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Abstract

A novel virulent bacteriophage, vB_VspP_pVa5, infecting a strain of Vibrio splendidus was

isolated from a sea-cage aquaculture farm in Greece, and characterized using microbiolog-

ical methods and genomic analysis. Bacteriophage vB_VspP_pVa5 is a N4-like podovirus

with an icosahedral head measuring 85 nm in length and a short non-contractile tail. The

phage had a narrow host range infecting only the bacterial host, a latent period of 30 min

and a burst size of 24 virions per infected bacterium. Its genome size was 78,145 bp and

genomic analysis identified 107 densely-packed genes, 40 of which could be annotated. In

addition to the very large virion encapsulated DNA-dependent RNA polymerase which is the

signature of the N4-like genus, an interesting feature of the novel phage is the presence of a

self-splicing group I intron in the thymidylate synthase gene. A tRNAStop interrupted by a

~2.5kb open reading frame–containing area was also identified. The absence of genes

related to lysogeny along with the high efficacy observed during in vitro cell lysis trials, indi-

cate that the vB_VspP_pVa5 is a potential candidate component in a bacteriophage cocktail

suitable for the biological control of V. splendidus in aquaculture.

Introduction

Vibrio splendidus is a ubiquitous inhabitant of marine and brackish water with prodigious

genotypic diversity that plays a major ecological part in the oceanic and coastal environments

[1,2]. It has been associated with severe epizootics in many farmed aquatic animals including

fishes [3–5], crustaceans [6], bivalves and echinoderms [7]. In bivalve aquaculture, V. splendi-
dus is considered to be one of the most important bacterial pathogens [8–11] responsible for

severe financial losses, while in fish culture it has been reported to cause significant mortalities

mostly in turbot larvae [3,12]. Skin Ulceration Syndrome (SUS) caused by V. splendidus [7] is

an important threat for the viability and profitability of the rapidly expanding industry of holo-

thurian culture in China and Southeast Asia [13]. In fish and invertebrate larviculture where

the use of antibiotics has specific drawbacks and therefore is not applicable, control of vibriosis
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is extremely challenging. In these cases, bacterial control is based on the enhancement of the

innate immune system of the farmed animals [14] or on the use of probiotic bacteria [7,15].

Phages have been considered as a promising alternative to antibiotics since they present

several benefits over chemotherapy for microbial control. These include their high host speci-

ficity indicating that they are harmless to the natural microbiota and their autonomous trans-

fer between animals following initial administration [16]. Phage therapy could be an ideal

option for microbial control in the fragile environments of the fish and invertebrate hatcheries

[17].

A few phages infecting V. splendidus have previously been isolated and phage therapy

against V. splendidus in sea cucumber (Apostichopus japonicus), hatcheries has recently pro-

duced encouraging results leading to increased survival of the phage- treated populations.

However, the phages used in that study, PVS-1, PVS-2 and PVS-3 were only morphologically

characterized [18]. Additionally, although the genome sequences of three more phage isolates

infecting V. splendidus (Helene, Henriette and Martha) are available in GenBank, as yet no

publications about them have been released.

Here we report the isolation and characterization of vB_VspP_pVa5 (pVa5), a lytic N4-like

podovirus which infects a V. splendidus strain. To our knowledge, this is the first V. splendidus
phage characterized both morphologically and genetically.

Materials and methods

Bacterial strains

The bacterial strain used as a host (VaAn) was isolated from mussels of a bio-fouled fish cage

in Greece during a vibriosis incidence. The bacterial strain has previously been fully sequenced

(Accession number: PRJNA349813) and identified as Vibrio splendidus by multilocus sequence

analysis (MLSA) [19]. It is a moderate virulent strain able to cause mortality to fish as assessed

in in vivo studies using cod, turbot and halibut larvae [19] and is resistant to sulfadiazine/tri-

methroprim and oxytetracycline. In addition to the host, ten Vibrio splendidus strains and four

clinical Vibrios associated with fish diseases from HCMR’s collection were used in order to

assess the host range of the phage. The strains used in this assay are presented in Table 1. Bac-

terial strains were maintained in microbeads (MicroBank) at -80˚C and grown in sea water

supplemented with 1% tryptone and 0.5% yeast extract at 25˚C. Host range was assessed using

the agar-overlay method [20].

