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Atherosclerosis (AS) is the main pathological cause of acute cardiovascular and
cerebrovascular diseases, such as acute myocardial infarction and cerebral apoplexy.
As an immune-mediated inflammatory disease, the pathogenesis of AS involves
endothelial cell dysfunction, lipid accumulation, foam cell formation, vascular smooth
muscle cell (VSMC) migration, and inflammatory factor infiltration. The nuclear receptor
peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in lipid
metabolism, inflammation, and apoptosis by antagonizing the Wnt/β-catenin pathway and
regulating cholesterol efflux and inflammatory factors. Importantly, PPARγ-dependant fatty
acid uptake is critical for metabolic programming. Activated PPARγ can exert an anti-
atherosclerotic effect by inhibiting the expression of various inflammatory factors,
improving endothelial cell function, and restraining the proliferation and migration of
VSMCs. Regulatory T cells (Tregs) are the only subset of T lymphocytes that have a
completely negative regulatory effect on the autoimmune response. They play a critical role
in suppressing excessive immune responses and inflammatory reactions and widely affect
AS-associated foam cell formation, plaque rupture, and other processes. Recent studies
have shown that PPARγ activation promotes the recruitment of Tregs to reduce
inflammation, thereby exerting its anti-atherosclerotic effect. In this review, we provide
an overview of the anti-AS roles of PPARγ and Tregs by discussing their pathological
mechanisms from the perspective of AS and immune-mediated inflammation, with a focus
on basic research and clinical trials of their efficacies alone or in combination in inhibiting
atherosclerotic inflammation. Additionally, we explore new ideas for AS treatment and
plaque stabilization and establish a foundation for the development of natural PPARγ
agonists with Treg recruitment capability.
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INTRODUCTION

Atherosclerosis (AS) is the main pathological basis of coronary AS,
heart disease, cerebral infarction, and peripheral vascular diseases,
which seriously threatens health and even lives (Scannapieco et al.,
2003). The etiology and pathogenesis of AS are complex and involve
various pathological processes from the onset of AS to plaque
formation, rupture, and thrombosis, although, the specific
mechanisms have not been fully clarified. Studies have implicated
inflammation through the entire process of AS, and various cytokines
and inflammatory factors act on different stages of AS (Ross, 1999).

Peroxisome proliferator activated receptor γ (PPARγ) is a type
of nuclear transcription factor activated by ligands. PPARγ can
regulate lipid metabolism, improve insulin resistance, suppress the
transformation of macrophages into foam cells and their
deposition on the blood vessel wall (Plutzky, 2000; Hsueh and
Law, 2001). Furthermore, PPARγ agonists can antagonize the
activation of the WNT/β-catenin pathway and affect metabolic
reprogramming, attenuate the glycolytic pathway, repress excessive
lactate production, and reduce mitochondrial damage, thereby
inhibiting inflammation to exert its anti-atherosclerotic
effect(Angela et al., 2016; Vallée and Lecarpentier, 2018).

Regulatory T cells (Tregs) are a special subset of T cells
discovered in recent years. They play a crucial role in the
regulation of immune tolerance, termination of the activated
immune response, maintenance of immune homeostasis, and
regulation of effector T lymphocytes (Veeken et al., 2016). Tregs
have been implicated in delaying the progression of AS, mainly by
inhibiting the secretion of cytokines, producing
immunosuppressive enzymes, inhibiting macrophage
inflammation, reducing plaque vulnerability, directly killing
effector T cells, and regulating the maturation and function of
dendritic cells (DCs) (Taleb et al., 2008; Ou et al., 2018).

Both PPARγ and Tregs are involved in immune regulation.
PPARγ participates in the regulation of inflammation and the
immune response, and is closely related to immune inflammation.
Recent studies suggest that metabolism affects immune inflammation,
and metabolic reprogramming plays an importance role in the
regulation of immune inflammation, which is currently a hot topic
of research (Ganeshan andChawla, 2014). Tregs, as themain immune
negative regulator cells, play a vital role in maintaining immune
balance, inhibiting inflammatory response. Further, the activation of
PPARγ can recruit Tregs, which in turn can inhibit the inflammatory
response leading to significant anti-AS effects (Cipolletta et al., 2012;
Hamaguchi and Sakaguchi, 2012). Given the role of PPARγ and Tregs
in AS, this review focuses on the anti-inflammatory regulatory role of
PPARγ and Tregs in the progression of AS and the mechanisms,
involved, in order to provide a theoretical basis for further exploring
the relationship between PPARγ and Tregs, and to promote novel
approaches for the treatment of AS and stabilization of AS plaques.

The Complex Pathological Processes of
Atherosclerosis
AS refers to the disease of medium and large arteries, which
commonly manifests as endothelial dysfunction, endometrial
lipid deposition, smooth muscle cell proliferation, cell

