes from 
CT images. They captured visual and geometric correlations between 
high-level convolution features, indicating object and object-part re
lationships. Elharrouss et al. [104] presented a multi-task deep learning 
model to segment COVID-19 infection. The model was trained by using 
two streams of inputs to conduct multi-class segmentation. Furthermore, 
the multi-input stream allowed the model to train on various features, 
improving the outcomes. Finally, to diagnose COVID-19 pneumonia, Li 
et al. [105] developed a semi-supervised COVID-19 infection segmen
tation method. Transformation equivalence and perturbation invariance 
were used to exploit unlabeled images. In addition, a dual-form uncer
tainty mechanism was included for reliability and robustness. 

3.2. Combined classification and segmentation for joint diagnosis 

To diagnose COVID-19 pneumonia, some segmentation-based tech
niques have been used along with the classification processes. For 
instance, the trained model of Amyar et al. [106] classifies input CTs as 
COVID/non-COVID, followed by a segmentation process. The devised 
network relies on a multi-task deep learning approach to identify 
COVID-19 patients and segment COVID-19 lesions from chest CT 

images. Gao et al. [107] built a dual-branch combination network (DCN) 
for COVID-19 diagnosis, achieving individual-level classification and 
lesion segmentation simultaneously. The authors further proposed a 
new lesion attention module to combine the intermediate segmentation 
results and focus the classification branch more intensely on the lesion 
areas. A slice probability mapping approach was also used to convert the 
classification results from the slice level to the individual level. 

Another diagnostic model [108] combined classification results and 
segmented lesions for joint diagnosis. Moreover, the authors constructed 
an open access COVID-19 dataset with annotated CT scans. Dey et al. 
[109] used a machine learning–based pipeline for COVID-19 infection 
detection. Their pipeline entailed COVID-19 infection segmentation 
followed by feature extraction, selection, and fusion to classify infected 
regions. 

3.3. Infection segmentation and quantification 

Some methods have segmented lung infections and quantified 
infection severity. For example, the system designed by Shan et al. [53] 
can automatically segment and quantify infected areas in the lung. To 
segment COVID-19 infection areas in CT images, they proposed a 

Table 1 (continued ) 

Source/Author Performed Tasks No. of CT Scans/Images/Slices/ 
Patients 

Framework/Approach Classes Performance 

226 patients CT scans with 
COVID and 462 patients CT scans 
with common pneumonia 

1. COVID-19 
2. Common 
pneumonia 

On Test Set 
ACC: 0.962, SEN: 0.995, SPE: 
0.956, AUC: 0.977 

Matsuyama 
et al. [60] 

Classification of COVID- 
pneumonia and non-COVID- 
19 pneumonia 

720 CT images ResNet-50 1. COVID-19 
2. Non-COVID-19 

On Test Set 
ACC: 0.922, SEN: 0.904, SPE: 
0.933, 
F1-score: 0.839 

Hu et al. [61] Classification of COVID- 
positive and COVID-negative 

521 COVID-19 and 397 healthy 
subjects 

ShuffleNet V2 1. COVID Infected 
2. Other 
pneumonia 
(SARS) 

On Test Set 
AUC: 0.969, SEN: 0.902, SPE: 
0.916, ACC: 0.912 

Ibrahim et al. 
[64] 

Classification of COVID-19, 
pneumonia, lung cancer, and 
normal 

618 total CT patients 
224 samples with IAVP 
219 samples with COVID-19 
175 samples healthy 

VGG-19 1. COVID-19 
2. Pneumonia 
3. Lung cancer 
4. Normal 

On Test Set 
ACC: 98.05%, RC: 98.05%, 
PRC: 98.43%, SPE: 99.5%, 
AUC: 99.66% 

Rahimzadeh 
et al. [65] 

Classification of COVID-19 or 
normal CT 

95 COVID CT scans 
282 Normal CT scans 

ResNet-50 V2 1. COVID-19 
2. Normal CT 

On Test Set 
ACC: 0.985%, SEN: 0.95 

Chen et al. [67] Classification of COVID-19 
and healthy 

216 Patients COVID +ve scans 
171 Persons COVID − ve scans 

Pre-trained encoder and self- 
supervised strategy 

1. COVID-19 
2. Healthy 

On Test Set 
ACC: 0.868, Prec: 0.883, 
AUC: 0.931, RC: 0.872 

Shuyi et al. 
[68] 

Classification of COVID- 
positive and COVID-negative 

Total 295 CT scans 
146 COVID +ve scans 
149 healthy CT scans 

DenseNet 1. COVID-19 
2. Healthy 

On Test Set 
AUC: 0.98, ACC: 0.92, SEN: 
0.97, SPE: 0.87, F1-score: 
0.93 

Alshazly et al. 
[70] 

Classification of COVID-19, 
non-COVID-19 viral 
infections, and healthy 

Total 4173 CT images 
2168 COVID -19, 758 healthy, 
and 1247 others’ images 

COVID-Nets based ResNet and 
DensNet 

1. COVID-19 
2. Non-COVID-19 
viral infections 
3. Healthy 

On Test Set 
ACC: 83.89%, PRC: 80.36%, 
SPE: 92%, 
SEN: 82%, F1-score: 81% 

Zhu et al. [71] Classification of COVID-19 
and non-COVID-19 

1357 COVID-19 positive and 
1235 negative samples 

Pre-train ResNet50 1. COVID-19 
2. Non-COVID-19 

On Test Set: ACC: 93%, SEN: 
93%, SPE: 92%, AUC: 93% 

Tripti et al. 
[72] 

Classification of COVID-19 
and non-COVID-19 

1252 COVID-19 images 
1230 non-COVID-19 images 

Generative adversarial network 
(GAN) and ResNet-50 

1. COVID-19 
2. Non-COVID-19 

On Test set 
ACC: 99.2%, SEN: 99.78%, 
SPE: 97.78%, F1-score: 
98.79% 

Bai et al. [22] Classification of COVID-19 
and non-COVID-19 

Total: 1186 patients, 
521 patients with COVID-19, and 
665 patients with non-COVID-19 
pneumonia 

Pre-trained EfficientNet-B3 [77] 1. COVID-19 
2. Non-COVID-19 

On Test set 
ACC: 96%, SEN: 95%, SPE: 
96%, AUC: 95% 

Zhenxing et al. 
[78] 

Classification of COVID-19 
and non-COVID-19 

209 COVID-19 patient scans and 
207 normal patient scans 

CNN, fusion of channel [79, 80] 
and self-attention [81, 82] 

1. COVID-19 
2. Non-COVID-19 

On Test set 
Diagnosis Assessment: 
98.28% 
Severity Assessment: 94.83% 

Sertan et al. 
[83] 

Classification of COVID-19 
and normal 

80 normal CT scans and 19 
COVID-19 CT scans 

ResNet-50 1. COVID-19 and 
normal 
2. Normal 

On Test set 
AUC: 96%, ACC: 84%, SEN: 
100% 
SPE: 80%  
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“VB-Net” neural network. The V-Net [110] was combined with a 
bottleneck structure [41] in this enhanced 3D CNN. Chaganti et al. [111] 
presented a method for the segmentation and quantification of abnormal 
CT patterns related to COVID-19. Lungs, lobes, and COVID-19 lesions 
were first segmented before some constraints were enforced for the 
evaluation of COVID-19 infection. The quantification of the severity was 
determined through the combined scores derived from the imposed 
constraints. Similarly, Zhou et al. [112] considered the dynamic changes 
of actual patients’ data measured at different time points for COVID-19 
CT quantification and segmentation of the infected regions. They 
divided the 3D segmentation problem into three 2D segmentations uti
lizing the symmetry of the lungs and other tissues to solve large sce
ne–small object problems with little data. Oulefki et al. [21] designed a 
system that automatically segmented and measured COVID-19 lesions 
with 3D visualizations. The proposed system adopted a flexible and 
efficient end-to-end method. Their solution exceeded state-of-the-art 
segmentation techniques in terms of robustness and accuracy. He 
et al. [113] established a synergistic learning paradigm for COVID-19 
severity evaluation with lung lobe segmentation and classification. A 
multi-task, multi-instance (M2UNet) deep network was built to assess 
the severity of COVID-19 infections and lung lobe segmentation. Sel
varaj et al. [114] introduced a deep neural network (DNN) model 
trained on a small dataset and used a region-specific technique to choose 
features. The Zernike moment (ZM) and gray level co-occurrence matrix 
(GLCM) were used to extract unique shape and texture features as vec
tors that were used to perform segmentation and showed the severity of 
the COVID-19 infection. Table 2 provides detailed selective information 
related to the COVID-19 segmentation-based methods. 

4. Detection-based techniques 

In the COVID-19 literature, the term “detection” is often used syn
onymously with “diagnosis.” However, in computer vision, detection is 
described differently because it is an operation that involves localizing 
an object. Localization could be achieved by placing a bounding box 
(such as a rectangle, square, or contour) or interactive colors (heat 
maps) depending on the image’s object shape. Therefore, this section 
focuses on such methods tailored to detecting COVID-19 that automat
ically explore infected lung regions. However, we note that quite a small 
subset of research articles has considered computer vision–based 
detection for COVID-19 diagnosis. Thus, to cover more literature, we 
have included methods in which the ROIs or lesions are localized by 
contours, heat maps, bounding boxes, or interactive colors for diagnosis. 
These methods are hybrid (considering segmentation and classification 
practices) with visualized predictions (heats maps, contours, or bound
ing boxes). 

For instance, Wang et al. [130] proposed a prognostic model and 
claimed that it could assist in medical resource optimization and 
COVID-19 prevention. The proposed system not only identified 
COVID-19 but also visualized suspicious infected lung areas using heat 
maps. Wang et al. [131] proposed a weakly supervised deep learning 
model to accomplish COVID-19 classification and lesion localization. 
Combining class activation mapping and 3D-linked components, the 
model yielded lesion localization results without annotations. Ahuja 
et al. [132] designed a three-phase COVID-19 CT detection model 
comprising three phases. In Phase 1, the decomposition of stationary 
wavelets was utilized for data augmentation. In Phase 2, a trained CNN 
model was employed for binary classification. Finally, in Phase 3, de
fects in CT scan images were located. He et al. [133] introduced a 
differentiable neural architecture search (DNAS) framework that relied 
on the class activation mapping (CAM) technique to interpret the final 
results. The model produced promising results on the three experimental 
datasets with a ten-fold reduced model size and higher accuracy. Polat 
et al. [134] presented a CNN model to detect and localize lesion patterns 
in COVID-19 CT images. The proposed method segmented 102 CT im
ages and obtained 16,040 CT image segments, which were classified and 

labeled as either COVID-19-infected or healthy regions. Automatic 
localization of the COVID-19 pneumonia findings was achieved in the 
final stage. 

Alom et al. [135] introduced an end-to-end system and applied 
classification and segmentation to identify COVID-19 infections. First, 
an inception recurrent residual convolutional neural network (IRRCNN) 
was used to classify X-ray and CT images as normal or COVID-19 cases, 
which was followed by segmentation (NABLA-3 network). Finally, the 
infected regions were localized by heat maps. Gozes et al. [24] designed 
a coronavirus-related abnormalities-based hybrid system that relies on 
commercial software and training the U-Net model on extensive CT data. 
The authors demonstrated that AI-based models could detect COVID-19 
with high accuracy. Harmon et al. [136] trained a series of deep learning 
models on a diverse, multi-national cohort of 1280 patients to localize 
the parietal pleura/lung parenchyma. Lung segmentation was utilized 
for localizing the chest cavity regions. After the localization process, 
classification was applied for COVID-19 pneumonia. Hu et al. [137] 
employed a weakly supervised framework and achieved COVID-19 
classification and lesion localization based on less labeled data. The 
proposed network used pre- and post-processing of the data for lung 
segmentation. The authors further used multi-scale learning followed by 
weakly supervised learning for lesion localization. 

To identify the COVID-19 infected regions in high-resolution CT 
images, Chen et al. [23] built a system on the top of U-Net++ [138] that 
extracted valid areas from CT images and considered ResNet-50 as the 
backbone. The model generated and framed the suspicious lesion out
puts using prediction boxes. The proposed method significantly 
decreased the reading times of radiologists by 65%. Pu et al. [139] 
focused on COVID-19 detection, quantification, and disease progression, 
accomplishing lung region segmentation and identification of infected 
regions. The authors interpreted the infected areas using heat maps, 
which they consider to be essential to assessing disease progression. 
Perumal et al. [140] applied the transfer learning technique to differ
entiate between various pulmonary diseases, including COVID-19 
pneumonia. The proposed method included an image enhancement 
process and extracted Haralick [141] texture features. The extracted 
features were then fed into the various pre-defined CNN models. Finally, 
the infected region was identified using Grad-CAM [69]. 

To minimize the burden on physicians and improve diagnostic ac
curacy, Wang et al. [142] built and deployed a classification- and 
segmentation-based AI system capable of analyzing CT images and 
providing infection probability. To aid in the research, a dataset with 
contours and infection regions was also created. The proposed method 
included lung region extraction and lesion segmentation and classifi
cation to detect COVID-19 pneumonia. Similarly, Ni et al. [143] devel
oped an abnormalities detection technique for COVID-19 patients. To 
classify and pinpoint possible abnormal regions in CT scans, their ar
chitecture retrieved the most prominent features, followed by a classifier 
and regressor. Afterward, the 3D U-Net [19] was used to classify voxels 
that reflected abnormalities in the detected regions. Compared to resi
dent radiologists, the algorithm performed exceptionally well in 
detecting COVID-19 pneumonia. Zhang et al. [144] created the IAAS 
(Intelligent Assistant Analysis System), a real-time system to aid radi
ologists in COVID-19 assessment. A modified 3D CNN and a combined 
V-Net with bottleneck structures were used in the software, which per
formed the quantification and localization of COVID-19 lesions. 

Alshazly et al. [145] modeled an AI-based framework with 
custom-sized CT images to automatically classify COVID-19 and 
non-COVID-19 cases. The model used InceptionV3 [75] for the classi
fication task and the final predictions were visualized using the 
Grad-CAM [69] approach. As a result, the proposed system identified 
COVID-19 cases and accurately localized the COVID-19 infection-asso
ciated regions. Mobiny et al. [146] created a detail-oriented capsule 
networks (DECAPS) framework by boosting the COVID-19 classification 
accuracy. DECAPS employed a Peekaboo training procedure using a 
two-stage patch crop and drop strategy to generate activation maps. The 
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Table 2 
COVID-19 segmentation methods and their selective information.  

Source/ 
Author 

Performed Tasks No of CT Scans/Images/ 
Slices 

Framework/Approach Target ROI Performance 

Zhang et al. 
[87] 

Distinguishing COVID- 
19 from common 
pneumonia (CP) and 
normal controls 

For Lesion Segmentation: 
4,695 CT images 
For Classification model: 
361,221 CT images 

Segmentation models (U-net, 
DRUNET, FCN, SegNet) and 
3D classification network (3D 
convolutional blocks) 

Lung lesions On Internal Validation Set 
ACC: 92.49%, SEN: 94.93%, SPE: 
91.13% 
AUROC: 0.97 (95% CI: 
0.9665–0.9904) 

Wang et al. 
[88] 

COVID lesion 
segmentation 

558 COVID-19 patients CT 
scans 

CNN, self-ensemble CNNs 
[115, 116] 

COVID-19 lesions Dice (%): 80.29±11.14, RVE (%): 
17.72±23.40, HD95(mm): 
18.72±27.26 

Zhou et al. 
[89] 

COVID lesion 
segmentation 

Dataset1: 100 axial CT 
images 
Dataset2: A private dataset 

U-Net and attention 
mechanism [117, 118] 

COVID lesion regions For Dataset1 
Dice: 69.1%, SEN: 81.1%, SPE: 
97.2% 

Yan et al. [90] COVID infection 
segmentation 

21658 chest CT images from 
861 COVID-19 +ve patients 

Encoder decoder framework 
and PASPP 

Lung and COVID-19 
infection region 

For Lung: Dice: 0.987, SEN: 0.986, 
PRC: 0.990 
For COVID-19: Dice: 0.726, SEN: 
0.751, PRC: 0.726 

Voulodimos 
et al. [91] 

COVID deep models’ 
analysis for infection 
segmentation 

939 cross-sectional images 
from 10 axial volumetric CT 
scans 

U-Nets and FCN Lung and COVID-19 
infection region 

For U-Net Segmentation: 
PRC: 0.96, RC: 0.57, ACC: 0.97, F1- 
score: 0.65 
For FCN Segmentation: 
PRC: 0.86, RC: 0.50, ACC: 0.97, F1: 
0.57 

Yao et al. [92] COVID lesion 
segmentation 

For Lung Modeling: 453 CT 
Volumes from LUNA-16 
[119] 
For Lesion Segmentation: 138 
CT Volumes from Lung 
Segmentation 515 CT scans 

3D UNet and MONAI [120] Lung and COVID-19 lesion Segmentation on Corona Cases Dataset 
[73]: 
PRC: 90.5%, SEN: 78.6%, SPE: 
81.2%, AUC: 87.0% 

Laradji et al. 
[93] 

Improvement of COVID- 
19 lesion segmentation 
performance 

Total Slices Infected Slice 
COVID-A: 98 98 
COVID-B: 829 372 
COVID-C: 3520 1841 

VGG-16 and FCN8 [121] Infection region Dice: 0.73, IOU: 0.57, PPV: 0.65, 
SEN: 0.82, SPE: 0.92 

Qiu et al. [94] COVID-19 segmentation Medseg dataset [122], 
COVID-19 CT lung and 
infection segmentation 
dataset [123], and Mosmed 
dataset [124] 

Encoder (Attentive 
Hierarchical Spatial Pyramid 
-AHSP) and Decoder (Feature 
Fusion Module-FFM) 
Network 

COVID-19 infected 
regions 

Segmentation On COVID-19 CT 
segmentation dataset mIoU: 84.49, 
SEN: 85.06, SPC: 99.05, DSC: 76.27 
HD: 51.06 