Phage isolation

The phage was isolated from sea water near a cage aquaculture farm in central Greece in Janu-

ary 2015. Water samples (1 L) were supplemented with 1% tryptone (Difco) and 0.5% yeast

extract (Difco), inoculated with VaAn and incubated at 25˚C for 24h. Following filtration

through 0.22 μm filters, 20 μL aliquots were tested for clearing zones on bacterial lawns of the

host strain. Single phage plaques were detected following serial dilutions. Isolated plaques were

picked and purified by re-plating five times to ensure clonal phage stock. The purified phage

was propagated in high titer (1010 pfu mL-1) and stored at 4˚C. The phage and its bacterial host

VaAn were deposited in the open collection of the Leibniz Institute—Deutsche Sammlung von

Mikroorganismen und Zellkulturen (DSMZ) under the accession numbers DSM 104622 and

DSM 104620, respectively.
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Phage morphology

Phage preparation in high titer (1010 pfu mL-1) was negatively stained with 4% (w/v) uranyl

acetate (pH 7.2) and observed with a JOEL JEM2100 transmission electron microscope (TEM)

operated at 60 kV at the Electron Microscopy Laboratory of the University of Crete.

One-step growth analysis

The latency period and burst size were determined from the one-step growth curve, according

to standard methodology. To summarize, 1 mL from a bacterial culture at the exponential

phase was centrifuged and washed with saline buffer (0.9% NaCl), re-suspended in 1 ml

medium and then infected with the phage at a MOI of 0.01. After 10 minutes’ incubation, the

mixture was diluted 25 times in the medium and at this time point and every 10 minutes there-

after, a sample was removed, and serial decimal dilutions were spotted on a previously pre-

pared lawn of the host on agar plates. The number of infective phages in each sample was

quantified from the plaques formed after an overnight incubation of the plates [17].

In vitro lysis

An in vitro lysis assay was performed in sterile 96-well plates using a TECAN microplate reader

(Infinite PRO 200) equipped with temperature control. Specifically, twelve 200-μL wells of the

plate were loaded with freshly-prepared cultures of the host organism. The plate was placed in

the reader and incubated at 25˚C with orbital shaking. Phage was added at three different mul-

tiplicities of infection (MOI 1, 10 and 100) in triplicates when the bacterial culture was at the

exponential phase. Three wells were not infected and these served as control. The growth

curve of the cultures was monitored in real-time over an 8-hour period, and optical density

measurements at a wavelength of 560 nm (OD560) were recorded every 10 minutes.

DNA extraction and sequencing

The bacteriophage’s genomic DNA was extracted according to the phenol-chloroform proto-

col [21] and stored in sterile Eppendorf tubes in -20˚C until sequenced. The genome of the

Table 1. Host range of pVa5.

# Strain Bacterial species Origin Infectivity

1 VaAn V. splendidus Greece +

2 3D3-3/pop17 V. splendidus France -

3 4D6-8/pop19 V. splendidus France -

4 3F1-17/pop25 V. splendidus France -

5 3F1-22/pop21 V. splendidus France -

6 3F1-45/pop20 V. splendidus France -

7 3H2-4/pop24 V. splendidus France -

8 3Z-15/pop23 V. splendidus France -

9 3Z-28/pop22 V. splendidus France -

10 3Z-31/pop16 V. splendidus France -

11 3Z-39/pop18 V. splendidus France -

12 DSMZ 2171 V. alginolyticus Japan -

13 DSMZ 19623 V. harveyi USA -

14 ATCC 19264 V. anguillarum Sweden -

15 ATCC 33509 V. ordalii USA -

https://doi.org/10.1371/journal.pone.0190083.t001
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pVa5 bacteriophage was sequenced using the Genome Sequencer GS Junior System (Roche

Diagnostic). Shotgun sequencing was performed according to the manufacturer’s instructions

using 5 μg of the bacteriophage genomic DNA. Low quality sequences were trimmed off and

shotgun reads were assembled using the De novo assembly of the GS Assembler software

(Newbler).

