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1 |  INTRODUCTION

Males and females have different energy metabolism and sus-
ceptibility to pathophysiological conditions, such as obesity 
and type II diabetes (Lovejoy & Sainsbury,  2009). Sexual 

differences in body composition, lipid metabolism, and glu-
cose regulation can be modified throughout life or as a func-
tion of lifestyle (Ethun, 2016).

Aging changes the body composition, balance  between 
energy availability and demand, signal network that 
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Abstract
Aging affects the body composition and balance of energy metabolism. Here, we col-
lected in a single work several physiological parameters to show how aging and sex 
differences can influence energy homeostasis. Body mass index (BMI), Lee index, 
glucose tolerance, glycemia, and lipidogram in fasting were measured in male and 
female Wistar rats at the ages of 2, 6, 9, 12, and 18 months. We also measured the 
lipid profile, free fatty acids, glycerol, glycemia, leptin, adiponectin, insulin, corti-
costerone (CORT), prolactin (PRL), thyroid stimulated hormone, and triiodothyro-
nine (T3) in 3- and 18-month-old rats of both sexes, fed ad libitum. Animals were 
classified as obese beginning at 2 months in males and 6 months in females. Aged 
male rats showed hyperglycemia and glucose intolerance compared to young males 
and old females. In the ad libitum condition, the 18-month males presented higher 
serum levels of triglycerides, total cholesterol, and free fatty acids than females. The 
18-month-old females had higher PRL and CORT concentration than males, but in-
sulin and T3 were higher in 18-month-old males than females. Our work demon-
strated that aging processes on energy metabolism in rats is sex specific, with a better 
lipid profile and glucose tolerance in aged females.
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controls homeostasis, and neurodegeneration produc-
tion. Body composition changes are the most obvious and  
inevitable effect of aging (Ferrucci et al., 2012; Zamboni 
et al., 2003).

Changes in the body composition during aging in humans 
and most mammals include increased adipose tissue, body 
mass index (BMI), and waist and hip circumference, along 
with decreased lean body mass and bone mineral density 
(BMD) (JafariNasabian et al., 2017; Wolden-Hanson, 2010; 
Zamboni et al., 2003). However, women have greater body 
fat and less life-long lean mass than men, indicating that gen-
der differences remain throughout life (Kirchengast,  2010; 
Zamboni et  al.,  2003). On the other hand, older men have 
higher abdominal fat, serum triglyceride level, and athero-
genic index as well as lower high-density lipoprotein (HDL) 
cholesterol than older women (Morita et  al.,  2006; Wu 
et al., 2001; Zamboni et al., 2003).

Aging and sex modify the secretion of hormones related 
to energy metabolism, such as glucocorticoids. Stress-
free older female rats have higher plasma corticosterone 
(CORT) concentration than males, and chronic stress stim-
uli have no effect on CORT levels in either sex (Bowman 
et al., 2006). However, in elderly humans, hypothalamus–
pituitary–adrenal (HPA) axis activity increases, while 
daytime release amplitude decreases. Differences were 
also observed according to sex; where elderly women had 
higher human corticotrophin-releasing hormone (CRH)-
stimulated plasma cortisol and adrenocorticotropic hor-
mone (ACTH) concentrations than men (Born et al., 1995; 
Deuschle et al., 1997).

Other examples are insulin, leptin, and adiponectin se-
cretion, which, when modified, may contribute to the de-
velopment of obesity-related diseases, such as diabetes and 
metabolic syndrome (Basu et al., 2006; Schautz et al., 2012; 
Schianca et al., 2006). Prolactin (PRL) secretion is also de-
termined by sex, age, and BMI, and high circulating PRL is 
associated with lower prevalence of diabetes and hypolipid-
emia (Roelfsema et al., 2012; Wang et al., 2013).

The hypothalamus–pituitary–thyroid axis in healthy 
elderly women appears to be altered, because plasma 
triiodothyronine (T3) concentration decreases without 
altering the secretion of pulsatile thyroid-stimulating 
hormone (TSH) (Rossmanith et  al.,  1992). In addition, 
the incidence of thyroid diseases, such as hypothyroid-
ism, nodular goiter, and cancer, is highest among post-
menopausal and elderly women (Gietka-Czernel,  2017). 
Thyroid dysfunction could increase cardiovascular risk, 
bone fractures, cognitive problems,  depression, and mor-
tality (Gietka-Czernel, 2017).

Life expectancy is crucial in animal research. Rats have a 
life span of 2–3.75 years, and when treated with reduced-cal-
orie diets, life expectancy can reach up to 4.6 years (Nistiar 
et al., 2012; Weindruch & Sohal, 1997). Hence, aging changes 

in energy metabolism and endocrine system appear to dif-
fer by sex and there are few works done in male and female 
aged rats and each one abord separately lipid and glucose 
metabolism, and body composition (He et al., 2018; Santos 
et al., 2014; Trapani & Pallottini, 2010). Here our proposal 
was in a single work, track aging and sexual differences in 
energy homeostasis and some hormones involucrate in them, 
to show a better panorama of energy metabolism according 
to age and sex. We hypothesized that with aging, female rats 
are more susceptible to hormonal variations that produce un-
balance the energy metabolism, which are evidenced by body 
changes. Thus, our goal was to assess body composition, en-
ergy metabolism, and hormone secretion at different ages of 
male and female rats.

2 |  MATERIALS AND METHODS

2.1 | Animals

We used male and female Wistar rats obtained from the an-
imal facility located at the University of Sao Paulo on the 
Ribeirao Preto Campus, Brazil. Rats were subjected to exper-
iments at 2, 6, 9, 12, and 18 months old, and another group of 
rats at age 3 and 18 months old. At 18 months, the female rats 
were in reproductive senescence. Rats were maintained under 
controlled temperature of 23 ± 2°C and exposed to a 12:12 hr 
light–dark cycle (light period: 06–18 hr). The animals were 
fed with a standard diet (QuimtiaNuvilab®—3.86 kcal/g con-
taining 4% lipids, 22% proteins, and 60% carbohydrates) and 
water ad libitum. Animals were housed in groups of 5 until 
they reached the body weight of 500 g, after that, they were 
housed two rats/cage (cage size: 33.4 × 12.9 × 8.6 inches). 
All experiments were performed in the morning (from 08 hr 
to 11 hr), except those to determine the body composition, 
that was performed between 16 and 17 hr. This study was 
conducted according to the “Guide for the Care and Use 
of Laboratory Animals” (NIH; Publication No. 85-23,  
revised 1996), and the experimental protocols were approved 
by the Ethical Committee for Animal Use of the School of 
Medicine of Ribeirao Preto, University of Sao Paulo (proto-
col # 014/2014-1).

In order not to submit the animals to new stress in a short 
period, the data of the animals that were not collected or were 
lost during an experiment were not repeated, therefore the 
number of animals per age is not constant in all experiments 
and may vary in each age.

2.2 | Survival rate and food intake

One group of 25 male and 38 female rats were used only 
to determine the survival rate, we registered the number of 
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dead animals per week starting at the age of 7 weeks old. 
To determine the food intake, another group of 14 male 
and 12 female rats were used and kept in metabolic cages 
for adaptation of 3  days followed by 24  hr food intake 
measurements.

2.3 | BMI, Lee index, BMC, BMD, lean and 
fat mass, and fat percentage

Animals at age of 2, 6, 9, 12, and 18 months were anesthe-
tized with ketamine (50 mg/kg) and xylazine (10 mg/kg) by 
intraperitoneal injection. Naso-anal length was measured for 
later calculation of body mass index (BMI calculated by di-
viding the weight [g] by the length2 [cm2]) and Lee index 
[calculated as cube root of body weight [g]/length [cm]) 
(Novelli et  al.,  2007). Subsequently, BMC and BMD, lean 
and fat mass, and fat percentage were determined using 
DEXA (Hologic Discovery TM QDR Series, Software: 
Hologic Discovery Wi Small animals) at the Ribeirao Preto 
Medical School University Hospital.

2.4 | Oral glucose tolerance test

To perform the oral glucose tolerance test, animals at age of 
2, 6, 9, 12, and 18 months were kept without food for 14 hr 
with free access to tap water. Fasting glucose level was deter-
mined by a drop of blood collected through an incision made 
at the tip of the animal's tail. After that, animals received by 
oral gavage, 2 g/kg of glucose diluted in 60 ml of distilled 
water. Blood glucose was determined at 15, 30, 60, 90, and 
120  min. A glucometer and reactive strips for glucometer 
(Accu-Check Performa) were used to determine the glyce-
mic values, which were used to calculate the areas under the 
curve.

2.5 | Lipidogram, free fatty acids, 
glycerol, and glycemia

For the lipidogram, animals at age of 2, 6, 9, 12, and 
18 months were kept in fasting for 14 hr, with tap water ad 
libitum. After this time, blood was collected by an incision 
at the tip of the rat's tail. Another group of 3- and 18-month-
old male and female rats, kept with water and fed ad libitum, 
were euthanized by decapitation and blood sample was ob-
tained to determine blood glucose and serum hormone con-
centrations. Due to the changes along the estrous cycle, only 
females in diestrus were used.

The determinations of triglycerides, total cholesterol, 
and HDL cholesterol were performed according to com-
mercial kit manufacturer (Triglycerides Liquiform (REF.: 

87), Cholesterol Liquiform (REF.: 76), Cholesterol HDL 
(REF.: 13), Labtest Diagnóstica, SA, Brazil). All quanti-
fications were performed in triplicate. Free fatty acid and 
glycerol quantification was made by commercial colorimet-
ric kit (EnzyChromTM Free Fatty Acid Assay [EFFA-100], 
BioAssay Systems, and Glycerol Assay Kit [MAK117]), 
Sigma-Aldrich-®, respectively), following the manufactur-
er's specifications.