Chen et al. 
[95] 

Multiple COVID-19 
infection regions 
segmentation 

SIRM dataset [125] Residual Attention U-Net and 
ResNeXt block 

COVID-19 infection DSC: 0.94, ACC: 0.89, PRC: 0.95 

Pei et al. [96] COVID-19 lesion 
segmentation 

Medseg dataset [122] U-Net COVID-19 lesion Dice: 0.8325, SEN: 0.8406, SPE: 
0.9988, IOU: 0.742 

Chen et al. 
[97] 

COVID-19 lung lesions 
segmentation 

Public dataset [16] Conditional Random Field 
CRF and 2.3D attention 
model 

COVID-19 infection Performance on Public Dataset 
ACC: 93.92±3.87, PRC: 
78.26±9.94%, RC: 96.39±2.92%, 
DSC: 75.22±11.25% 

Paluru et al. 
[98] 

COVID-19 
abnormalities 
segmentation 

Medseg dataset [122] and 
[123] 

CNN and U-Net Lung extraction and 
COVID-19 abnormality 
segmentation 

Segmentation outputs for Experiment1 
Dice: 0.755, SEN: 0.900, SPE: 0.993, 
ACC: 0.991 

Muller et al. 
[99] 

COVID-19 infection 
segmentation 

20 +ve COVID-19 CT scans 3D U-Net Lungs and COVID-19 
infected regions 

For Lungs: DSC: 0.956, SEN: 0.956, 
SPE: 0.998 
For COVID Infection: DSC: 0.761, 
SEN: 0.730, SPE: 0.99 

Fan et al. [16] COVID-19 lung 
infection segmentation 

100 labeled CT slices, 1600 
unlabeled images 

Reverse attention and 
explicit edge-attention 
mechanisms 

COVID-19 infection area For Inf-Net: Dice: 0.682, SEN: 0.692, 
SPE: 0.943, MAE: 0.082 
For Semi-Inf-Net: Dice: 0.739, SEN: 
0.725, SPE: 0.960, MAE: 0.064 

Abdel et al. 
[100] 

COVID-19 infection 
segmentation 

Medseg dataset [122] Encoder (using Res2Net 
module) [101] and decoder 
network 

COVID-19 lung infection On Test Set 
DSC: 0.798, SEN: 0.803, SPE: 0.986, 
MAE: 0.065 

Saeedizadeh 
et al. [102] 

Segmentation of 
pathologic COVID-19 
regions 

Medseg dataset [122] U-Net and 2D total variation 
[126] 

COVID-19-specific 
pathologic regions, 
ground glass regions, and 
COVID consolidation 
regions 

For pathologic regions: SEN: 0.808, 
SPE: 0.960, Dice: 0.801 
For Ground-Glass mask: SEN: 0.762, 
SPE: 0.979, Dice: 0.655 
For Consolidation mask: SEN: 0.558, 
SPE: 0.988, Dice: 0.537 

Xie et al.[103] COVID-19 pulmonary 
lobe segmentation 

Dataset1 (COPD set): 5000 
subjects [127] 
Dataset2(COVID-19 set): 470 
subjects [128] 

CNN and U-Net Pulmonary lobe, lung For Lobe segmentation 
IOU: 0.9197 
For Lung segmentation 
IOU: 0.9706 

Elharrouss 
et al. [104] 

COVID-19 lung 
infection segmentation 

Medseg dataset [122] Encoder-decoder and 
convolutional neural 
networks 

COVID-19 lung infection On Test Set 
Dice: 0.786, SEN: 0.711, SPE: 0.993, 
PRC: 0/856, 
F1-score: 0.784, MAE: 0.076 

(continued on next page) 
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activation maps focused on ROIs that combined coarse- and fine-grained 
data representations. The authors adopted a conditional GANs 
[147]-based data augmentation procedure for dealing with data scar
city. Javaheri et al. [148] introduced a highly accurate detection 
framework named CovidCTNet. The proposed method utilized small 
sample sizes of CT image data to identify COVID-19 and extract infected 
lung areas. Non-lung-related parts were removed with the BCDU-Net 
[149] and the COVID-19 infection areas were extracted and highlighted. 

Gunraj et al. [25] developed COVIDNet-CT, a deep CNN architecture 
that uses a machine-driven design exploration technique to detect 
COVID-19 cases from chest CT scans. The critical visual factors associ
ated with COVID-19 infection were explored by GSInquire [150]. 
Additionally, COVIDx-CT, a benchmark CT image dataset, was intro
duced for public research. The same author proposed another 
COVID-Net CT-2 [151] detection model based on enhanced deep CNNs, 
with critical areas highlighted in red. Two large and diverse benchmark 
datasets were used to train the network. Finally, the authors used 
explainability to examine the tailored algorithm’s decision-making 

behavior to guarantee that decisions were made based on meaningful 
visual cues in CT images. 

Jaiswal et al. [36] classified COVID-19 and non-COVID-19 cases in 
chest X-ray and CT images. The transfer learning approach was adapted 
on a Pruned EfficientNet [77] model to detect COVID-19 automatically. 
A local interpretable model-agnostic explanations (LIME) approach 
[152] was employed to interpret the predictions made by the model. 
Qiblawey et al. [153] suggested a cascaded technique for detecting, 
localizing, and quantifying COVID-19 infections from CT images. Ma 
et al. [154] and Ghavami et al. [155] also proposed COVID-19 detection 
models and included visual interpretations in their final outputs. A 
recent paper [156] proposed a simple yet efficient and pure detection 
network—the sequential region generation network (SRGNet)—to 
jointly detect and segment the COVID-19 lesion areas. The method uti
lizes supervised segmentation information to predict the COVID-19 
infected areas. Table 3 provides detailed selective information related 
to the detection-based methods. 

Table 2 (continued ) 

Source/ 
Author 

Performed Tasks No of CT Scans/Images/ 
Slices 

Framework/Approach Target ROI Performance 

Li et al. [105] COVID-19 lesion 
segmentation 

852 whole-volume chest CT 
scans 

3D multi-decoder VNet [110] COVID-19 lesion DSC: 77.4%, Jaccard: 64.5%, ASD: 
3.9mm 

Amyar et al. 
[106] 

1.COVID/non-COVID 
Classification 
2. Lesion segmentation 
3. Image reconstruction 

Total 1369 patients, 449 
COVID-19, 425 normal, 98 
lungs cancers, and 397 of 
different kinds of pathology 
patients 

U-Net and multi-task 
learning architecture 

COVID-19 infected region Experiment 1 Segmentation 
Dice: 88.0%, ACC: 95.23%, SEN: 
90.2%, SPE: 99.7% 
Experiment2 Classification 
ACC: 94.67%, SEN: 0.96, SPE: 0.92, 
AUC: 0.97 

Gao et al. 
[107] 

Classification and 
COVID lesion 
segmentation 

1918 CT scans from 1202 
subjects 

DCN, FCN, and U-Net Lung and COVID-19 lesion For Slice-level Classification: ACC: 
95.99%, AA: 95.59%, SEN: 89.14%, 
SPE: 98.04% 
For Individual-level Classification: 
ACC: 96.74%, AA: 96.95%, SEN: 
97.91%, SPE: 96.00% 
For Lung Segmentation: DSC: 99.11%, 
PRC: 99.33%, RC: 98.89% 
For Lesion Segmentation: DCS: 
83.51%, PRC: 83.46%, RC: 83.55% 

Wu et al. 
[108] 

Classification and 
segmentation of COVID- 
19 chest CT 

144167 chest CT images of 
400 COVID-19 patients and 
350 non-infected cases 

Res2Net network [101], 
Activation Mapping [69], 
Image Mixing [129], VGG-16 
[38] 

Lung infection For Classification: SEN: 95.0%, SPE: 
93.0% 
For Segmentation: Dice: 78.5% 

Dey et al. 
[109] 

COVID-19 infection 
segmentation and 
segmented regions 
classification 

Medseg dataset [122] Morphological segmentation, 
KNN classifier, image thre- 
sholding, and fused feature 
vector 

COVID-19 lung infection On Test Set: ACC: 0.9108±0.0256, 
PRC: 0.8953±0.038, SEN: 
0.8436±0.0243, SPE: 
0.9451±0.0540, F1-Score: 
0.8514±0.0246, AUC: 
0.9224±0.0327 

Shan et al. 
[53] 

To quantify infection 
regions of interest 

249 CT images for training 
300 CT images for Validation 

VB-Net COVID-19 infection 
regions 

DSC: 91.6%±10.0% 

Chaganti et al. 
[111] 

Abnormalities 
quantification 
associated with COVID- 
19 

9749 chest CT volumes Dense UNet Lung segmentation, lobe 
segmentation, and 
abnormality segmentation 

Abnormality Segmentation 
PO (P < .001) = 0.92, PHO (P <
.001) = 0.97 
LSS (P < .001) = 0.91, LHOS (P <
.001) = 0.9 

Zhou et al. 
[112] 