Genome structure determination

The physical structure of the genome was determined by digesting the phage genome with

restriction endonucleases. The enzyme ApaI (Thermo Scientific) was used in order to obtain

the genomic restriction profile of the phage. The results were visualized on 1% agarose gel and

the sizes of the DNA fragments were estimated in comparison with Lambda DNA/Hind III

marker (Thermo Scientific).

Additionally, four sets of primers (Eurofins) were manually designed in order to determine

by Polymerase Chain Reaction (PCR), whether the phage genome was circularly-permuted (S1

Fig). Two sets of primers specifically targeted two genomic areas which enclosed the first and

the last bp of the obtained de novo assembled phage genome contig. The other two sets of

primers were used as positive controls for the PCR, since they were targeting two random

genomic areas of the phage.

Genomic analysis and phylogeny

Open reading frames (ORFs) were determined using RAST [22,23] and then manually curated

using Geneious 9.1.5 based on three different start codons (ATG, GTG and TTG) and putative

Shine Dalgarno sequences upstream the coding regions [24]. Genes and coding DNA

sequences (CDSs) were predicted using a combined gene model from GeneMarkS [25] and

Glimmer3 [26]. The predicted proteins were annotated by BLAST against the NCBI non-

redundant database. Additional annotation was subsequently performed using Blast2Go [27]

and InterProscan [28]. The presence of tRNAs was examined using both tRNAscan [29] and

ARAGORN [30]. The annotated genome sequence for the phage pVa5 was deposited in Gen-

Bank database under the accession number KX889068.

Phylogenetic analysis was performed using two genetic markers: the DNA polymerase

(DNAP I) and the virion-encapsulated RNA polymerase genes (vRNAP) of 30 available

N4-like phages, including pVa5. The selected DNA sequences were aligned by ClustalX with

default settings and the phylogenetic tree was constructed using Neighbor-Joining method

with 1000 bootstraps through Geneious bioinformatic platform 9.1.5 [24]. The genomes of the

N4-like phages which were classified in the same taxonomic group with pVa5 were compared

to the novel phage using the progressive Mauve algorithm [31] in Geneious platform 9.1.5, in

order to unravel its genomic architecture [24]. The determination of protein structure and

RNA families was determined by Phyre2 [32] and Rfam [33] online bioinformatic tools,

respectively, in those cases where such analyses were necessary. The evaluation of the bacterio-

phage’s lifestyle was performed through the combination of results obtained by Phyre2 and

BLAST. The presence of genes, such as integrase, fitness or virulence factors, which might indi-

cate a lysogenic lifestyle for pVa5 was examined.

Results and discussion

Morphology, life cycle and phage efficacy

The phage produced small (pinhead size) clear plaques on the host lawn. Following TEM

observations, it was classified to Podoviridae family. It had an icosahedral head measuring 85
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nm in length and a short (25 nm) non-contractile tail (Fig 1). It was designated as

vB_VspP_pVa5 according to the suggestions for bacterial viruses’ nomenclature [34], while its

abbreviation, pVa5, will be used in the manuscript.

One-step growth curve analysis (Fig 2) showed that pVa5 had a latent period of 30 min and

a burst size of 24 virions per infected cell. N4-like bacteriophages demonstrate a great variabil-

ity in both these life cycle parameters. Latency periods between 10–15 min to 6h and burst

sizes between 10 to even 9000 virions per cell have already been reported in the literature. For

Fig 1. Transmission electron micrograph of Vibrio splendidus phage demonstrating a Podoviridae

morphology.

https://doi.org/10.1371/journal.pone.0190083.g001

Fig 2. One-step growth curve of bacteriophage pVa5. The values are means ± standard deviation of three

replicates.

https://doi.org/10.1371/journal.pone.0190083.g002
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instance, in the case of phiAxp-3 a latency time of 80 min and burst size of 9000 virions per

infected cell have been observed [35–37].

A spot test showed that the phage has a very limited lytic spectrum based on the 15 tested

strains, since it could infect only the V. splendidus host strain VaAn and no other Vibrio splen-
didus strains, nor Vibrio species tested for phage susceptibility (Table 1).

In vitro lysis assay indicated that pVa5 could almost completely eliminate bacterial growth

for 8 hours (Fig 3). The intense bactericidal activity that the phage demonstrated, renders it a

very powerful candidate for in vivo phage therapy trials against V. splendidus strain VaAn. The

inhibition of bacterial growth was equally marked with all three different applied MOIs, even

at MOI: 1. The high efficiency of the phage makes it also practically convenient for use even in

large volumes of water, such as fish and shellfish hatcheries, which would eventually be the

ultimate goal. The regrowth of the bacterial population which takes place after almost 8h, even

though it is very slow, could be considered as a constraint to phage therapy application. How-

ever, it has been adequately reported in the literature that bacteriophage resistance is associated

with reduced virulence [38,39]. Hence, the exact effect of resistance development needs to be

further evaluated through meticulously designed in vivo trials.

Genomic characterization

The genome of pVa5 had a size of 78,145 bp and a G+C content of 43.2% which is comparable

to the host G+C content (44.3%). 107 genes were identified (S1 Table) of which 101 had ATG

as starting codon, 4 GTG genes: 40.2, 45, 47 and 55) and 2 TTG (genes: 33 and 36). The coding

region size of the genome was 71,258 bp (91.18% of the whole genome).

The digestion of the viral genome with ApaI produced four distinct DNA fragments, which

clearly indicated that the genome contains three single restriction sites. ApaI recognizes and

cleaves GGGCC^C genomic sites and the presence of three such sites were in silico confirmed

in the phage genome. If the genome were circular, we should expect to find three distinct

DNA fragments; however in our case, ApaI treatment yielded four distinct DNA fragments.

Hence, it can be concluded that the physical structure of the pVa5 phage genome is linear and

not circular. However, specific PCR using two sets of primers that match the start (bp 1) and

end (bp 78,145) point of the physical phage genome, was able in both sets to amplify the

Fig 3. In vitro lysis assay using bacteriophage pVa5 and the host bacterium V. splendidus VaAn at 3

different MOIs at 25˚C. The values are means ± standard deviation of 3 replicates.

https://doi.org/10.1371/journal.pone.0190083.g003
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targeted genomic parts. In physically-linear genome phages, the packaging mechanism during

replication may explain this result. Circularly permuted genomes that follow the formation of

a linear concatemer during replication packaging do not have defined ends. Similarly, in our

case, the replication process of pVa5 ensures the successful packaging of a complete 107-gene

set (Fig 4) in each of the newly produced virions [40]; however, the DNA molecule is not

always packed with the same start and end positions. A hydrolase CDS (gene 9) was also

detected as soon as the obtained phage genome contig was in silico circularized, corroborating

the circularly permuted propagation strategy of the pVa5. According to the convention fol-

lowed for the circularly permuted phages, bp1 is set as the first nucleotide of the closest inter-

genic region immediately to the left of the terminase gene. In our case, the small terminase

gene (gene 1) and large terminase gene (gene 4) were annotated as gp69 and gp68 since they

resembled, respectively, the originally annotated small and large terminase genes of the N4

phage [41] by 61.7% and 71.2%.

None of the tRNA detection bioinformatic tools used were able to identify any tRNA genes,

indicating that the phage is adapted to the host tRNA makeup for its protein synthesis [42].

However, after modifying the default parameters of the ARAGORN software (Allow introns

0–3000 bases: yes), an intervening ~2.5 kbp coding sequence (CDS) containing genomic area

was present in a tRNAStop gene. Bacteriophages often carry tRNA genes for the regulation of

translation-associated functions [43,44]. Even though intron-mediated tRNAs have been

reported in both eukaryotic nuclei and Archaea [45], this finding is, to our knowledge, the first

observed in a bacteriophage genome. This tRNAStop gene matches to the TAA stop codon and

since TAA is the prevalent stop codon in pVa5 genome (72 out of 107 CDS), it could poten-

tially contribute to regulatory procedures during viral infection. It has to be stated however

that although the genomic structure of the tRNA gene matches to a tRNAStop, this identifica-

tion might be an artifact. In order to be certain about its existence and its functionality, the

specific mechanism of this gene’s function still needs to be elucidated.