apoptosis, and necrosis, as well as systemic and local
inflammation.(Libby, 2021). AS pathogenesis is a complex
process and many hypotheses have been formulated in an
attempt to understand its underlying mechanisms, such as the
lipid infiltrative theory (Dargel, 1989), oxidative stress theory
(Harrison et al., 2003), and vascular smooth muscle cell (VSMC)
cloning theory (Suttles et al., 1995). However, no single
hypothesis can fully explain the pathological mechanisms of
AS. In 1999, Ross proposed the concept of “AS is a chronic
inflammatory disease”, revealing that AS involves a process of
vascular damage caused by the interaction between vascular wall
cells and blood cells combined with inflammatory and
proliferative factors (Ross, 1999). These changes reveal that the
immune inflammatory response is the first step in the formation
of the AS plaque, and is also an important reason for the
instability of atherosclerotic plaque. During the pathological
process of AS, the increase in phagocytosis of ox-LDL by
macrophages, leads to the formation of foam cells and their
accumulation to form “Fatty Deposits” on the vascular wall,
which is first macroscopic sign of atherosclerotic disease(Libby
et al., 2019; Ali et al., 2020; Khatana et al., 2020; Munjal and
Khandia, 2020). As the disease progresses, lipid-rich plaques
develop. (Alexander and Owens, 2012; Cornelissen et al.,
2019). Smooth muscle cells (SMC) migrate into the intima
and prolificate, gradually forming the fibrous cap of the
plaque, which is a critical event in the progression of AS
lesions (Bennett et al., 2016). Meanwhile, under the
stimulation of inflammation, activated endothelial cells,
macrophages, and foam cells release pro-inflammatory
cytokines and proteolytic enzymes, resulting in the thinning of
plaque fibrous caps, the gradual instability of plaque, the
formation of vulnerable plaques, and the central link of plaque
rupture (Sevuk et al., 2015; Kolodgie et al., 2017). Therefore,
taking measures to preventing of AS inflammatory response and
increasing plaque stability have become an important area of
research.

ATHEROSCLEROSIS AND THE
IMMUNO-INFLAMMATORY RESPONSE

Atherosclerosis and Inflammation
Inflammation is the body’s defense response to irritants and is an
important part of the immune system’s ability to perform its
functions and maintain the body’s homeostasis (Hansson and
Hermansson, 2011; Geovanini and Libby, 2018). In 1986, Ross
first proposed AS as an inflammatory disease (Ross, 1986), and in
1999, explicitly emphasized that AS is a chronic progressive
inflammatory disease (Ross, 1999). Over the past 20 years,
extensive research has been carried out investigating AS
inflammation. Maintaining the integrity of endothelial cells,
inhibiting the migration and proliferation of smooth muscle
cells, and preventing plaque rupture can effectively delay the
progression of AS by inhibiting inflammation (Zhu et al., 2018;
Bäck et al., 2019; Simonetto et al., 2019; Wolf and Ley, 2019; Das
and Natarajan, 2020). Thus, the inflammatory response plays an
important role in the initiation and development of AS.
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Atherosclerosis and Immunity
Immunity refers to a physiological protective function of the
body, including a series of processes such as recognition,
elimination, and destruction of foreign substances, pathogenic
organisms or non-altering organisms. Excessive or insufficient
immunity can cause damage to tissues (Wolf and Ley, 2019). The
immune response is present throughout the development of AS.
The human immune response is divided into two main parts:
innate immunity and adaptive immunity. Innate immunity is a
natural defense system that is available from birth. The
components involved in the immune system mainly include
phagocytic cells, natural killer (NK) cells, lysozymes, and the
complement, which play a non-specific defense role against
foreign antigens. Adaptive immunity is an immune response
that occurs when the body responds to a specific antigen.
Antigen-presenting cells (APC) (DCs, macrophages) recognize
and process antigens and present them to T or B lymphocyte
surface receptors to induce a series of specific immune responses.
A variety of immune cells, including monocyte-macrophages and
T cells, involved in adaptive and innate immunity are active in the
pathogenesis of AS. These immune cells regulate the balance
between pro-AS inflammation and anti-AS inflammation
through complex interactions, and participate in promoting/
inhibiting AS lesions or reducing/increasing the stability of the
AS plaque (Schaftenaar et al., 2016; Kobiyama and Ley, 2018;
Bartoloni et al., 2019; Herrero-Fernandez et al., 2019; Zhao and
Mallat, 2019).

Atherosclerosis and Innate Immunity
The innate immune cells mainly include mononuclear-
macrophages and DCs. Macrophages are most closely
associated with the occurrence and development of AS. In
response to inflammatory signals, AS-associated immune cells
initiate a process of “metabolic reprogramming”, defined by
changes in cellular metabolic energy supply pathways
(Ganeshan and Chawla, 2014) with a shift from oxidative
phosphorylation (OXPHOS) to aerobic glycolysis, which is
related to glucose uptake and glycolysis(Rashida
Gnanaprakasam et al., 2018). Glycolysis is the main process
through which macrophages obtain energy, and metabolic
reprogramming is essential for maintaining macrophage
activation and functions. Physiologically, human monocytes
and macrophages are derived from the bone marrow, and
enter the blood and tissues after differentiation and
maturation. In the pathological state of AS, monocytes in the
blood cross the endothelium gap into the subendothelial layer,
and are transformed into macrophages under the stimulation of
chemokines. The scavenger receptors modify lipoproteins by
recognizing the proteases and oxygen free radicals they
produce, to accelerate the ingestion of oxidatively modified
low-density lipoprotein (ox-LDL) by macrophages, and which
in turn transform into foam cells (Wang et al., 2019). In addition,
metabolic conversion from fatty acid oxidation (FAO) and
OXPHOS to glycolysis was also found in ox-LDL-stimulated
pro-inflammatory macrophages (Sun et al., 2020). Excessive
accumulation of foam cells forms atheromatous plaques.
Macrophages can be polarized into M1 and M2 phenotypes in

different microenvironments. Furthermore, M1 type
macrophages are mainly induced by interferon (IFN) γ and
lipopolysaccharide (LPS), and exert strong phagocytic activity,
and secrete tumor necrosis factor (TNF)-α and other pro-
inflammatory factors, inducing T helper 1(Th1) type cellular
immune responses that mediate inflammation (Verreck et al.,
2004; