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Abstract: Ocean warming and acidification are current global environmental challenges 

impacting aquatic organisms. A shift in conditions outside the optimal environmental range 

for marine species is likely to generate stress that could impact metabolic activity, with 

consequences for the biosynthesis of marine lipids. The aim of this study was to investigate 

differences in the lipid content of Dicathais orbita exposed to current and predicted future 

climate change scenarios. The whelks were exposed to a combination of temperature and 

CO2-induced acidification treatments in controlled flowthrough seawater mesocosms for  

35 days. Under current conditions, D. orbita foot tissue has an average of 6 mg lipid/g tissue, 

but at predicted future ocean temperatures, the total lipid content dropped significantly, to 

almost half. The fatty acid composition is dominated by polyunsaturated fatty acids (PUFA 52%) 

with an n-3:6 fatty acid ratio of almost 2, which remains unchanged under future ocean 

conditions. However, we detected an interactive effect of temperature and pCO2 on the % 

PUFAs and n-3 and n-6 fatty acids were significantly reduced by elevated water temperature, 

while both the saturated and monounsaturated fatty acids were significantly reduced under 

increased pCO2 acidifying conditions. The present study indicates the potential for relatively 

small predicted changes in ocean conditions to reduce lipid reserves and alter the fatty acid 
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composition of a predatory marine mollusc. This has potential implications for the growth 

and survivorship of whelks under future conditions, but only minimal implications for 

human consumption of D. orbita as nutritional seafood are predicted. 

Keywords: marine lipids; ocean climate change; Dicathais orbita; polyunsaturated fatty 

acids; n-3; n-6; plasmalogens 

 

1. Introduction 

Climate change is one of the major environmental challenges to humankind and all other life forms 

on Earth. The consequences of the global climate change have been widely reported [1–3] and are likely 

to worsen over the coming decades. Global sea surface temperatures are projected to increase  

by 2–4 °C towards the end of the 21st century [1], while the surface ocean pH is predicted to decrease 

by 0.14–0.35 units, adding to the present decrease of 0.1 units that has already occurred since  

pre-industrial times [1,2]. The drop in pH is due to the absorption of increasingly greater CO2 

concentrations into the oceans as a result of the rising partial pressure of atmospheric CO2 (pCO2)  

from anthropogenic activities, such as burning of fossil fuels, agriculture and land clearing [1]. These 

two phenomena, ocean warming and pCO2-induced acidification, are anticipated to have detrimental 

effects on seawater quality and consequently to marine organisms. 

As soft-bodied, slow moving invertebrates, molluscs are highly susceptible to biotic pressures and 

abiotic changes in their environment. Marine molluscs are considered good models for climate change 

studies because they are ectothermic animals with limited ability to regulate their internal temperature. 

They can only survive within a narrow range of tolerable temperatures to which they have adapted [4] 

and stress outside their optimal temperature range leads to loss of metabolic functions [3–5]. Molluscs 

are also vulnerable to ocean acidification because their calcium carbonate shells are eroded when 

exposed to low pH [6,7] and an excess of hydrogen ions in the ocean can interfere with shell formation [8]. 

Furthermore, molluscs tend to have low metabolic rates and cannot easily compensate for pH 

disturbances [9]. Chronic stress from sub-optimal conditions can result in decreased growth and 

reproduction, increased susceptibility to disease and reduced survivorship [3,10,11]. Recent meta-analyses 

have identified molluscs as one of the most vulnerable invertebrate taxa under changing ocean  

conditions [9,11,12]. However, further studies are required to investigate the biochemical responses that 

may lead to reduced resilience under future conditions. 

Marine molluscs comprise a major invertebrate fishery resource [13,14] and are highly regarded as 

healthful food for human consumption [15–18]. Like other shellfish and fish, molluscs are known to 

contain significant amounts of lipid, that is relatively low in saturated fatty acids (SFA) and high in 

polyunsaturated fatty acids (PUFA) [19,20]. The large amounts of PUFA in seafood offer nutritional 

and health benefits, such as the provision of essential fatty acids, carriers of fat-soluble vitamins, and 

decreasing the risk of cardiovascular disease [21]. Seafood is not only a good source of PUFAs, but also 

provides n-3 fatty acids with optimal n-3/n-6 ratios [22]. Dietary intake of n-3 fatty acids has  

a broad range of beneficial health effects in humans, including well-established anti-inflammatory,  

anti-arrhythmic and prothrombotic properties [23]. They are also reported to reduce the risk of colorectal 
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cancer [24], lower blood pressure associated with hypertension [25], reduce depression and treat type 2 

diabetes [26], and Alzheimer’s disease [27]. Omega-6 fatty acids are necessary for good nutrition, but 

when consumed in large amounts they may become harmful to the human body [26] by increasing the 

risk of cardiovascular and coronary heart disease [28] and may increase offspring adiposity [29]. To our 

knowledge, no previous studies have investigated the combined impacts of ocean warming and 

acidification on fatty acid compositions in marine molluscs, despite possible implications for human health. 