2.6 | Hormonal extractions and 
immunoassays

Male and female rats aged 3 and 18  months with food 
and water ad libitum were decapitated and trunk blood 
was collected in chilled tubes that contained or not hep-
arin (10  μl/ml of blood) to obtain plasma and serum, 
respectively.

Commercial ELISA kits were used to measure leptin and 
adiponectin (EMD Millipore Corporation, Billerica, MA, 
USA), insulin (Alpco, Salem, NH, USA), TSH (Crystal 
Chem, Grove Village, IL, USA) and T3 concentration 
(MyBioSource, San Diego, CA, USA).

CORT was extracted from 25 μl of plasma with 1 ml of 
ethanol. The hormone measurements were performed using 
specific radioimmunoassay (RIA) techniques described in 
the literature (Glucocorticoids et  al.,  1978). All measure-
ments were performed in duplicate in the same assay. The 
sensitivity of the assay and the coefficient of variation in-
tra-assay were, respectively, 7.8 ng/dl and 4.6% for CORT.

Plasma prolactin (PRL) concentration was determined by 
RIA, using antibody provided by the National Hormone and 
Peptide Program (Harbor-UCLA Medical Center, CA, USA). 
The lowest limit of detection was 0.10 ng/ml, intra-assay co-
efficient of variation was 2.5%.

2.7 | Statistical analysis

Data are shown as means (standard deviation [SD]). Survival 
analyzes were performed using the Kaplan–Meier method. 
Shapiro–Wilkʼs W test was used to determinate the normal-
ity of data. Statistical significance of the difference between 
the means of the studied groups was assessed by two-way 
ANOVA followed by Newman–Keuls posttest when the 
variances were equal, or by Games–Howell analysis when 
the variances were different. For experiments that were per-
formed over the life of the animals or those that were done 
over a period, repeated measures ANOVA was used followed 
by Newman–Keuls posttest; however, when the data did not 
adjust to normality, Friedman ANOVA and Mann–Whitney 
U test were used. Paired t-student analysis and unpaired t-
student independent samples were used when appropriate. 
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Significance level of p  <  .05 (two-tailed) was adopted. 
Number (n) of animals used in each experiment is indicated 
in the figure legend.

3 |  RESULTS

3.1 | Survival rate and food intake

Figure 1 charts survival of the male and female rats at differ-
ent ages. The 90% survival rate was reached at 31 weeks of 
age in males and at 47 weeks of age in females. At 78 weeks 
of age (18-month-old), the survival rate for males was 68% 
and for females 63.6%. No significant differences in mortal-
ity were observed between males and females. The death rate 
for females was 36.4% and males 32% during the evaluated 
time.

As shown in Table 1, food and energy intake decreased 
with aging, where the food and energy intake were higher in 
2-month-old rats than 12-month-old animals (Age: food in-
take: Males t13 = 4.45; p < .001; Females: t6 = 3.31; p < .05 
and energy intake: Males t13 = 4.45; p < .001 and females: 
t6  =  3.31; p  <  .05). In addition, differences between the 
sexes were observed at 12 months, where females have both 
food and energy intake higher than male rats (Sex: food in-
take: t12 = 2.94; p < .05; energy intake: t12 = 2.94; p < .05). 
Unfortunately, we could not have food and energy in aged 
males rats, however, Table 1 shows a continuous diminishing 
food and energy intake in males rats that we can speculate to 
be significantly different from females, as it was observed 
before from Wolden-Hanson (2006). The body weight for the 
calculation of food and energy intake is also show in Table 1, 
where 2-month-old rats have lower weight than 12-month-
old animals (Age: Males t13 = −11.64; p < .00001; Females: 
t6  =  −6.28; p  <  .001) and male rats are heavier than fe-
male rats (Sex: 2-month-old: t18  =  −9.33; p  <  .00001 and 
12-month-old: t12 = −6.44; p < .0001).

3.2 | Obesity index over the lifetime of rats

Obesity indexes are shown in Table 2. The BMI was higher 
in males than females at the age of 6, 9, 12, and 18 months 
(Sex: F1;12 = 37.97; p < .0001). The 2-month-old rats had the 
lower BMI than the other ages analyzed (Age: F4;48 = 5.88; 
p < .001). Lee index was higher in males than females at ages 
2, 6, 9, and 12 months (Sex × Age Interaction: F4;48 = 8.14; 
p < .0001).

3.3 | Changes in body composition with age

Table  2 presents the parameters used to determine body 
composition at different ages according to sex. Body 
weight was different in all ages according to sex, with 
males presenting greater body mass than females (Sex: 
F1;48 = 90.02; p < .00001). The lowest body weight was 
measured for both males and females at the age of 2 months 
and highest at the age of 18 months (Age: F4;48 = 129.24; 
p < .00001).

Males had higher bone mineral content (BMC) than fe-
males at the age of 6, 9, and 18 months (Sex: F1;33 = 25.98; 
p  <  .001). In addition, 18-month-old males showed higher 
BMC than when they were younger, whereas females exhib-
ited higher BMC at the age of 12 months, and at 18 months 
their BMC decreased (Age: F3;33 = 3.96; p < .05).

Both males and females at 6 months had lower BMD than 
when they were 12 and 18 months old (Age: F3;33 = 36.58; 
p < .00001). The highest BMD was observed in females at 
age 12 months and males at 18 months. Differences by sex 
were not observed for BMD.

Males had heavier muscle tissue than females at the ages 
of 6, 9, 12, and 18 months (Sex: F1;33 = 82.17; p < .00001). 
At the age of 12  months, both males and females had 
greater lean mass than when they were 6 months old, and at 
18 months, males showed a decline in muscle mass compared 
to 12 months (Age: F3;33 = 5,44; p < .01).

At 9 months, males presented more fat mass than females 
(Sex: F1;33 = 31,52; p < .001). At age 18 months, both males 
and females had greater fat mass than at 9  months of age 
(Age: F1;33 = 158.31; p < .00001). For the fat percentage, no 
difference was observed according to sex or age.

3.4 | Changes in carbohydrate metabolism 
with age

Rats at different ages in fasting condition exhibited no 
changes in glycemia or differences by sex (Figure  2a). 
Glycemia 120  min after a glucose load was higher in 
12- and 18-month-old males than females at the same 
age (Sex × Age Interaction: F4;32 = 8.99; p <  .0001). In 

F I G U R E  1  Survival percentage of male and female Wistar rats 
from 7- to 78 weeks of age. Initial and final number of male rats was 
25 and 17; and for female rats was 22 and 14, respectively. Kaplan–
Meier method
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addition, 12- and 18-month-old males had higher glyce-
mia than younger ages, and, the highest glycemia was ob-
served in 18-month-old males (Age: F4;32 = 7.52; p < .001; 
Figure 2b). No changes were observed on area under glu-
cose curve of rats at different ages or by sex (Figure 2c). 
For glycemia in fed rats, 3-month-old females displayed 
higher glycemia than the 18-month-old females and 
3-month-old males (Interaction Sex × Age: F1;45 = 7.07; 
p < .05 Figure 2d).

3.5 | Changes in lipid metabolism with age

Fasting lipid metabolic analysis found that only at 2 months 
of age, fasting males showed a higher triglycerides con-
centration than females (Sex: Z = −2.45; p <  .05). Over 
time, no changes in triglyceride levels were observed in 
both fasting male and female rats (Figure  3a). For total 
cholesterol in fasting rats, 9-month-old females displayed 
higher cholesterol than the males (Sex: t19 = 2.18; p < .05; 
Figure  3b). HDL cholesterol concentration was observed 
higher in 2- and 9-month-old females than respective males 
(Sex: t9 = 2.28; p <  .05 and t19 = 2.58; p <  .05, respec-
tively). No differences were observed by age in the HDL 
cholesterol (Figure 3c).

Lipid metabolic analysis in 18-month-old male rats 
in ad libitum conditions found higher triglycerides, total 
cholesterol, and palmitic acid serum concentration than 
3-month-old males and 18-month-old females (Triglycerides: 
Sex  ×  Age Interaction: F1;41  =  13.68; p  <  .01; Figure  4a; 
Total cholesterol: Sex  ×  Age Interaction: F1;45  =  10.60; 
p < .01; Figure 4b; and Palmitic acid: Sex × Age Interaction: 
F1;20 = 21.92; p < .001; Figure 4d).

No differences were observed by sex and age in serum 
HDL cholesterol and glycerol concentration (Figure 4c,e).

3.6 | Hormonal changes with age in 
fed animals

Plasma leptin concentration in both male and female rats was 
higher at 18 months than at 3 months (Age: F1;32 = 26.78; 
p < .0001; Figure 5a). Plasma adiponectin level was higher 
in 3-month-old females than in 3-month-old males (Sex: 
F1;32 = 14.62; p < .001). In addition, the 18-month-old males 
had higher plasma adiponectin than 3-month-old males (Age: 
F1;32 = 15.62; p < .001; Figure 5b).

Plasma insulin concentration was higher in 18-month-
old males than in 18-month-old females (Sex: F1;23 = 6.80; 
p < .05; Figure 5c). CORT was higher in 18-month-old fe-
males than in 3-month-old females (Age: F1;44  =  40.45; 
p  <  .0001). In addition, the 18-month-old females had 
higher plasma CORT levels than 18-month-old males (Sex: 
F1;44 = 42.83; p <  .0001; Figure 5d). Figure 5e shows that 
plasma PRL concentration was much higher in 18-month-old 
females than in 3-month-old females (Age: F1;32  =  99.31; 
p < .0001) and males at 18 months old (Sex: F1;32 = 59.88; 
p < .0001).

On the other hand, plasma TSH level was higher in both 
3- and 18-month-old females than in respective males (Sex: 
F1;23 = 122.16; p < .0001; Figure 5f). However, plasma T3 
was lower in both 3- and 18-month-old females than the 
 respective males (Sex: F1;23 = 28.68; p < .0001; Figure 5g).

4 |  DISCUSSION

Males and females have different energy metabolism, 
and this can be modified throughout the life (Carrascosa 
et al., 2009; Ethun, 2016). The current study assessed sur-
vival expectancy, body composition, glucose and lipid me-
tabolism, and hormone secretion at different ages of male 

T A B L E  1  Food and energy intake in 24 hr of male (M) and female (F) rats at ages 2, 6, 9, and 12 months, and only in 18-month-old females

Parameters Sex

Age (months)

2 6 9 12 18

Food intake (g/100 g bw) M 6.7 (1.7) 3.8 (0.6) 3.7 (0.9) 3 (1.3)a –

F 8 (1.3) 5.6 (1.2) 5.8 (2.4) 5.1 (1.3)a 5.9 (1.5)

Energy intake (KJ/100 g 
bw)

M 108.6 (27.5) 61.1 (9.3) 59.8 (14) 49.1 (21.6)a –

F 129 (21) 89.7 (19.5) 94.2 (38.1) 83 (21.3)a 95.6 (23.7)

Body weight (g) M 448.9 (40.8) 674.1 (81.6) 722.1 (66) 767.2 (65.7)a –

F 317.2 (21)c 421 (41.3) 448.5 (51.7) 499.5(84.1)c 548.8 (32.4)

Number of animals M 9 8 9 6 –

F 11 9 8 8 4

Note: Values are expressed as means (SD).
aDifferent from 2-month-old males p < .05. 
bDifferent from 2-month-old females p < .05. 
cDifferent from same-age males p < .05. Paired t-Student analysis, and unpaired t-Student independent samples (2 and 12 months). 
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and female rats. Animals were classified as obese begin-
ning at 2 months in males and 6 months in females. Aged 
male rats showed hyperglycemia and glucose intolerance 
compared to young males and old females. In the fed ad li-
bitum condition, the 18-month-old males presented higher 
serum levels of triglycerides, total cholesterol, and free 
fatty acids than females. The 18-month-old females had 
higher PRL, COR, and TSH concentration than males, but 
insulin and T3 were higher in 18-month-old males than fe-
male rats.

Survival expectancy in male Wistar rats varies from 64 
to 160  weeks, and no data are available for female Wistar 
rat. However, for Wiesner and Sheard rats, the 90% survival 
was achieved at week 71 (Nistiar et  al.,  2012; Wiesner & 
Sheard, 1934). In our study, 90% survival rate was reached 

at week 31 in males and at week 47 in females (Figure 1). 
Differences found in the survival percentage between our 
results and those described in the literature may be due to 
different conditions that affect the life expectancy of animals, 
including the nutritional composition of food, the rat colony, 
and the availability for the animals to perform physical activ-
ity/inactivity, which could develop obesity.

The rats in our study were generally obese. The BMI, 
whose normal value for a rat ranges from 0.45 to 0.68 g/cm2, 
was above 0.8 g/cm2, indicating that our male animals were 
obese beginning 2-months old (Novelli et al., 2007). On the 
other hand, females presented obesity beginning at 6 months. 
The Lee index, which states that values above 300 indicate 
obesity, confirms the BMI results for obesity in our animals 
(Bernardis, 1970; Novelli et al., 2007).

T A B L E  2  Body weight, body mass (BMI) and Lee index, bone mineral quantity (BMC), bone mineral density (BMD), lean mass, fat mass, 
and fat percentage of male and female rats at the ages of 2, 6, 9, 12, and 18 months

Parameters Sex

Age (months)

2 6 9 12 18

BMI (g/cm2) M 0.80 (0.06) 1.07 (0.91)a 1.04 (0.08)a 1.01 (0.06)a 0.95 (0.08)a 

F 0.67 (0.03) 0.77 (0.05)f 0.79 (0.07)f 0.80 (0.08)f 0.75 (0.28)f 

Lee index (g1/3/
cm)

M 0.34 (0.02) 0.35 (0.01)a 0.34 (0.01)b 0.33 (0.01)b 0.32 (0.01)a,b,h 

F 0.31 (0.01)f 0.32 (0.01)f 0.32 (0.01)f 0.32 (0.01) 0.32 (0.01)