Segmentation and 
quantification of the 
infection regions 

201 anonymized CT scans 
from 140 COVID-19 patients 
and a private dataset 

Data preprocessing technique 
with a decomposition of the 
3D segmentation into three 
2D ones 

Lung lobes segmentation 
and infection 
segmentation 

Segmentation on the Highest-quality 
Data Subset 
Dice: 0.802±0.072, RC: 
0.794±0.068 

Oulefki et al. 
[21] 

COVID-19 Lung 
Infection segmentation 
and measurement 

COVID-CT-Dataset [34] Enhancement method, along 
with the segmentation and 
visualization 

COVID lung infection ACC: 0.98, SEN: 0.73, PRC: 0.73, 
Dice: 0.71, SPE: 0.99 

He et al. [113] COVID-19 severity 
assessment and Lung 
lobe Segmentation 

666 chest CT scans of 242 
COVID-19 patients 

Multi-task multi-instance U- 
Net (M2UNet) 

Lung lobe On Test Set: ACC: 0.985±0.005, PRC: 
0.975±0.022, RC: 0.952±0.011, F1- 
Score: 0.963±0.011, AUC: 
0.991±0.010 

Selvaraj et al. 
[114] 

COVID-19 infection 
segmentation with 
severity illustration 

80 CT cases Deep neural network (DNN), 
Zernike moment (ZM) and 
gray level co-occurrence 
matrix (GLCM) 

COVID-19 infected region For Classification: AUC: 0.942, SEN: 
0.767, SPE: 0.928 
ACC: 93.8% 
For Segmentation: SEN: 0.701, SPE: 
0.942, Dice: 0.757, MAE: 0.082  
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Table 3 
COVID-19 detection-based methods and their selective information.  

Source/ 
Author 

Performed Tasks Dataset Information Framework/Approach Final Output Performance 

Wang et al. 
[130] 

A DL system that 
automatically focuses on 
abnormal areas and 
identifying COVID-19 from 
other pneumonia 

A total of 5372 patients with 
computed tomography (CT) 
images, including additional 
information 

DenseNet121 [37] and FPN 
[66] 

Heat maps visualization 
of suspicious lung areas 

On COVID-19 
AUC: 0.87 
On other Pneumonia 
AUC: 0.88 
For Viral Pneumonia 
AUC: 0.86 

Wang [131] COVID-19 classification 
and lesion localization 

For Training: 499 CT volumes 
For Testing:131 CT volumes 

3D CNN, U-Net, and DeCoV- 
Net 

Visualizations and 
predictions of those 
regions where pneumonia 
occurs 

ROC AUC: 0.959 
PR AUC: 0.976 
For Classification 
PPV:0.840 and NPV:0.982 

Ahuja et al. 
[132] 

COVID-19 detection with 
binary classification e.g., 
COVID and Non-COVID 

349 positive CT images and 397 
CT images of non-COVID 
patients 

ResNet18, ResNet50, ResNet- 
101, and Squeeze-Net [56] 

Positive cases 
abnormality localization 

On Testing 
ACC: 99.4%, SEN: 100%, SPE: 
98.6%, AUC: 0.9965 

He et al. 
[133] 

COVID-19 classification 
and results interpretability 

COVID-CT-set, CC-CCII, and 
Mosmed Data [65, 87, 124] 

Differentiable neural 
architecture search (DNAS) 
framework, Gumbel Softmax 
technique [157] and class 
activation mapping (CAM) 
[158] 

Visualization of 
discriminative lesion 
regions 

For CovidNet3D-L 
ACC: 96.88, PRC: 97.50, SEN: 
92.86, F1-score: 0.9512 

Polat et al. 
[134] 

Detect and localize COVID 
related lesions patterns 

COVID dataset [159] and SIRM 
[125] 

CNN Automatic localization of 
COVID-19 pneumonia 
findings 

ACC: 0.903, SEN: 0.905, SPE: 
0.903, PRC: 0.8551, and F1- 
score: 0.8714 

Alom et al. 
[135] 

COVID-19 detection and 
infected region localization 

Total samples: 5,216 
Normal samples: 1,341 
Pneumonia samples: 3,875 

IRRCNN [125], NABLA-N 
[135] 

Infected region with heat 
maps and contours 

For X-Ray: ACC: 84.67% 
For CT: ACC: 98.78% 

Gozes et al. 
[24] 

An automated tool for 
COVID detection, 
quantification, and tracking 

Normal slices = 1036 
Abnormal slices n = 829 

Resnet-50, Grad-CAM 
technique [69] 

Opacities quantitative 
measurements and heat 
maps visualization 

COVID and Non-COVID 
Classification 
ACC: 0.996, AUC (95%CI: 
0.989-1.00), and SEN: 98.2%, 
SPE: 92.2% 

Stephanie 
[136] 

Localization of parietal 
pleura-lung parenchyma 
followed by a classification 
task 

In total, 2724 CT scans from 
2617 patients 

AH-Net [160], Densnet-121, 
Grad-CAM [69] 

Attention/activation 
maps generated using 
Grad-CAM and utilized 
for classification of 
COVID-19 

For COVID-19 pneumonia 
Classification 
ACC: 90.8%, SEN: 84%, SPE: 
93% 

Hu et al. 
[137] 

Detecting and classifying 
COVID-19 infection 

Total 450 patient scans, 150 
chest CT exams of COVID-19, 
CAP and NP patients with 
additional information, and 
lung segmentation dataset 
[161] 

CNN and U-Net Classification detection 
network with COVID-19 
lesions localization maps 

NP with AUC: 0.90±0.03 
CAP with AUC: 0.86±0.03 
COVID-19 with AUC: 0.92±0.02 

Chen et al. 
[23] 

COVID-19 pneumonia 
detection 

46,096 anonymous images with 
additional clinical 
characteristics 

ResNet-50 and UNet++ [138] Predictions with 
bounding boxes 

External Dataset Per Patient 
Results 
SEN: 98(%, SPE: 94 (%), ACC: 
96%, PPV: 94.23%, NPV: 
97.92% 

Pu et al. 
[139] 

Detect, quantify, and 
monitor COVID-19 
progression 

120 CT scans for training 
72 CT scans for test 

U-Net and bidirectional elastic 
registration algorithm [162] 

Heat map visualization of 
disease progression 

DSC 
Lung boundaries: 0.95 (CI 
0.95–0.96) 
Main lung vessels: 0.79 (CI 
0.77–0.81) 
Regions of disease: 0.81 (CI 
0.76–0.86) 

Perumal 
et al. 
[140] 

Detection and classification 
of different types of 
pulmonary diseases, 
including COVID-19 

202 CT scans from various 
online sources (GitHub, RSNA, 
and Google images) 

Transfer learning, CNNs, and 
Haralick features [141] 

Infected regions heat map 
visualization 

For Classification 
ACC: 93% 

Wang [142] Lesion segmentation and 
classification with visual 
predictions 

Training Cases 
Positive: 718, Negative: 413 
Testing Cases 
Positive: 159, Negative: 128 

FCN, V-Net, U-Net, 3D U- 
Net++, ResNet50 

Visualized highlights of 
the lesion regions to the 
screening result 

Classification on Test Set 
SEN: 0.974, SPE: 0.922 
Segmentation Dice 
FCN: 0.68, V-Net: 0.739, U-Net: 
0.742 
3D U-Net++: 0.754 

Ni et al. 
[143] 

COVID-19 abnormalities 
detection, including voxel 
segmentation and lobe 
segmentation 

14,435 participants with chest 
CT images with pathogen 
diagnosis 

Deepwise & League of Ph.D. 
Technology Co. Ltd [163], 3D 
U-Net, and MVP-Net [164] 

COVID-19 pneumonia 
abnormalities 
visualization 

For per-patient: SEN: 1.00 of 
(95%(CI) 0.95, 1.00), F1-score: 
0.97 
For per-lung lobe: SEN: 0.96 of 
(95% CI 0.94, 0.98), F1-score: 
0.86 

Zhang et al. 
[144] 

localization and 
quantification of COVID-19 
pneumonia 

Multiple cohorts datasets (CT 
and RT-PCR) 

Modified 3D CNN combined 
with V-Net [41, 110] 

Visualization of bilateral 
lesions of COVID-19 
patients 

Anatomic distribution of 
infected bronchopulmonary 
segments (readers are referred 
to Table 3 in the article) 

(continued on next page) 
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5. Datasets 

Datasets are indispensable for designing and training deep learning 
models. Specifically, AI diagnostic models must be developed using 
medical image datasets. Thus, datasets should be given equal impor
tance to the model setups. Therefore, in our study, we selected 29 
standard and publicly available chest CT datasets that can be used for 
COVID-19 diagnosis research. Fig. 4 shows that the most popular data 
repositories are individual web pages (33.3%) and databases such as 
Mendeley (33.3%), Kaggle (16.6%), and GitHub (16.6%). The datasets 
and their accessible links are provided in supplementary Table 1 at the 
end of the manuscript. 