Previous studies have shown that fatty acids in marine organisms can be influenced by environmental 

conditions, such as changes in temperature [30] and CO2 concentrations [31]. Temperature is a key 

parameter for optimal physiology in organisms, since it modulates the basic rates of all chemical 

reactions in cells, thus affecting the stability of structural components, particularly lipids and  

proteins [32]. Studies on plankton [33,34], copepods [35], microalgae [32,36,37], and bacteria [38] have 

demonstrated that temperature impacts the lipid composition by increasing the unsaturated fatty acid 

levels as the temperature declines and increasing the saturated fatty acids (SFA) content as the 

temperature increases. A recent study on the interactive effects of temperature and food quality was 

demonstrated in Daphnia pulex, where elevated temperature (26 °C) significantly decreased the total 

body fatty acids and thus negatively affected the PUFA content [39]. Based on comparison of the fatty 

acid composition of temperate and arctic marine ectotherms, Lewis [40] proposed that fatty acid profiles 

could actually be used to predict environmental temperatures effects. 

Fewer studies have investigated the effects of ocean acidification (OA) on fatty acid composition. 

However, in a laboratory experiment to test potential OA effects on fatty acid composition in diatoms, 

elevated CO2 significantly changed the fatty acid concentration and composition of Thalassiosira 

pseudonana [31]. A significant decline in total fatty acids and the ratio of long-chain polyunsaturated to 

saturated fatty acids (PUFA:SFA) was found in algae cultured under elevated (pCO2 = 750 ppm;  

pH = 8.14) compared to present day CO2 concentrations (pCO2 = 380 ppm; pH = 7.94). This impact was 

directly translated to micro-algal grazing copepods, resulting in an almost tenfold decline in total fatty 

acids and triple the contribution of SFAs in copepods at high CO2 [31]. This study demonstrates the 

potential for far-reaching consequences of OA in ocean food webs by changing the nutritional quality 

of essential macromolecules in primary producers that can then cascade up the food web. However, to 

date, few studies appear to have investigated the potential for synergistic effects of elevated temperature 

and acidification on the lipid composition of benthic marine predators. 

The Muricidae are a diverse family of predatory marine gastropods that currently comprise over 39% 

of the world-wide gastropod fisheries harvest [41]. Muricidae fisheries production has experienced a slow 

increase globally, with only 5000–24,000 tonnes of catch annually from 2002 to 2006, then peaking in 

2007, with a catch of about 27,000 tonnes [41]. China is the lead producer [41], although muricids have 

gained importance in small-scale fisheries industry and aquaculture throughout Asia, Europe, and 

Central and South America [13,42], both for seafood consumption and as a source of Tyrian purple [43–45]. 

Dicathais orbita (Gmelin) is temperate species of Muricidae native to Australia, and is considered as a 

useful bioindicator of environmental conditions [45–48]. D. orbita has also provided a good model for 

natural product research [45]. However, the fatty acid composition of flesh of this species has not 

previously been reported. 

Thus, the aim of the study was to assess the fatty acid composition in the foot tissue of the D. orbita 

and to investigate any impacts of ocean warming and acidification on the lipid content and fatty acid 
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profile after a 35-day exposure to future climate change conditions. This study provides valuable 

information to establish the nutritional value of this Australian whelk and provides insights into the 

potential effect of future ocean conditions on the fatty acid composition of a predatory gastropod, with 

potential flow-on effects for human consumption. 

2. Results and Discussion 

2.1. Impacts of Ocean Climate Change on D. orbita Total Lipid Content 

The highest lipid content from D. orbita foot tissue was 6.3 mg/g fresh weight in specimens held at 

current ocean conditions of 23 °C, current pCO2 (control), dropping to an average of 5.0 mg/g in 

specimens maintained at 23 °C and future pCO2 (Figure 1). The lipid content was less than 4% for all 

whelks kept at 25 °C, with the lowest mean amount of lipid at 3.6 mg/g from the foot tissue of whelks 

held in future warming and acidification conditions for 35 days (Figure 1). Permutational univariate 

analysis (PERMANOVA) revealed that temperature (p < 0.05), but not CO2-induced acidification, 

significantly affected the total lipid yield and there was no significant interaction between these factors 

(p > 0.05, Table 1). The reduced lipid content under elevated water temperature conditions in this study 

suggests that D. orbita is sensitive to the relatively small increases (~2 °C) in temperature predicted from 

global climate change models [1]. This result substantiates the negative response to elevated temperature 

in lipid synthesis for the larvae of the hard clam Mercenaria mercenaria and bay scallop Argopecten 

irradians [49], although these larva also showed a reduction in total lipids at elevated CO2. Metabolic 

rates generally increase at higher temperatures and under stressful conditions, thus placing more demand 

on metabolic reserves, such as the stored lipid. Reduced lipid reserves under conditions of elevated 

temperature could have significant implications for the long-term viability of whelk populations. High 

water temperature can result in the dysfunction of important biological functions, as lipids are structural 

components of all cell membranes and are considered cellular fuels [50–52]. Reduced lipid storage has 

been correlated with poor growth condition in predatory fish in response to increasing sea surface 

temperatures and it has been argued that lipid reserves also provide a good indicator for reproductive 

performance, as they are crucial for pre-spawning conditioning of eggs [53]. Consequently, the effects 

of long-term exposure to future ocean conditions on lipid reserves could result in reduced reproduction, 

development and growth of marine molluscs. This could have serious implications for population 

viability and sustainable fisheries, unless they are able to adapt to the new conditions. The east coast of 

Australia has been recognized as an ocean warming hotspot [54] and in this study, D. orbita was 

collected close to the northern limit of its distribution. Previous studies on invertebrates from thermally 

stressful intertidal habitats indicate that warm-adapted populations may already be close to their upper 

thermal tolerance and thus are most vulnerable to ocean warming due to less capacity to acclimatize [55]. 

Nevertheless, multi-generational studies have indicated the presence of tolerant genotypes in other 

marine invertebrates [56], suggesting potential for some species to adapt to concurrent ocean warming 

and acidification. 
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Figure 1. Total lipid yield extracted from the foot tissue of D. orbita after 35 days exposure 

to temperature and pCO2 treatments (n = 6 per group). Error bars show standard error of the 

mean. * Significantly different to the control at 23 °C and current pCO2 (p < 0.05). 

Table 1. Summary of the statistical outcomes for all univariate and multivariate analyses. 

Two factor PERMANOVAs were used to test the effects of temperature and pCO2 induced 

acidification. Significant effects are in bold. 

 
Temperature Acidification Temperature × Acidification

Pseudo F p Value Pseudo F p Value Pseudo F p Value 

UNIVARIATE 

Total lipid yield 19.1230 0.0002 1.9863 0.1796 1.6396 0.2098 
SFA 3.6189 0.0733 4.2989 0.0478 3.1075 0.0905 

MUFA 0.4115 0.5451 5.7182 0.0196 0.0063 0.9373 
PUFA 10.981 0.0029 0.0281 0.8705 6.7298 0.0164 

n-3 4.7150 0.0476 0.0002 0.9881 1.8572 0.1848 
n-6 5.1551 0.0340 1.2660 0.2742 0.0452 0.8261 

n-3:n-6 ratio 0.33697 0.5697 0.20287 0.6637 1.0828 0.3088 

MULTIVARIATE 

Overall fatty  
acid composition 

7.7094 0.0001 2.8452 0.0229 1.7186 0.1321 

2.2. Impacts of Ocean Climate Change on the Major Classes of Fatty Acids 

The distribution of fatty acids in D. orbita under current ocean conditions was characterised by  

a predominance of PUFA (51.6% ± 2.1%) followed by SFA (26.7% ± 1.4%) and a low abundance of 

MUFA (10.2% ± 0.9%) (Figure 2). This relatively high unsaturated fatty acid content is consist across  

a wide range of molluscs, including filter feeding bivalves, herbivorous gastropods and predatory  

whelks [20,57]. D. orbita contains more n-3 (ALA, eicosatrienoic, EPA, DPA, and DHA) than n-6 (LA, 

and ARA) PUFAs (Table 2), with an n-3:n-6 ratio of approximately 2 (Figure 2). Both n-3 and n-6  

fatty acids are required for normal human health, with a recommended ratio between 1 and 4 [58,59].  
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In Western diets the n-3 to n-6 ratio is approximately 1:20–30, indicating a deficiency of n-3 fatty acids, 

which has been linked to several diseases, such as heart disease, diabetes and hypertension [60]. Our 

study reveals that D. orbita provides a good balance of n-3 and n-6 and a high proportion of PUFAs, 

which could contribute to a healthful human diet. 

 

Figure 2. Proportions of (a) polysaturated fatty acids (PUFA) (n = 6) showing relative amounts 

of n-3 and n-6 fatty acids; (b) saturated fatty acids (SFA) (n = 12) and (c) monosaturated fatty 

acids (MUFA) (n = 12) in D. orbita foot tissue after 35 days exposure to different temperatures 

and CO2-induced acidification. Error bars show standard error of the mean. * Significant 

differences (p < 0.05) within the same group of fatty acids, in comparison to the control at 

23 °C and current pCO2. 

Examination of the fatty acids of D. orbita after exposure to future temperature and pCO2-induced 

acidification treatments for 35 days revealed that the relative proportions of the major fatty acid classes 

remained similar across all treatments (Figure 2) and there was no significant difference in the ratio of 

n-3:n-6 (Table 1, p > 0.05). This implies that the nutritional benefit associated with the fatty acid content 

of these whelks is likely to be retained under future ocean conditions. 
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Table 2. Fatty acid and lipophilic hydrocarbon profile of D. orbita foot tissue after 35 days 

exposure to current and future ocean temperatures and acidification conditions. Data are 

expressed as % of total fatty acid methyl esters (FAMEs) as mean ± SE (n = 12). Others include 

cyclopropane fatty acids and dimethyl acetal aldehydes from plasmalogen phospholipids. 

Fatty Acid Trivial Name 
Retention 

Time (min)

23 °C, 

Current 

pCO2 

23 °C, 

Future 

pCO2 

25 °C, 

Current 

pCO2 

25 °C, 

Future 

pCO2 

Saturated 

C14:0 Myristic 16.8 1.46 ± 0.13 1.56 ± 0.05 1.74 ± 0.08 1.28 ± 0.12 

C15:0 Pentadecanoic 18.4 1.24 ± 0.18 1.30 ± 0.07 1.38 ± 0.11 1.11 ± 0.12 

C16:0 Palmitic 19.8 9.26 ± 0.49 8.86 ± 0.17 9.53 ± 0.39 8.66 ± 0.23 

C17:0 Margaric 21.3 1.98 ± 0.12 1.71 ± 0.10 1.31 ± 0.12 1.22 ± 0.13 

C18:0 Stearic 22.6 8.26 ± 0.49 8.17 ± 0.15 7.90 ± 0.24 8.30 ± 0.12 

C24:0 Lignoceric 29.7 4.54 ± 0.16 4.99 ± 0.36 4.81 ± 0.16 4.18 ± 0.13 

Monounsaturated 

C16:1 Palmitoleic 20.6 1.87 ± 0.16 0.84 ± 0.32 0.89 ± 0.25 0.86 ± 0.23 

C18:1 (n-9) Oleic 23.1 4.54 ± 0.49 4.96 ± 0.07 4.89 ± 0.23 4.42 ± 0.06 

C20:1 (n-9) 11-Eicosenoic 25.7 3.50 ± 0.11 3.40 ± 0.19 3.81 ± 0.16 3.81 ± 0.19 

C22:1 (n-9) Erucic 30.2 0.24 ± 0.04 0.20 ± 0.01 0.34 ± 0.11 0.15 ± 0.07 

Polyunsaturated 

C18:2 (n-6) Linoleic acid (LA) 24.1 1.54 ± 0.09 1.51 ± 0.07 1.66 ± 0.12 1.69 ± 0.08 

C18:3 (n-3) α-Linolenic (ALA) 25.1 0.56 ± 0.04 0.60 ± 0.03 0.69 ± 0.06 0.77 ± 0.04 

C20:2 Eicosadienoic 26.5 2.50 ± 0.13 2.89 ± 0.16 2.60 ± 0.1 2.45 ± 0.13 

C20:3 (n-3) Eicosatrienoic 27.1 0.03 ± 0.03 0.03 ± 0.03 0 0 

C20:4 (n-6) Arachidonic (ARA) 27.3 11.49 ± 0.22 11.84 ± 0.26 10.88 ± 0.16 11.07 ± 0.14

C20:5 (n-3) Eicosapentaenoic (EPA) 28.3 2.61 ± 0.30 2.76 ± 0.33 2.00 ± 0.42 2.05 ± 0.44 

C22:2 Docosadienoic 28.5 11.15 ± 0.57 10.15 ± 0.39 11.81 ± 0.51 11.40 ± 0.42

C22:5 (n-3) Docosapentaenoic (DPA) 30.7 17.72 ± 0.49 16.87 ± 0.52 16.13 ± 0.40 16.69 ± 0.39

C22:6 (n-3) Docosahexaenoic (DHA) 30.9 4.02 ± 0.27 3.70 ± 0.13 3.55 ± 0.26 3.85 ± 0.35 