Body weight (g) M 459.8 (67.8) 738.8 (54.8)a 771.8 (33.7)a 805.8 (49.6)a 770.8 (105.2)a 

F 347.6 (21.4)f 446.4 (37.8)f 467.3 (53.8)f 516.1 (62.0)f 548.8 (54.6)f 

BMC (g) M – 12.4 (7.0) 17.3 (0.6)b 18.7 (2.7)b 18.4 (3.2)b 

F – 11.2 (1.1)f 11.5 (1.2)f 16.6 (1.7)f 14.7 (1.4)f 

BMD (g/cm2) M – 0.15 (0.08) 0.20 (0.00)b 0.20 (0.01)b 0.20 (0.02)b 

F – 0.18 (0.01) 0.18 (0.01) 0.22 (0.01)b 0.20 (0.01)b 

Lean mass (g) M – 515.2 (62.1), 
n = 4

528.2 (32.8), n = 4 562.2 (59.3)b , n = 4 495.4 (36.5)i , 
n = 4

F – 302.8 (39.0)f 310.9 (34.0)f 356.0 (63.0)f 344.9 (30.5)f 

Fat mass (g) M – 139.6 (35.5), 
n = 4

528.2 (32.8)b , n = 4 178.4 (24.4)h , n = 4 179.5 (97.7)h , 
n = 4

F – 92.8 (22.8) 310.9 (34.0)h 115.2 (47.9)e 146.7 (30.6)e 

Fat (%) M – 21.4 (5.7), n = 4 24.2 (1.9), n = 4 24.1 (3.2), n = 4 25.5 (10.0), 
n = 4

F – 23.5 (5.2) 22.9 (3.3) 24.1 (7.5) 29.7 (4.4)

Number of 
animals

M 5 5 5 5 5

F 9 9 9 9 9

Note: Values are expressed as means (SD).
aDifferent from 2-month-old males p < .05. 
bDifferent from 6-month-old males p < .05. 
cDifferent from 2-month-old females p < .05. 
dDifferent from 6-month-old females p < .05. 
eDifferent from 9-month-old females p < .05. 
fDifferent from same-age males p < .05. 
gDifferent from 12-month-old females p < .05. 
hDifferent from 9-month-old males p < .05. 
iDifferent from 12-month-old males p < .05. Repeated measures ANOVA followed by Newman–Keuls. 
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The largest increase in body weight of male rats, which 
was observed between the ages of 2 and 6 months, may be 
associated with somatic growth, because in animals older 
than 48  days, weight gain is associated with the addi-
tion of new cells and enlargement of fat and muscle tissue 

(Enesco & Leblond,  1962). Thus, the difference observed 
between males and females in body weight is associated 
with the effect of sex hormones, where testosterone favors 

F I G U R E  2  Fasting glycemia (a), glycemia 120 min after a 
glucose load (b), and area under oral glucose curve (c) of males and 
females at the ages of 2, 6, 9, 12, and 18 months. Glycemia in 3- and 
18-month-old fed male and female rats (d). Data are shown as means 
(SD), * p < .05, comparing by sex, (...........) p < .05 between the 
indicated ages for males. Repeated measures ANOVA followed by 
Newman–Keuls posttest and two-way ANOVA followed by Games–
Howell posttest. Number (n) for males and females in each month is 
next to respective shape or in the column
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the development of muscle tissue (Bhasin et al., 2003; Singh 
et al., 2003).

As the animal ages, the cell proliferation in the body 
slowly decreases and fat storage progressively increases 
(Enesco & Leblond, 1962). The decrease in lean mass and 
the increase in fat at the age of 18 months observed in our re-
sults may be related to the decrease in testosterone that occurs 
in older animals, and with it the stimulation in muscle tissue 
and inhibition in adipose tissue (Rosario et al., 2009; Singh 
et al., 2003; Smith et al., 1992).

Sex differences observed in food and energy intake may 
be due to the effects of sex hormones, because estrogen de-
creases meal size while testosterone increases it (Asarian 
& Geary,  2006, 2013; Blaustein & Wade,  1976; Chai 
et al., 1999; Roy & Wade, 1977). Therefore, the higher food 
intake in 12-month-old female rats than males may be re-
lated to decreased estrogen and testosterone during aging (Lu 
et al., 1998; Rosario et al., 2009; Smith et al., 1992).

Sex differences found in BMC is mediated by testoster-
one, which promotes male growth, acting on both bone size 
and mass, while estrogens limit the female growth of the 
appendicular skeleton (Zhang et  al.,  1999). Also, estradiol 
stimulates osteoblast proliferation and differentiation and in-
hibits osteoclast differentiation, so the decrease of BMC and 

BMD in 18-month-old female rats may be due to decreased 
estrogen and high CORT levels, which reduce maturation, 
lifespan, and function of osteoblast (Cannarella et al., 2019). 
On the other hand, the fact that at 18-month-old male rats 
kept BMD could be because estrogen is a major regulator 
of bone in male, and estradiol levels do not change in the 
aged male (Greenblatt et al., 1976; Khosla & Monroe, 2001; 
Van Pottelbergh et al., 2003). Although the testosterone level 
decrease with aging, the aromatase enzyme, that converts 
androgens into estrogens, activity increase (Van Pottelbergh 
et al., 2003; Vermeulen et al., 2002).

The increase in plasma blood glucose levels observed in 
12- and 18-month-old male rats (Figure 2b) may be due to 
the interaction of four factors: decreased insulin production, 
decreased insulin sensitivity, increased glucagon produc-
tion, and alteration in the expression of glucose transporter 
(GLUT)4 in skeletal muscle by estradiol. Elderly rats have 
reduced proliferation and increased frequency of pancre-
atic β-cell apoptosis, which is associated with age-related 
pancreatic β-cell dysfunction (Gu et al., 2012). In addition, 
17-month-old Wistar rats have impaired insulin sensitivity 
and 17- and 18-month-old males submitted to an oral glu-
cose load 2 hr later exhibited increased plasma glucagon val-
ues (Muñoz et al., 2018; Yoshino et al., 1979). Also, in the 

F I G U R E  4  Fed analysis for 
triglycerides (a), total cholesterol (b), HDL 
cholesterol (c), free fatty acids (d), and 
glycerol (e) of 3- and 18-month fed male 
and female rats. Data are presented as means 
(SD), (_____) p < .05 among the indicated 
groups. Two-way ANOVA followed by 
Games–Howell or Newman–Keuls posttest. 
n for each group is in the column
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skeletal muscle of male mice predominate the estrogen recep-
tor beta, that reduces the expression of the GLUT4 (Barros 
et al., 2006, 2009).

Different studies in female rats submitted to ovariectomy 
found that they have insulin resistance and glucose intoler-
ance (Faulds et al., 2012; Kleber Costa Teixeira et al., 2018; 
Saengsirisuwan et  al.,  2009). Here, we show for the first 
time that glucose curve during GTT in 18-month-old fe-
male rats is similar to younger counterparts (Figure 2b,c). 
The absence of changes in glycemia in 12- and 18-month-
old female rats may be related to the high concentration of 
PRL, as it has been reported that chronic moderate hyper-
prolactinemia is associated with increased release of insulin 

induced by a glucose load (Fleenor & Freemark, 2001; Reis 
et al., 1997). In addition, pancreatic islets from rats treated 
previously with dexamethasone had increased glucose-stim-
ulated insulin secretion (Fichna & Fichna,  2017; Rafacho 
et  al.,  2011). Thus, elevated plasma CORT and PRL con-
centrations in 18-month-old female rats (Figure 5d,e) could 
stimulate insulin secretion after a glucose load, countering 
the effect of estrogen deficiency, without change in glyce-
mia values at this age. In addition, studies have found that 
PRL promotes systemic insulin sensitivity in obese rodents 
and humans (Ruiz-Herrera et al., 2016).

Moreover, in the feeding animals, the highest glycemia 
in 3-month-old females could be a consequence of their low 

F I G U R E  5  Leptin (a), adiponectin (b), 
insulin (c), CORT (d), PRL (e), TSH (f), 
and T3 (g) plasma concentration of 3- and 
18-month male and female rats. Data are 
presented as means (SD), (_____) p < .05 
among the indicated groups. Two-way 
ANOVA followed by Games–Howell or 
Newman–Keuls posttest. n for each group is 
inside or at the top of the column
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level of estrogen, since estradiol deficiency, as seen in aged 
females, is known to decrease insulin sensitivity in the liver, 
skeletal muscle, and white adipose tissue; reduce GLUT4 
expression in skeletal muscle and white adipose tissue; and 
stimulate food intake and gluconeogenesis (Foryst-Ludwig 
& Kintscher,  2010; Lu et  al.,  1998). The 18-month-old fe-
males in ad libitum conditions exhibited low plasma glu-
cose, insulin, and triglyceride concentrations, indicating 
a possible decrease in intestinal absorption of glucose and 
triglycerides (Hahn et  al.,  1978; Hauge-Evans et  al.,  2015; 
Krejs et al., 1980; Wahren & Feling, 1976).