5.1. Large datasets with supplemental AI-based models 

Some of the datasets are large and have been supplemented with AI 
models. For instance, CC-CCII [87] is one of the most extensive CT 
datasets, containing 6752 scan results for 4154 patients and a total of 
617,775 slices in three categories: novel corona pneumonia (NCP), 
common pneumonia (CP), and normal control group (Normal). An 
AI-based model was developed and tested with this dataset to diagnose 
NCP and differentiate it from common pneumonia and normal controls. 

Table 3 (continued ) 

Source/ 
Author 

Performed Tasks Dataset Information Framework/Approach Final Output Performance 

Alshazly 
et al. 
[145] 

COVID-19 associated 
regions localizations and 
visual explanations 

SARS-CoV-2 dataset [165] and 
COVID19-CT dataset [35] 

Applied transfer learning with 
CNNs 

Visualized clusters for CT 
images of COVID-19 from 
other lung diseases 

On SARS-CoV-2 dataset 
ACC: 99.4%, PRC: 99.6%, 
SEN: 99.8%, SPE: 99.6%, F1- 
score: 99.4% 

Mobiny 
et al. 
[146] 

COVID-19 classification 
and activation maps of 
regions of interests 

COVID-CT-Dataset [34] Capsule Networks (CapsNets) 
[166, 167] and GAN [168] 

Activation maps of 
classified COVID-19 cases 

For Classification: PRC: 0.843, 
RC: 0.915, SPE: 0.860, ACC: 
0.876, F1-score: 0.871, AUC: 
0.961 

Javaheri 
et al. 
[148] 

To detect and distinguish 
between COVD-19 and CAP 

A cohort of multiple datasets BCDU-Net [149] and CNN Visualized Covid-19 
infection areas 

Overall ACC: 82% 
For Non-COVID 
PRC: 78%, RC: 90%, F1-score: 
83% 
For COVID-19 
PRC: 88%, RC: 74%, F1-score: 
80% 

COVIDNet- 
CT-1 
Gunraj 
et al. [25] 

COVID-19 infection regions 
detection and analysis 

104,009 CT images from 1,489 
patients 

Machine-driven design 
exploration algorithm 
(GSInquire) [150] 

Visual infection analysis 
of predictions in terms of 
critical visual factors 
associated with COVID 

Normal Non-COVID COVID 
SEN: 100 99 97.3 
SPE: 99.5 99.2 99.9 
PPV: 99.4 98.4 99.7 
NPV: 100 99.5 99.3 

COVID-Net 
CT-2 
Gunraj 
et al. 
[151] 

COVID-19 infection regions 
detection and analysis 

396,025 CT images from 8,246 
patients 

Machine-driven design 
exploration algorithm 
(GSInquire) [150] and 
Generative Synthesis [169] 

Visual infection analysis 
of predictions in terms of 
critical visual factors 
associated with COVID 

ACC: 98.1%/97.9%, SEN: 
6.2%/95.7%, PPV: 96.7%/ 
96.4%, SPE: 99%/98.9%, and 
NPV: 98.8%/98.7% 

Jaiswal 
et al. [36] 

COVID-19 classification 
and detection 

COVID-CT-Dataset [34] Pruned EfficientNet [77] Visualized analysis for the 
explainability of the 
predictions 

ACC: 0.85, PRC: 0.81, RC: 0.92, 
F1-score: 0.86, AUROC: 0.84 

Qiblawey 
et al. 
[153] 

Segment, detect, localize, 
and quantify COVID-19 
infections 

Medseg [122] and [123] Encoder-Decoder CNNs, UNet, 
and Feature Pyramid Network 
(FPN) 

Visualized detection of 
lung and infection regions 

SEN for dataset 1110 subjects: 
Mild: 98.3%, Moderate: 71.2%, 
Severe: 77.8%, Critical: 100% 
For COVID-19 detection: SEN: 
99.64% and SPE: 98.72% 

Ma et al. 
[123] 

Infection segmentation and 
visualized spatial 
distribution map 

70 annotated COVID-19 cases Region-scalable fitting (RSF) 
[170] model with U-Net 

Visualized infection 
spatial distribution map 
(heat map) 

Quantitative results on COVID-19 
CT dataset 
DSC: 0.7081 ± 0.1908, NSD: 
0.8015 ±0.1956, HD: 35.75 ±
47.53 

Ghavami 
et al. 
[155] 

COVID-19 classification 
and detection of the 
infected areas 

3359 samples from 6 different 
medical centers 

Convolutional Neural 
Networks (CNNs) 

An interpretable COVID- 
19 detection system 

For Classification 
Sensitivities (SENs): 97.75% 
and 98.15% 
Specificities (SPEs): 87% and 
81.03% 

Wu et al. 
[156] 

Segmentation and 
detection of COVID-19 
infection 

313,167 CT slices from 438 
patients 

CNN and context enhancement 
(CE) 

A framework to jointly 
detect and segment the 
lesion areas of COVID19 
from CT images 

Pixel ACC: 83.2 
IoU: 71.1 
Dice: 83.0  

Fig. 4. COVID-19 CT datasets’ composition and availability.  
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The system performance was evaluated by dice coefficient (DC) and 
pixel accuracy (PA) metrics by a five-fold cross-validation test. Deep
Labv3 [171] has been adopted as the backbone for subsequent analysis 
for better segmentation performance. Wu et al. [108] constructed a 
large-scale COVID-19 classification and segmentation (COVID-CS) 
dataset with 144,167 chest CT images of 400 COVID-19 patients and 350 
non-infected cases. A novel joint classification and segmentation (JCS) 
system was designed to perform real-time and explainable COVID-19 
chest CT diagnosis by considering the constructed datasets. Another 
large dataset, COVID-Net CT-1 [25], with three case types—NCP, CP, 
and normal—was utilized with a neural network tailored for COVID-19 
detection. For NCP and CP cases, the slices were marked as containing 
lung abnormalities. The dataset was further extended to a large-scale 
COVID-Net CT-2 [151] dataset. The authors designed a neural 
network tailored for COVID-19 detection as part of the open-source 
COVID-Net initiative. The performance validation showed that 
COVID-Net CT-2’s decision-making behavior is consistent with radiol
ogist interpretation by leveraging correct, clinically relevant critical 
factors. 

He et al. [133] formed a large, clean, and segmented CT dataset 
named Clean-CC-CCII with three given classes—NCP, CP, and normal
—by fixing errors and removing noise. Furthermore, the authors pro
posed an automated model for COVID-19 diagnosis. COVID-CT-set [65] 
is another collected dataset that consists of 48,260 CT images from 282 
normal persons and 15,589 CT images from 95 patients with COVID-19 
infections. The authors presented an accurate and high-speed model for 
COVID-19 diagnosis that achieved 98.49% accuracy on more than 7996 
test images in a single image classification stage. At the patient identi
fication phase, the system correctly identified almost 234 of 245 patients 
with high speed. 

SARS-CoV-2 CT-scan [165] is another public CT dataset with 2482 
CT scans: 1252 COVID-positive and 1230 non-COVID cases. This dataset 
aimed to support COVID-19 diagnosis research with AI-based methods. 
An xDNN was used, which scored 97.31% on the F1 scale. TCIA 
COVID-19, a dataset created by Harmon et al. [136], contains chest CT 
images from 632 individuals with COVID-19 infections. Clinical data, 
such as COVID-19-positive RT-PCRs, were added to the dataset. Yan 
et al. [58] collected 828 CT scans with abnormal findings from two 
hospitals and designed an AI-based system that used a multi-scale con
volutional neural network (MSCNN). The experimental results indicated 
that the proposed model can detect COVID-19 and distinguish it from 
other types of pneumonia with a small amount of training data. 

5.2. Small datasets with supplemental AI-based models 

Yan et al. [90] developed a segmentation-based dataset consisting of 
21,658 chest CT images from 861 patients with confirmed COVID-19 
pneumonia. They also presented a method for segmenting COVID-19 
infections. Wang et al. [142] grouped 1136 chest CT training cases 
(723 COVID-19-positive) from five hospitals to train an AI model to 
evaluate CT images and predict the risk of COVID-19 pneumonia 
infection. The test dataset, which included various lung illnesses, ach
ieved a sensitivity of 0.974 and a specificity of 0.922. Wang et al. [43] 
created a dataset that included 1065 CT images of pathogen-confirmed 
COVID-19 individuals as well as those who had previously been diag
nosed with normal viral pneumonia. The researchers adjusted the 
Inception transfer learning algorithm before testing it on their dataset. 
For comparison and modeling, Song et al. [172] gathered a chest CT scan 
dataset (Ncov2019) of 88 patients diagnosed with COVID-19, 101 pa
tients infected with bacteria pneumonia, and 86 healthy people. To 
detect the patients with COVID-19, the authors also developed a deep 
learning–based CT diagnosis system (Deep Pneumonia). When applied 
to their CT dataset, the model correctly differentiated COVID-19 pa
tients from others with an excellent AUC (area under the curve) and 
recall (sensitivity). 