Others 

 
2-octylcyclo-

propanedecanoic 
26.8 0.63 ± 0.02 0.64 ± 0.04 0.68 ± 0.03 0.73 ± 0.02 

 
Unknown fatty acid 

derivative 
29.2 0.53 ± 0.04 0.48 ± 0.06 0.56 ± 0.05 0.50 ± 0.05 

Dimethyl acetal aldehydes 

 Hexadecan-1-al 18.8 1.04 ± 0.08 0.94 ± 0.04 0.87 ± 0.70 0.82 ± 0.02 

 Heptadecan-1-al 20.2 0.21 ± 0.05 1.03 ± 0.26 0.86 ± 0.17 1.78 ± 0.06 

 Octadecan-1-al 21.7 8.91 ± 0.83 10.27 ± 0.20 10.80 ± 0.29 11.92 ± 0.20

 Nonadecan-1-al 24.7 0.17 ± 0.06 0.30 ± 0.03 0.30 ± 0.07 0.29 ± 0.06 

Nevertheless, PERMANOVA univariate analysis identified some significant effects on the % PUFA, 

MUFA and SFAs (Table 1). The relative proportion of PUFAs was affected by a significant interaction 

between temperature and pCO2 (Table 1, p < 0.05). There was a significant reduction in the % PUFAs 

at elevated temperatures under current pCO2 conditions, but no effect under future conditions (Figure 2). 

Temperature also caused a consistent reduction in the amount of n-3 and n-6 fatty acids, as a percent of 

total lipids (Figure 2, Table 1, p < 0.05). This effect of temperature is consistent with a previous study on 

bivalves, Ruditapes decussatus and Ruditapes philippinarum, which also showed decreased PUFA 
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content after exposure to warmer waters [61]. Some PUFAs are important in maintaining the fluidity 

and permeability of biological membranes in response to temperature fluctuations [50]. The decreased 

proportion of PUFA at higher temperatures could be explained by acclimatization to the prevailing 

thermal conditions by restructuring cell membranes to maintain optimal fluidity and permeability. This 

strategy, termed homeoviscous adaptation, can occur via changes in phospholipid head groups, fatty acid 

composition, and cholesterol content [51]. Nevertheless, it remains unclear whether this biochemical 

acclimatization response, to offset the direct effects of temperature on membrane lipid fluidity, can be 

sustained under long-term conditions that also cause an overall reduction in the total lipid content. 

The proportion of PUFAs in D. orbita was not significantly affected by future pCO2 conditions at 

either temperature (Table 1, p > 0.5, Figure 2a). This result agrees with recent research on Pacific oyster 

Crassostrea gigas that showed no effect on the total fatty acid contents under elevated pCO2 [62]. 

Nevertheless, exposure to CO2-induced acidification did result in a significant but small reduction  

(1%–2%) in the relative proportions of SFA and MUFA in D. orbita (Table 1, p < 0.05, Figure 2). 

Although response to CO2 acidification is species-specific, it has been proposed that elevated CO2 levels 

promote synthesis and accumulation of SFAs in green algae and can lead to the desaturation of  

pre-existing fatty acids [63]. SFAs were also found to increase proportionally under elevated pCO2 

conditions in diatoms and this effect was magnified in grazing copepods [31]. Our results on a predatory 

whelk are inconsistent with this, as we found a significant decrease in the relative proportion of SFAs 

under future CO2 acidification conditions. However, the whelks were fed fresh oysters that were held 

under current ocean conditions, and thus our study does not account for potential trophic transfer of 

altered lipid compositions. The integration species interactions into future studies on temperature and 

pCO2-induced biochemical changes could provide a more realistic assessment of species vulnerabilities, 

based on functional networks from the molecular to ecosystem scale [64]. 

2.3. Impacts of Ocean Climate Change on Fatty Acid Composition 

In the present study, we have identified 21 fatty acids in D. orbita lipid extracts (Table 2,  

Figure S1), with carbon atoms ranging from 14 to 22, including saturated, monoenoic, polyenoic and 

cyclopropane-containing fatty acids (CFA) (e.g., Figure S2). The biophysical properties of these cyclic 

fatty acids are similar to unsaturated fatty acids, hence they are usually considered as part of the 

unsaturated fatty acid component [65]. Several studies have confirmed the presence of CFAs in  

marine organisms, such as the Okinawan ascidian Diplosoma sp. [66] and the Caribbean sponge  

P. suberitoides [67]. CFAs have also been previously reported in freshwater molluscs, specifically the 

prosobranch gastropods Viviparus (Bellayma) bengalensis and Pila globosa [68]. CFAs are common in 

bacteria and function to increase cellular membrane stability when bacteria are exposed to low  

pH [69]. Consistent with this we observed a slight increase in 2-octylcyclo-propanedecanoic methyl ester 

in whelks held under future CO2 conditions (Table 2). The relative proportion of CFAs in D. orbita also 

increased at elevated water temperatures, which may be due to the post-synthesis modification of 

unsaturated fatty acids [70]. 

A series of dimethyl acetals of aliphatic aldehydes were also identified in the lipid composition of  

D. orbita (Table 2, Figure S3), based on the common fragment ion m/z 75, representing the McLafferty 

rearrangement ion (CH3O)2CH− [71]. The detection of these dimethyl acetals of aldehydes in D. orbita 
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tissue is consistent with the presence of animal cell plasmalogens, which are glycerolphospholipids with 

a vinyl ether linkage at the sn-1 position and an ester linkage at the sn-2 position [72]. The aldehydes 

are generated when the vinyl ether bond is broken, then immediately converted to dimethyl acetals 

during acidic transesterification in BF3 methanol [71]. Plasmalogens play many important physiological 

roles in animals and have been proposed to provide a sink for polyunsaturated fatty acids in some  

tissues [72]. In a study on the mitochondrial fraction of the marine bivalve Arctica islandica, the 

abundance of plasmalogens (evaluated on the basis of dimethyl acetal content) was found to slightly 

increase as a result of warmer temperature [73]. This is in agreement with our results. In D. orbita, the 

proportional increase of dimethyl acetals at elevated temperature coincides with the decrease of PUFA 

(Table 1, Figure 3). This may be because PUFAs are degraded by autoxidation chain reactions within 

the cell membranes, thereby releasing reactive fatty aldehydes [61,73].Multivariate PERMANOVA 

revealed that there is a significant effect of both temperature and acidification on the overall fatty acid 

composition of D. orbita (Table 1, p < 0.05). However, there was no synergistic interaction between 

temperature and acidification (Table 1, p > 0.05). Principal coordinate ordination (PCO) with trajectory 

overlay was used to explore the differences in the lipid composition between temperature and acidification 

treatments (Figure 3). The whelks held at 23 °C and current pCO2 treatment are spread across the right 

hand side of the ordination plot, whereas the points representing whelks held at 25 °C and future pCO2 

treatment are clustered mostly towards the left hand side (Figure 3). Vector overlay using Spearman rank 

correlation suggests that the whelks held at 25 °C in future pCO2 conditions are characterized by higher 

dimethyl acetal of octadecan-1-al, which could represent changes to the phospholipid cell membranes 

in whelks held under future stressful conditions. In comparison, the majority of whelks maintained at 23 

°C in current pCO2 conditions are characterized by higher margaric acid and DPA (Figure 3, Table 2). 

Variation in the concentrations of docosadienoic acid and EPA along the Y axis explains much of the 

variation between replicate whelks held under the same treatment conditions (Figure 3). 

 

Figure 3. Principal coordinate ordination (PCO) of the lipophilic compound profile from  

D. orbita based on a Euclidian distance similarity matrix of the percent composition data 

with vector overlay from Spearman rank correlation of 0.6. 
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Despite significant changes in the fatty acid composition of whelks held under future temperature and 

pCO2 conditions, the degree of impact on specific PUFAs was perhaps not as apparent as expected 

(Table 2). By comparison, a study on the gill of an eastern oyster Crassostrea virginica maintained at 

25 °C showed a 14% increase in the amount of ARA compared to gills from the oysters kept at 12 °C. 

However, the magnitude of temperature change in this previous study on oysters was much greater  

(52% increase), in comparison to just 2 °C (8%) increase in our study, as this is more relevant to future 

ocean warming predictions. The detection of even relatively minor statistically significant changes to 

the fatty acid composition and glycerophospholipids of D. orbita, after just 35 days exposure to small 

predicted increases in water temperature, is of concern. These small changes in relative composition are 

magnified by the large decreases in total lipid content (Figure 1), with an average of 43% reduction in 

all lipids under future warming and pCO2 conditions, relative to current conditions. Long-term exposure 

and multi-generational studies are required to assess the potential for acclimatization and adaptation of 

the metabolic and biosynthetic capabilities of predatory marine whelks under future ocean conditions. 

Furthermore, whilst this study has examined the impacts of ocean climate change stressors on whelk 

lipid storage and fatty acid composition, we have not accounted for bioaccumulated effects on dietary 

derived fatty acids likely to result from predator-prey interactions in natural ecosystems experiencing 

long term climate change. The combined effects of ocean warming and acidification have demonstrated 

effects on the biosynthesis of PUFAs in marine algae, with flow-on effects for herbivores [31] and 

ultimately this could further magnify the effects on higher order consumers. Therefore whilst  

the statistically significant changes in fatty acid proportions in D. orbita, along with the overall reduction 

in total lipid yield under future ocean conditions, can be considered a negative outcome from ocean 

warming and acidification, the effects may actually be under-estimated, with unknown consequences for 

the nutritional requirements and long-term survival of the species. Future mesocosm studies, involving 

a range of marine predator and prey interactions, could investigate the potential accumulation of 

biochemical changes in key primary metabolites under prolonged stressful conditions. This would help 

establish whether marine species at higher trophic levels are generally at greater risk of metabolic 

dysfunction under future ocean conditions and any consequent implications for the production of 

sustainable healthful seafood. 

3. Experimental Section 

3.1. Study Site and Experimental Design 

To test the hypothesis that ocean warming and acidification will impact the fatty acid composition of 

Dicathais orbita, 144 whelks were subjected to 35 days under experimental conditions at the National 

Marine Science Centre (NMSC), Coffs Harbour, Australia (30°16′3.70″ S, 153°8′15.31″ E). The experiment 

utilized D. orbita (51–79 mm shell length) from rock platforms around Coffs Harbour and a two-factor 

factorial design with four treatments (mean ± SD): (1) current conditions, 22.9 ± 0.6 °C and 378.6 ± 35.6 

ppm; (2) elevated temperatures, 25.2 ± 0.6 °C and 382.2 ± 35.5 ppm; (3) elevated pCO2 = 22.9 ± 0.5 °C 

and 749.9 ± 80.6 ppm; and (4) increased temperature 25.3 ± 0.6 °C and elevated pCO2 = 763.0 ± 104.6 ppm. 

Ambient water temperatures were based on data collated by Navy Meteorology and Oceanography 

indicating an average (±SD) sea surface temperature off the Coffs Harbour coast between September 
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and November of approximately 21.3 ± 1.0 °C [74]. Ambient pH during the experimental period was 

estimated to be ~8.2 [75]. Future ocean conditions were based on the IPCC [76] trajectory for a drop in 

0.3 pH (i.e., increased pCO2 to 750–800 ppm) and a 3 °C rise in sea surface temperature by the year 

2100 under climate change model RCP8.5. 

To maintain experimental conditions, twelve 1100 L header tanks were filled with seawater pumped from 

the open ocean adjacent to the NMSC. This seawater was passed through a sand filter and 50 µm filters 

before being allowed to flow into the header tanks. The temperature of seawater in the header tanks was 

controlled by heater chiller units (Aquahort Ltd., Auckland, New Zealand). Seawater pH (pCO2) was 

manipulated by bubbling CO2-enriched air through experimental treatments after pre-mixing the gases 

using a gas mixer (PEGAS 4000MF, Columbus Instruments, Columbus, OH, USA). The water temperature, 

pH, conductivity and salinity were measured daily and total alkalinity was measured weekly through 

potentiometric titration using an automated titrator (888 Titrando, Metrohom, Riverview, FL, USA).  

The pH, alkalinity, temperature and salinity readings were used to calculate the partial pressure of CO2 

using the CO2SYS program [77] with constants from Mehrbach et al. [78] as adjusted by [79]. 

Each header tank supplied temperature and pCO2 controlled water at 3 L/min−1 to a tray  

(860 mm × 650 mm × 96 mm) that housed four cages (305 mm × 360 mm × 90 mm) with three D. orbita 

in each cage. D. orbita were acclimated in experimental conditions for one week before feeding trials 

commenced. Whelks were fed Sydney rock oysters (Saccostrea glomerata), a common prey item in field 

conditions. The whelks in each cage were initially fed 4 small oysters ranging 30–50 mm, with new 

oysters of similar size added daily. After 35 days exposure to the experimental conditions, three male 

and three female whelks were sampled from each tank. 

3.2. Extraction and Preparation of Fatty Acid Methyl Esters 

To prepare the samples, soft tissue of the whelks was extracted by crushing the shell using a bench-top 

vice. Tissues from three replicate male whelks were pooled from each tank and similarly three replicate 

females were pooled to represent one replicate sample per tank (n = 3 tanks per treatment combination 

for each gender). The samples were prepared from the foot tissue (~1.0 gram) and were soaked in 

methanol:chloroform (2:1) for 1.5 h. The solvent extract was then filtered using Sigma-Aldrich 

Whatman filter paper 90 mm into a clean test tube. The tissue was soaked further in fresh solvent, 

decanted and replaced until a colourless solution was obtained. At least three washes were made to 

maximize lipid recovery. All the chloroform fractions from each sample were combined and dried using 

a rotary evaporator (Buchi Vacuum System) at 40 °C maintained at 337 mbar Hg. The samples were 

then transfered to a clean pre-weighed vial using sequential resuspension in minimum volumes of 

methanol:chloroform solution and were further concentrated under a stream of high purity (100%) 

nitrogen gas and then weighed and stored in a −20 °C freezer until utilized. 

The above lipid extracts were derivatised to generate fatty acid methyl esters according to  

Kanthilatha et al. [80]. The dried lipid extracts were dissolved in 1.5 mL of 0.5 M saturated sodium 

hydroxide in methanol and then heated in a dri-block at 100 °C for 10 min. To completely methylate the 

extracts, 2 mL of boron trifluoride in methanol was added and then heated again for another 30 min. 