Analysis of the pVa5 nucleotide sequence using the BLASTn algorithm of the NCBI Data-

base [46] showed that the novel phage is unique as its closest similarity is with Pseudoalteromo-
nas phage pYD6-A (E-value, 0.0; query coverage, 5%; identity, 78%) and the vibriophages

VPB32 and VPB47 (E-value, 0.0; query coverage, 7%; identity, 76%) all of which are also

N4-like podoviruses. Individual-gene BLAST search led to 34 genes with e-value> 0.01 and

query coverage> 30% (S1 Table). The novelty of pVa5 is also supported by the fact that 29%

of its total genes (31 out of 34), correspond to their homologues in pYD6-A, VPB32 and

Fig 4. Gene map of pVa5. Genes with attributed function are noted in the figure. Yellow: CDS, Green: genes, White: introns, Dark green: putative tRNA.

https://doi.org/10.1371/journal.pone.0190083.g004
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VPB47. After mapping each of the pVa5 phage genes against the nr nucleotide collection of

NCBI, no relationship with any potential virulence or fitness factor was documented. The

structure of the proteins or hypothetical proteins did not either indicate any correlations with

known toxins, corroborating to the lytic nature of the bacteriophage. After whole genome

comparison on the amino acid level, pVa5 shared 24%, 22.7% and 14.4% identical sites with

VBP47, VBP32 and pYD6-A, respectively. However, when the comparison was focused on the

homologues, the pairwise alignement percentages ranged from at least 50% up to 90%. Our

data suggest that pVa5 is no lysogenic like all other N4-like phages which have been recorded

so far.

The key features characterizing the N4-like phages are the presence of a very large virion-

encapsulated DNA-dependent RNA polymerase (vRNAP) responsible for the early gene

transcription, 2 RNA polymerases and a single stranded DNA-binding protein [47,48]. The

vRNAP of pVa5 (gene 25) is 3,345 aa in size, while the phage contains two more RNA poly-

merases (gene 79 and gene 90) 405 and 311 aa in size. The phage-encoded RNAPs of pVa5 are

able, as in all N4-like phages, to establish the transcriptional independence of the virus [49].

Gene 28 was predicted to encode the single-stranded DNA binding (SSB) protein for pVa5. In

the N4 phage, the SSB acts as an architectural transcription factor by providing an active pro-

moter conformation for vRNAP binding [50].

The genomic organization of N4-like phages is considered to be highly conserved [42,51].

The genomes of N4-like phages are organized basically in two large clusters transcribed in

opposite directions [52]; this type of organization is followed by pVa5, nevertheless with two

exceptions, genes 14 and 15, which encode a peptidase M15A related to lysis and a phosphate

starvation-inducible protein (PhoH) (possibly a phosphorus regulation gene). It has been dem-

onstrated that many marine phages contain genes related to pho regulation [53] and although

its function remains unclear, there has been speculation that the phages might use these genes

to take over the phosphorus acquisition mechanism for their own benefit during phage DNA

replication [54]. Similarly, ribonucleotide reductase (RNR), the enzyme responsible for the for-

mation of deoxyribonucleotides from ribonucleotides, is also considered to be a tool used by

the phage to sustain host metabolism promoting its own replication [55]. Bacteriophage pVa5

has three consecutive genes organized in a cluster (genes 33–35) encoding RNRs belonging to

class I and class III which is not very common in podoviridae [56]. One of the most interesting

findings in the genome of pVa5 is the presence of an intervening sequence containing an

HNH endonuclease (gene 41) splicing the thymidylate synthase (td) gene (CDS 40.1 and 40.2).