To classify COVID-19, the COVID-CT-MD [173] dataset was 

composed by radiologists who analyzed a subset of 55 COVID-19 and 25 
CAP cases to identify and label slices with infection. The labeled subset 
of the data contains 4993 slices demonstrating infection and 18,416 
slices without infection. Wang et al. [88] composed the two-part 
UESTC-COVID-19 dataset for pneumonia lesion segmentation: Part 1 
includes 70 vol where lesion regions were annotated with some noise by 
non-experts, while Part 2 consists of 50 vol where lesions were anno
tated without any noise by experts. Additionally, a novel noise-robust 
framework was proposed to learn from the noisy labels in the segmen
tation task. 

5.3. Datasets with no supplemental models 

Some of the datasets/databases contain only chest CT scans or im
ages. For example, there is a dataset named “2500 CT images of COVID- 
19 Lung” [174], which includes 2933 lung CT images of COVID-19 pa
tients gathered from previous papers, reputable media reports, and 
public databases. Sixty-eight examples were collected from the sirm.org 
public database, and 101 cases were gathered from the GitHub public 
database. COVID-CT [34] is another open-source dataset consisting of 
349 CT images from 216 COVID-19 patients and 463 CT images from 
non-COVID-19 patients. A senior radiologist confirmed the dataset’s 
utility. The authors claimed that their dataset can be used to develop 
AI-based COVID-19 diagnosis models. Zaffino et al. [175] constructed an 
open-source lung CT dataset based on segmentation and classification, 
including 62 CT volumes from 50 COVID-19 patients. The CT volumes 
are provided with automatic threshold-based annotation obtained with 
a Gaussian mixture model (GMM) and scoring provided by an expert 
radiologist. 

Jun et al. [123] constructed a COVID-19 CT lung and infection seg
mentation dataset containing 70 CT scans of patients diagnosed with 
COVID-19. The dataset has further segmented lung lesions provided by 
experts. Several other open-source datasets have been developed 
without AI models. However, these datasets have been provided with 
additional clinical information. 

5.4. Datasets with supporting clinical information 

Additional clinical information includes the patient’s age, clinical 
history, RT-PCR test findings, etc. RICORD [176] is an excellent example 
of an open-source dataset with 240 thoracic CT scans and 1000 chest 
radiographs from four sites in different countries. With supporting 
clinical characteristics, RICORD is projected to be better for prediction 
models and able to explain long-term performance across demographics 
and healthcare systems. The RICORD dataset is divided into RICORD (a) 
and RICORD (b), as given in Table 4. Similarly, Ning et al. [47] created 
the HUST-19 open-source hybrid dataset which includes chest CT scans, 
130 clinical characteristics, and the laboratory-confirmed SARS-CoV-2 
clinical status from 1521 individuals with pneumonia (including 
COVID-19 pneumonia). The database was intended to predict COVID-19 
morbidity and death outcomes using a trained algorithm. 

Morozov et al. [124] presented a large-scale MosMed dataset con
taining 1110 chest CT scans. The data are categorized as either “with 
symptoms of COVID-19 (CT1-CT4)” or “without signs of COVID-19 
(CT-0).” The dataset has some additional markers, from CT-0 (normal 
and non-viral pneumonia CT) to CT-4 (diffuse hyaline opacity, lung 
parenchyma involvement more than 75%). These corresponding 
markers can be used to classify patients automatically and to point out 
suspicious locations for radiologists in CT scans. Iglesia et al. [177] 
developed the BIMCV-COVID19+ experimental dataset, which includes 
COVID-19 CT images and additional clinical information. The images 
are stored in high resolution and entities are localized with anatomical 
labels in a medical imaging data structure (MIDS) format. Moreover, the 
dataset provides extensive information such as the patients’ de
mographic information, the type of projection, and the acquisition pa
rameters for the imaging study. 
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Table 4 
Datasets and their selective information.  

Dataset/Author’s Name Location Data Structure Framework/Approach Applications Upshots/Results 

CC-CCII, Zhang et al. [87] China A database of a total of 
617,775 CT images 
from 3777 patients 

U-net, DRUNET [183], FCN, 
SegNet and DeepLabv3 

Prediction of progression to 
critical illness 

AI system for diagnosing COVID-19 
pneumonia using CT scans and 
evaluating drug treatment effects 
with CT quantification 

Wu et al. [108] China 144,167 COVID-19 CT 
images of 400 patients 
and 350 uninfected 

CNNs, Activation Mapping 
[69], and Image Mixing 
[129] 

Classification and 
segmentation of lung infection 

For Classification: SEN: 95.0%, SPE: 
93.0% 
For Segmentation: Dice: 78.5% 

COVID-Net CT-1, Gunraj 
et al. [25] 

Canada and 
China 

104,009 CT images 
from 1489 patients 

Machine-driven design 
exploration algorithm 
(GSInquire) [150] 

To train and validate models 
for COVID-19 diagnosis from 
CT images 

Normal: 99.5%, NCP: 99.2%, 
COVID-19: 99.9% 

COVID-Net CT-2, Gunraj 
et al. [151] 

Canada, China, 
and USA 

396,025 CT images 
from 8246 patients 

GSInquire) [150], 
Generative Synthesis [169] 

To train and validate models 
for COVID-19 CT diagnosis 

ACC: 98.1%/97.9%, SEN: 6.2%/ 
95.7%, PPV: 96.7%/96.4%, SPE: 
99%/98.9%, NPV: 98.8%/98.7% 

HKBU_HPML_COVID-19, 
He et al. [133] 

China Total of 3993 CT scans 
having 131,517 NCP, 
135,038 CP, and 
73,635 normal slices 

MNas3DNet41(AutoML) [9] Useful for healthcare 
professionals to develop 
effective models 

For NCP、CP and normal 
ACC: 0.87, SEN: 0.861, SPE: 0.931 

COVID-CT-set, M 
Rahimzadeh et al. [65] 

Sari, Iran 15,589 CT images of 
95 patients with 
COVID-19 

ResNet50V2 network [41] Useful for COVID-19 CT 
diagnosis 

Correct identification of 234 
patients from 245 patients 

SARS-CoV-2 CT Soares 
et al. [165] 

Sao Paulo, 
Brazil 

Total 2482 CT scans 
with 1252 COVID-19 
positive and 1230 non- 
infected CT scans 

eXplainable Deep Learning 
approach (xDNN) [184] 

COVID-19 identification 
through their composed 
dataset 

A comprehensive dataset with a 
deep learning approach (xDNN) 
achieved a promising F1-score of 
97.31% 

TCIA, Harmon al. [136] Worldwide 
(China, Japan, 
Italy, etc.) 

In total, 2724 CT scans 
from 2617 patients 

Grad-CAM [69], Lung 
segmentation model [160] 

COVID-19 pneumonia 
detection from chest CT using 
multinational datasets 

For COVID-19 pneumonia 
Classification 
ACC: 90.8%, SEN: 84%, SPE: 93% 

CT dataset, Yan et al. [58] China, Brazil 416 COVID-19 positive 
CT scans and 412 
common pneumonia 
CT scans 

Multi-scale convolutional 
neural network 

To assist radiologists and 
physicians to perform quick 
diagnoses and mitigate the 
heavy workload 

SEN: 89.1%, SPE: 85.7%, ACC: 
87.5% 

Yan et al. [90] China 21,658 annotated CT 
images from 861 
COVID-19 patients 

Encoder decoder framework 
and PASPP-ASPP [185] 

To segment lungs and COVID- 
19 infected regions 

Lungs: DSC: 0.987, SEN: 0.986, SPE: 
0.990 
COVID: DSC: 0.726, SEN: 0.751, 
SPE: 0.726 

Wang et al. [142] China 1136 training cases 
from 723 COVID-19 
patients 

Used segmentation and 
classification baseline 
models 

Deployment of a real-time AI- 
based COVID-19 diagnostic 
system 

On Test Dataset: SEN: 0.974, SPE: 
0.922 

Pneumonia CT Wang et al. 
[43] 

Tianjin, China 1065 CT images of 
pathogen-confirmed 
COVID-19 cases 

Modified Inception transfer- 
learning model 

To apply for COVID-19 CT 
images screening 

On Internal Validation: ACC: 89.5% 
with a SPE: 0.88, and SEN: 0.87 
On External Testing: Total ACC: 
79.3% with an SPE: 0.83 and SEN: 
0.67 

Song et al. [172] China 777 NCP, 505 BP, and 
708 normal CT images 

ResNet-50, FPN attention 
model [66] 

Identification of COVID-19 
infected patients by CT images 

NCP and BP: AUC: 0.95, ACC: 0.86, 
SEN: 0.96 
NCP and No normal: AUC: 0.99, 
ACC: 0.94, SEN: 0.93 

COVID-CT-MD, Afshar 
et al. [173] 

Canada CT scans of 171 
COVID-19 patients, 60 
patients with CAP, and 
76 normal patients 

The slice and lobe labeling 
processes focus on regions 
with distinctive 
manifestations 

Assist in the development of 
advanced Machine Learning 
(ML) and Deep Neural Network 
(DNN) based solutions 

A dataset, with COVID-19 and CAP 
cases, further accompanied with 
lobe-level, slice-level, and patient- 
level labels to facilitate the COVID- 
19 research 

UESTC-COVID-19 Dataset, 
Wang et al. [88] 