After cooling at room temperature, 1 mL of hexane was added to extract the fatty acid methyl esters 

(FAMEs). The tube was shaken vigorously for 30 s. Five milliliters of sodium chloride solution was 
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added to aid in phase separation and shaken again for 5 s to separate the hydrophilic layer from the 

lipophilic layer. The FAMEs that were formed were recovered from the lower phase and collected in an 

autosampler vial ready for gas chromatography (GC) injection. 

3.3. FAMEs and GC Analysis 

The FAMEs samples were analysed using a GC (Agilent 6890N, Santa Clara, CA, USA) coupled 

with a flame ionisation detector (FID) with Agilent 6890 split/splitless injection and a fitted with BPX 

70 capillary column (70% cyanopropyl polysilphenylene-siloxane, 50 m length, 0.22 mm internal diameter 

and 0.25 µm thickness). The FID was operated at 260 °C while the split injector was kept at 230 °C. The 

carrier gas was high-purity helium maintained with a linear flux of 1 mL/min. The GC oven was initially 

held at 100 °C for 5 min and then raised to 240 °C at a rate of 5 °C/min. One microliter of the sample 

extract was injected with a split ratio of 200:1 and a column flow of 1 mL/min. 

FAMEs were identified by the peak, retention time and elution order and compared against the 

reference FAMEs standard test mix (SUPELCO 37-Component FAME Mix CRM47885, Bellefonte, 

PA, USA). Some samples were further analyzed using an Agilent gas chromatography-mass 

spectrometer (GC-MS) with an Agilent 5973 Mass Selective Detector to confirm the identity of the fatty 

acids. The mass spectra were recorded at 70 eV ionisation voltage over the mass range of 35 to 550 amu. 

Individual peaks were identified by comparison to library mass spectra (WILEY 275 and NIST98). To 

facilitate the identification of DPA, which was not in the test mix, a soft ionisation MS technique at  

40 eV ionisation voltage was employed to ionise the lipid molecules in the D. orbita samples without 

causing extensive fragmentation (Figure S4). Spectrum was compared on the MS database, retention 

time and elution order from extensive literature search such as the American Oil Chemists’ Society. The 

relative composition of each identified fatty acid was done by peak integration from the GC and 

expressed for individual FAMEs as percentages of the total in each run. 

3.4. Statistical Analyses 

The data are expressed as means ± standard error. All statistical analyses were undertaken using 

PRIMER v 6 + PERMANOVA add-on. Initially three-factor PERMANOVAs (temperature, pCO2 and 

gender) were used to investigate the effects of temperature, pCO2-induced pH and snail gender. 

However, in all cases gender was not statistically significant and did not interact with the other factors 

(p > 0.05). Consequently, two-factor PERMANOVAs (temperature and pCO2) were used to investigate 

the effects of temperature and CO2-induced acidification. Univariate PERMANOVAs were used to 

compare the total yield of lipid extract, the percent SFA, MUFA and PUFA, as well as the percent of  

n-3 and n-6 fatty acids between each of the experimental conditions. Multivariate analyses were used to 

assess the total fatty acid composition (relative abundance standardized by the total). In all cases, 

Euclidean distance similarity matrices were created and PERMANOVAs were run using the full model 

and 9999 permutations of the data to determine overall differences between treatments followed by 

pairwise analyses on the interaction term when this was significant. Principal component ordination 

(PCO) was also undertaken to visually represent the patterns in the multivariate data (overall fatty acid 

composition standardized by total), with vector overlay using Spearman correlation >0.6. In all analyses, 

a statistically significant result was accepted for p < 0.05. 
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4. Conclusions 

D. orbita has been found to contain a complex fatty acid composition with high PUFA levels and  

a good ratio of n-3 and n-6 fatty acids, which is typical of healthful seafood. Small temperature and 

pCO2 increases predicted with future ocean warming and acidification can, however, negatively impact 

the total yield of lipids and the overall fatty acid composition. Overall, our study indicated that ocean 

warming significantly decreases the proportion of PUFA and increases plasmalogen derived dimethyl 

acetals of aliphatic aldehydes, whilst elevated pCO2 decreases SFA and MUFA and alters the overall 

fatty acid composition. However, with the exception of total lipids, the percent changes in composition 

are relatively small and the n-3:n-6 ratio remains the same, suggesting minimal implications for human 

consumption of D. orbita as nutritional seafood. Nevertheless, there are possible implications for the 

long term viability of the species resulting from reduced lipid reserves and the potential for reduced 

bioaccumulation of lipids through the food web in predatory species. 
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