The increased PRL concentration observed in older fe-
males may be due to the lack of response of hypothalamic 
tuberoinfundibular dopaminergic neurons or to a possible 
alteration of PRL receptors (Reymond, 1990). On the other 
hand, sexual differences found in plasma CORT levels are 
established by the neonatal estrogenization of females af-
fecting different regulatory substrates of the HPA, includ-
ing the gene expression of the CRH, arginine vasopressin, 
and hypothalamic glucocorticoid receptor (GR) (Patchev 
et  al.,  1995). However, the increased CORT in older fe-
males is due to the loss of negative feedback, caused by 
the decrease in GR in different parts of the brain related 
to HPA axis control and possibly to PRL stimulation, 
since it was shown that PRL stimulates CORT release in 
vitro (Lo et al., 1999, 2006; Lo & Wang, 2003; Mizoguchi 
et al., 2009).

Triglyceride plasma levels in 2-month-old females were 
lower than males (Figure 3a), possibly because females have 
a higher VLDL-TG clearance rate, as already described in 
humans (Magkos et al., 2007; Palmisano et al., 2018; Wang 
et al., 2011). However, the sex difference in TG disappeared 
in the following months, which may be why females became 
obese and in this condition the VLDL-TG clearance rate 
decreased, making TG values similar between females and 
males (Mittendorfer et al., 2003).

Sex differences found in 18-month-old feeding animals 
in serum TGs and free fatty acid concentrations may be be-
cause females have a higher clearance of free fatty acids in 
the muscle and therefore less formation of TGs in the liver 
(Palmisano et al., 2018). In addition, in the fed state, the li-
poprotein lipase (LPL) synthesis is increased in the adipose 
tissue, and CORT could enhance LPL activity, promoting 
fatty acid uptake and storage in adipocytes (Ling et al., 2003; 
Oliver & Perenna,  1993; Peckett et  al.,  2011). Thus, the 
18-month-old female rats exhibited higher plasma CORT 
than respectively male, and old female rats showed lower free 
fatty acid concentration than old male. In the case of total 
cholesterol, the sexual differences could be a consequence 
of a higher density of LDL receptor in the liver of females 
(Nanjee & Miller, 1988).

In reproductive age, it is known that women and females 
mice show higher HDL cholesterol level than men and male 

mice, respectively (Klingel et  al.,  2017; Link et  al.,  2015; 
Wang et al., 2011). These sexual differences could be related 
with the fact that females have two X chromosomes, which 
increased the expression of genes escaping X-inactivation 
(Link et al., 2015).

Age differences observed in total cholesterol may be 
due to the fact that with aging LDL levels increase, be-
cause the circulating LDL clearance rate decreases by de-
creasing LDL hepatic receptor (LDLr) expression (Bose 
et al., 2005; Morgan et al., 2016). LDLr deficiency doubles 
total cholesterol increase (Morgan et al., 2016). Moreover, 
3-hydroxy-3-methylglutaryl coenzyme A reductase 
(HMGR), which is the limiting enzyme for cholesterol 
biosynthesis, increases its activation in aging (Pallottini 
et al., 2006).

Although increased leptin levels in adult animals are as-
sociated with increased fat, with aging, leptin gene expres-
sion increases independently of increased adiposity, so the 
development of hyperleptinemia is one of the characteristics 
observed during aging (Carrascosa et  al.,  2009; Kristensen 
et al., 1999; Li et al., 1997; Schautz et al., 2012). Moreover, 
aging leads to peripheral and central resistance to leptin 
(Carrascosa et  al.,  2009; Fernández-Galaz et  al.,  2001; 
Scarpace & Tümer, 2001).

Plasma adiponectin concentrations are higher in adult fe-
males than in adult males, because testosterone selectively 
reduces adiponectin secretion of high molecular weight 
by adipocytes. The high adiponectin level in older male 
rats could be due to decreased androgens with age (Isobe 
et  al.,  2005; Nishizawa et  al.,  2002; Rosario et  al.,  2009; 
Smith et al., 1992; Xu et al., 2005).

Sex difference observed in plasma TSH concentration 
could be because the estrogens stimulate in the anterior pi-
tuitary activity of the type 1 deiodinase enzyme, whereas 
testosterone reduces it (Lisbôa et al., 2001). Estrogens also 
increase nuclear T3 density and TRH receptors in thyrotropic 
cells (Donda et al., 1990).

On the other hand, sex difference observed in plasma T3 
concentration in adult animals was possibly due to the inhib-
itory effect of CORT on T3 production (Nunes et al., 2005). 
As discussed earlier and as observed in our results, plasma 
CORT concentration is higher in females than in males. Thus, 
in the absence of CORT inhibitory effect, T3 plasma concen-
tration becomes higher.

In summary, our work demonstrated that the aging pro-
cess induces an alteration in energy metabolism mainly in 
male rats and changes in plasma hormone concentrations that 
may or may not depend on sex. Although, previous results 
in the literature have described the effect of aging on energy 
metabolism in male rats, information about old females is 
scarce. Thus, our results show that the effects of aging on 
energy metabolism in rats are sex specific, with a better lipid 
profile and glucose tolerance in aged females.
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