China CT scans (3D volumes) 
of 120 COVID-19 
patients 

CNN, Self-Ensemble CNNs, 
MAE loss [186], Dice loss 
[110] 

COVID-19 pneumonia lesion 
segmentation from noisy labels 

Average Dice: 80.72%, RVE: 
15.96% 
HD95: 17.12 mm 

2500 CT images of COVID- 
19 Lung [174] 

USA, China, and 
Italy 

2500 CT images Only CT scans For public research A data collection from previous 
publications 

COVID-CT dataset 
Xingyi Yang et al. [34] 

Wuhan, China 349 COVID-19 and 
463 non-COVID-19 CT 
images 

Multi-task learning and self- 
supervised learning 

Helpful in developing AI-based 
diagnosis models of COVID-19 

F1-score: 0.90, AUC: 0.98, ACC: 
0.89 

Zaffino et al. [175] Italy 62 CT volumes of 50 
COVID-19 patients 

Gaussian mixture model 
(GMM) 

Lung region segmentation and 
lung tissue classification 

Mean ± standard deviation 
coefficient of determination (R2): 
0.72 ± 0.03 
Pearson correlation coefficient (C): 
0.89 ± 0.01 

COVID-19 CT scans 
Ma et al. [123] 

Israel 70 annotated COVID- 
19 cases 

left lung segmentation, right 
lung segmentation, and 
infection segmentation 

A three-level segmentation 
benchmark set up to promote 
the studies of annotation- 
efficient deep learning 
methods 

Achieved average DSC scores of 
97.3%, 97.7%, and 67.3%, NSD 
scores of 90.6%, 91.4%, and 70.0% 
for left lung, right lung, and 
infection, respectively 

MIDRC-RICORD-1a, Tsai 
et al. [176] (a) 

USA 31,856 CT images of 
110 patients 

Only CT scans with 
annotations and supporting 
clinical variables 

Annotation or data 
augmentation efforts and 
evaluation of the examinations 

Achieve the stated objectives for 
data complexity, heterogeneity, and 
high-quality expert annotations 

(continued on next page) 
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Several other datasets have also been composed with supporting 
clinical information and are available for public research. For instance, 
the COVID-19 Casistica Radiologica Italiana database [125] includes 
115 COVID-19 positive cases with detailed information such as age, past 
medical history, course of disease, symptoms, and CT imaging diagnosis. 
This dataset is helpful for providing hands-on experience to radiologists. 
Fifty COVID-19-positive cases were included in the Eurorad COVID-19 
[178] database, together with the patients’ ages, clinical history, im
aging findings, discussion, differential diagnosis list, and final diagnosis. 
The authors demonstrated that CT imaging plays an essential role in the 
diagnosis, treatment, and prognosis of the infection course, allowing the 
physicians to determine an adequate therapy and response. Desai et al. 
[179] published a collection of radiographic and CT imaging studies for 
rural patients who had tested COVID-19 positive. Each patient is 
described by clinical data, including demographics, comorbidities, 
selected lab data, and critical radiology findings. 

5.5. Data augmentation–based datasets 

Data augmentation is the process of generating new data examples 
for training a model. Data augmentation is a useful technique for 
providing more information from less data. Some authors have adopted 
data augmentation techniques to obtain more diverse data. Throat et al. 
[180], for example, used an augmentation method to create a COVID-19 
chest CT dataset with non-COVID-19 and COVID-19 CT images. The 
dataset was amplified by different augmentation techniques, generating 
approximately 17,099 CT images. Houssein et al. [181] generated a 
dataset containing non-COVID-19 and COVID-19 cases in X-ray and CT 
images. The dataset was augmented using different augmentation 
techniques, generating about 17,100 X-ray and CT images. Loey et al. 

[182] built a small dataset and used a deep transfer learning (DTL) 
model to classify the COVID-19 cases. For this purpose, the authors 
enriched the dataset by using classical data augmentation and CGAN. 
They then used a classifier to predict the classification outcomes: 
COVID-19 or non-COVID-19. 

There may be several datasets missing from our review. However, we 
covered the most important, extensively used, and basic chest CT 
datasets utilized for COVID-19 research to the best of our knowledge. We 
curated the most crucial and detailed information from each dataset. 
The selective information about each dataset is arranged in Table 4. 

6. Discussions and future perspectives 

Several studies and research projects have employed AI and deep 
learning in medical imaging diagnosis, such as with CT scans. Most of 
the COVID-19 diagnosis research has utilized classification and seg
mentation techniques. In general, the majority of the classification- 
based methods have relied on pre-trained CNNs and transfer learning 
strategies. The pre-trained models have faster training convergence, 
particularly when there is a small amount of data. Moreover, such 
models are more efficient and avoid overfitting due to multi-training 
procedures. 

However, the typical algorithmic flow of a neural network involves 
adding the pooling layer after the convolution layer. Thus, there are 
more chances of losing important features in up-sampling, down-sam
pling, or average sampling. To avoid information loss, building the re
sidual blocks (ResNet101, DenseNet201, etc.) with deeper networks can 
deepen the complexity of the prediction networks and may evaluate 
more non-linear data. Adding or designing such types of systems could 
extract more feature information and make classifiers more accurate. 

Table 4 (continued ) 

Dataset/Author’s Name Location Data Structure Framework/Approach Applications Upshots/Results 

for disease entities beyond 
COVID-19 pneumonia 

MIDRC-RICORD-1b, Tsai 
al. [176] (b) 

USA 21,220 CT images of 
117 patients 

Only CT scans with 
supporting clinical variables 

The first multi-institutional, 
multi-national expert 
annotated COVID-19 imaging 
dataset 

Achieve the stated objectives for 
data complexity, heterogeneity, and 
high-quality expert annotations 

HUST-19, Ning et al. [47] Wuhan, China 19,685 CT slices from 
1521 Patients 

CNN frameworks, Inception 
Net V3 [75] and ChexNet 
[187] 

Useful for diagnosis and 
management of patients with 
COVID-19 

Negative Receiver: AUC: 0.944 
Mild Receiver: AUC: 0.860 
Severe Receiver: AUC: 0.884 

MosMedData, Morozov 
et al. [124] 

Moscow, Russia 1110 anonymous 
patient’s Chest CT 
scans 

No framework/architecture 
is applied 

High-quality dataset with 
binary pixel masks depicting 
regions of interest, useful for 
development and validation 

AI system for diagnosing COVID-19 
with SEN: 90%, SPE: 96%, AUC: 
0.96 

BIMCV-COVID19+ Iglesia 
et al. [177] 

Valencian 
Region 

163 CT imaging 
studies 

Entities are localized with 
anatomical labels and stored 
in a Medical Imaging Data 
Structure (MIDS) format 

Useful for academic research 
and education 

A COVID-19 images dataset of 
available in an open format 

COVID-19: CASISTICA 
RADIOLOGICA 
ITALIANA [125] 

Italy 115 COVID-19 positive 
cases 

Clinical data, including PCR 
status 

Detailed case analysis, 
including age, address, 
treatment, and so on, is 
provided 

COVID-19 positive cases with CT 
images, patients’ age, clinical 
history, illness experience, and final 
diagnosis 

Eurorad COVID-19 [178] Worldwide 
(India, 
Maldives, 
Arabia, etc.) 

50 COVID-19 positive 
cases 

Clinical data, including PCR 
status 

To provide a learning 
environment for radiologists, 
radiology residents, and 
students worldwide 

The detailed information with 
patients’ age, clinical history, 
imaging findings, differential 
diagnosis list, and final diagnosis 

COVID-19-AR Desai et al. 
[179] 

USA 23 CT studies 
performed on a total of 
105 patients 

A DICOM-based de- 
identified data stored 
standard format 

To contribute samples from 
rural populations to the global 
research community 

8/23 (35%) CT were negative for 
airspace opacification 

COVID-19-CT-scan- 
dataset Surabhi et al. 
[180] 

Unspecified 17,099 CT images Only CT scans For public research A CT data collection 

Houssein et al. [181] Egypt 5500 non-COVID-19 
images and 4044 
COVID-19 images 

HQCNN [66] To develop such a model to 
predict and help COVID-19 in 
the early stages 

ACC: 99.0% 
SEN: 99.7% 

Loey et al. [182] Not applicable Utilized CGAN 
network and 
constructed 4425 
images from [123] 

CGAN [60] To be used for a more extensive 
area of research 

ACC: 82.91%, SEN: 7.66% 
SPE: 87.62%  
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Another solution could be federated networks such as multi-network- 
based systems, which can extract more features—for example, incor
porating models including VGG-16 or VGG-19 with ResNets to jointly 
extract lung features from the input CT images and perform classifica
tion tasks. 