The concatenated amino acid sequence of the two thymidylate synthase CDS of pVa5 was

aligned and mapped against their homologue td synthase genes from the bacteriophages

VBP32, VBP47 and pYD6-A (S2 Fig). Apart from a 57 aa sequence that was completely miss-

ing from the td synthase gene of pVa5, their pairwise percentage identity was estimated at

82.8%, indicating a very high degree of conservation. Thymidylate synthase (td) is one of the

most conserved enzymes among bacteriophage genomes [57] and partition of the gene by an

intron into two separate genes has been observed on two other occasions: in the E. coli bacteri-

ophage T4 [58] and in Bacillus bacteriophage b22 [59]. It has been suggested that td has a dual

role related to catalysis and to the structure of phage baseplate, thus a differential expression

that might be facilitated by the splicing could be the underlying reason [58]. Additionally, the

td synthase intron is characterized as a group I intron (E-value: 1E-18, Accession: RF00028) in

the Rfam database [33]. Group I introns are self-splicing introns that even though initially con-

sidered as molecular parasites, have been found to act in a co-evolution context which pro-

motes mutualistic interactions with their host genes [60]. The first reported microbial group I

intron was the intron that was also found in the td gene of the T4 bacteriophage [58]. Several

group I introns found in bacteriophage genomes are being reported in the literature with an
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increasing frequency [61,62]. Their self-splicing nature allows them to act as ribozymes cata-

lyzing the expression of the gene in which they have intervened. Furthermore, the homing

(HNH) endonuclease genes that are usually encoded by such introns, allow the introns to act

also as mobile genetic elements and expand their distribution in intron-less genes through

DNA-based recombination mobility [63,64]. This finding is also in accordance to the rules

that should be followed by group I intron ribozymes [65]: 1) the pVa5 group I intron is located

in a highly conserved gene (td gene); 2) it has a T preceding the insertion site and a G as last

nucleotide of the insertion; 3) the size of the intron without the HNH endonuclease encoding

area is 279 nt. However, it should be stated that HNH endonucleases are quite common, not

only in the N4-like phages but generally in phage genomes since they constitute widespread

components of phage DNA packaging machinery [66].

The lysis cassette of N4-like phages typically contains an endolysin, an N-acetylmuramoyl-

L-alanine amidase, a holin and a peptidoglycan-degrading protein [52]. In pVa5 no lysis clus-

ter could be identified and the only protein that could be related to lysis was a peptidase M15

encoded by gene 14. Similarly, a lysis cluster was also absent in the phages of Vibrio parahae-
molyticus VBP32, VBP47 and Pseudoalteromonas phage pYD6-A [52]. Interestingly, these

phages were evolutionarily closer to pVa5 as demonstrated by the phylogeny based on DNAP

and vRNAP genes (Fig 5). Multiple alignment of the whole genomes of these phages using

the progressive Mauve algorithm showed that pVa5 shares similar synteny characteristics

with its taxonomic group phages (Fig 6). In addition to the closely related N4-like vibrio

phages VBP47 and VBP32 which are identical and infect Vibrio parahaemolyticus strain

RIMD2210633, the two other sequenced N4-like phages Ja-1 and VCO139 which infect Vibrio
cholerae [67] were phylogenetically clustered in different but still vicinal branches. Especially

in the RNAP-based phylogeny, all Vibriophages are clustered into the same taxonomic group

which is then further divided into two distinct but closely related branches (Fig 5B).

Fig 5. Molecular phylogenetic analysis by Neighbor-joining method based on the Tamura-Nei model. The consensus tree

which was produced by 1000 bootstraps is shown. The novel bacteriophage vB_VspP_pVa5 is classified by two different genetic

markers: DNA Polymerase I (A) and virion-encapsulated RNA Polymerase (B) in a statistically robust taxonomic group which is

highlighted by green areas and includes two Vibrio phages (NC020868 and HQ634194) and one Pseudoalteromonas phage

(JF974296). The analysis involved 30 nucleotide sequences.

https://doi.org/10.1371/journal.pone.0190083.g005
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Conclusions

Bacteriophage vB_VspP_pVa5 is a novel virulent podovirus that infects Vibrio splendidus.
Although it is a virulent phage based on the genomic analysis, it has a narrow host range and

therefore is not suitable for a universal phage therapy scheme. On the other hand, it has inter-

esting genomic features that significantly contribute to our current knowledge about N4-like

phages and could therefore be exploited in phage infection studies in combination with the

genomic information available for its bacterial host.
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