Many COVID-19 predictive models are segmentation-based because 
segmentation provides high accuracy, is computationally cheap, and is 
simple to perform and comprehend. However, segmentation remains 
challenging for COVID-19 diagnosis because (1) no generally accepted 
solution, (2) there is a continually growing number of different ROIs, 
and (3) there are substantial variations in the properties of ROIs. 
Furthermore, the segmentation algorithms are exaggerated due to the 
intensity of homogeneity, artifacts, and closeness in the gray level of 
distinct soft tissues [100]. The works proposed for COVID-19 infection 
region segmentation have primarily relied on U-Net and a few of its 
variants (Residual U-Net, 3D U-Net, Dense U-Net, U-Net++, etc.) 
because U-Nets are particularly useful (i.e., much faster to train) and 
generate highly detailed segmentation maps using minimal training 
samples [188]. 

To improve the segmentation outcomes for COVID-19 diagnosis, the 
flexible U-Net-based architecture can be exploited along with trans
formers and attention mechanisms (TransUNet) [189]. TransUNet ar
chitecture establishes self-attention means to cover the loss of feature 
resolution caused by transformers. In addition, TransUNet uses a hybrid 
CNN-transformer architecture to take advantage of both comprehensive 
high-resolution spatial information from CNN features and the global 
context encoded by transformers. U-Nets can also be combined with 
GANs [84] to achieve the same accuracy and precision as manual an
notations when segmenting images [190]. The GAN framework creates 
new data and includes two networks—a discriminator and a gen
erator—that compete against one another to enhance their performance. 
In addition to the aforementioned architectures, various other network 
configurations, such as cascading two or more U-Nets [191], could help 
to improve segmentation outcomes [188]. There has been less attention 
given to COVID-19 lesion quantification-based analysis. Most of the 
existing algorithms have attempted to segment the infected region and 
utilize it for simple classification tasks. Hence, there is a need for 
quantification-based segmentation procedures to provide real-time aid 
to the COVID-19 clinical practice. 

It was rather challenging to differentiate between COVID-19 classi
fication-, segmentation-, and detection-based methods. Most CT and X- 
ray research on COVID-19 detection has not interpreted detection ac
cording to the computer vision definition. Thus, chaotic contents were 
found while searching such research articles. It is known that, from a 
medical perspective, detection has the same meaning as diagnosis. From 
the computer-vision perspective, detection is an operation that includes 
localizing an object by a boxplot of any shape. If the medical view is 
considered the only definition criterion, COVID-19 detection would be 
regarded as COVID-19 case classification and COVID-19 infection seg
mentation. If the computer-vision perspective is considered to be the 
only definition criterion, it remains similar to COVID-19 infection seg
mentation to a certain extent. 

Less attention has been given to utilizing computer vision–based 
detection and recognition algorithms to diagnose COVID-19. As a result, 
we included those methods where ROIs or lesions were localized for 
diagnosis using bounding boxes, contours, heat maps, or interactive 
colors. These are hybrid approaches (i.e., they consider both segmen
tation and classification practices) with visible and interpretable pre
dictions. Most of the cited methods in Section 4 are fundamentally 
segmentation-based with lesion localization, visualized marks, and 
colored outputs. We recommend that computer and medical technolo
gists use important computer vision technical terms while performing 
AI-based COVID-19 diagnosis research. Otherwise, we may continue to 
face contradicting research results. Therefore, COVID-19 detection 
should be defined as a function different from classification and seg
mentation: for example, an infection localization and detection 

operation in interactive graphics with specific, measurable scales and 
decisions. There is a broad research gap in the utilization of state-of-the- 
art computer vision–based detection algorithms for CT-based COVID-19 
diagnosis. 

The COVID-19 AI-based predictive models produce relatively higher 
quantitative outcomes (SEN, SPE, ACC, etc.). The reason for this lies in 
the datasets and biased evaluations. For example, most COVID-19 
datasets have two divisions (i.e., training and test data) rather than 
three (i.e., training, validation, and testing). Even though the datasets 
have been constructed with three subsets, it is likely that the test data 
partitions have been used for the training (e.g., in the form of cross- 
validation, which is somehow familiar to the trained model), which 
cannot be regarded as unbiased evaluation. Thus, holdout test sets 
(which should not be used as cross-validation while training the model) 
are essential and will reduce bias in the trained model. Furthermore, 
there is a shortage of COVID-19 medical images and annotations; we 
noted few datasets that were utilized for segmentation. 

Deep learning–based models are prone to overfitting if they do not 
have many training samples. Popular data augmentation solutions, such 
as rotation, cropping, and scaling, are applied to address the data scar
city problem; as more training samples are introduced, the overfitting 
problem may be alleviated. The new images produced through data 
augmentation don’t provide any additional substantial information. 
However, apart from its gains, it might have the reverse effect and may 
cause data leakage because the test set could contain samples that are 
similar to those in the training set. To address this challenge, GANs could 
be utilized to create a variety of images in addition to the data 
augmentation process [192]. Besides introducing larger datasets, the 
dataset’s quality and efficient labeling strategy are also essential. In 
addition, datasets with additional information also have the potential to 
facilitate the COVID-19 AI diagnostic models and research. 

In general, CT plays a prognostic role in COVID-19 diagnosis. When 
AI predictive models are applied with CT images, they can provide both 
rapid and accurate results. Some of the examined studies and experi
ments suggest that AI has promising diagnostic performance for COVID- 
19 and is vital in assisting doctors in making timely decisions on patient 
isolation and treatment. 

7. Conclusion 

The most accurate COVID-19 diagnoses are based on laboratory 
tests, such as RT-PCR. Patients infected or suspected of being infected 
with COVID-19 are typically admitted to the hospital for diagnostic 
procedures. These laboratory tests entail procedures that can be time- 
consuming, have low sensitivity, and have a high risk of false-negative 
results. Similarly, a shortage of equipment and strict testing standards 
have hampered the timely and accurate screening of suspected cases. 
Thus, non-laboratory examinations, such as computer-assisted imagery 
analysis of chest radiography (X-ray) or CT scans, are used to examine 
the lung regions to diagnose COVID-19. Specifically, CT image findings 
have been important for creating machine-based techniques to diagnose 
COVID-19. Implementing these methods is essential to contain the virus, 
screen out vast numbers of suspected and confirmed cases, and ease 
patient management in hospitals. Therefore, many chests CT–based AI 
and computer vision strategies have been developed for COVID-19 
diagnosis. In this review study, we have reported and categorized the 
most well-known literature regarding the computer vision tasks of 
classification, segmentation, and detection. We also discussed the most 
well-known datasets utilized for COVID-19 CT research. According to 
our review study, AI- and deep learning–based models have been widely 
used to extract COVID-19-related infections from chest CT images. AI- 
enabled CT imaging methods can assist in automating the diagnosis 
process and reshaping the workflow while minimizing patient interac
tion and improving doctors’ and radiologists’ practices. Most of the 
COVID-19 diagnosis methods utilized classification techniques, while 
many COVID-19 prognostic models are based on segmentation 
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approaches. There has been less attention given to computer vision- 
based detection algorithms for detecting COVID-19. A large number of 
diagnostic models produce relatively higher quantitative (SEN, SPE, 
ACC, etc.) outcomes due to their biased evaluations. There is a need for 
holdout test sets to avoid bias in evaluating a trained model. Further
more, there is a shortage of diverse and well-annotated datasets with 
additional clinical information. For instance, few datasets are available 
to train and test segmentation-based COVID-19 models. Ultimately, our 
review study supports the necessity for further research on the given 
topic in the future. 
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Abbreviations of Evaluation Parameters used in Tables (1, 2, 3, 
and 4) 

ACC Accuracy 
SEN Sensitivity 
SPE Specificity 
PRC Precision 
AUROC Area Under the Receiver Operating Characteristic 
ROC Receiver Operating Characteristic 
AUC Area Under the Curve 
CAP Community-Acquired Pneumonia 
RC Recall 
ROI Region of Interest 
IOU Intersection Over Union 
mIOU mean Intersection Over Union 
PPV Positive Prediction Value 
NPV Negative Prediction Value 
RVE Relative Volume Error 
HD Hausdoff Distance 
HD95 95th percentile of Hausdoff Distance 
AA Average Accuracy 
PHO Percentage of High Opacity 
DSC Dice Similarity Coefficient 
MAE Mean Absolute Error 
NSD Normalized Surface Dice 
ASD Average Symmetric Surface Distance 
PO Percentage of Opacity 
LHOS Lung High Opacity Score 
DNN Deep Neural Network 
NCP Novel Corona Pneumonia 
PPV Positive Predictive Value 
CP Common Pneumonia 
BP Bacteria Pneumonia 
VP Viral Pneumonia 
GGO Ground glass opacities 
Csld Consolidation 
CrPa Crazy paving appearance 
InSepThi Interlobular septal thickening 
ILD Interstitial Lung Disease 
MIS Medical Image Segmentation 
DCN Dual-branch Combination Network 
JCS Joint Classification and Segmentation 
MPS-Net Multi-point Supervision Network 
UDC-Net Uncertainly guided Dual-consistency Learning Network 
CRF Conditional Random Field 

CNN Convolutional Neural Network 
FCNs Fully Convolutional Neural Networks 
PASPP Progressive Atrous Spatial Pyramid Pooling 
ASPP Atrous Spatial Pyramid Pooling 
Jaccard Jaccard Similarity Coefficient 
LSS Lung Severity Score 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2021.105123. 
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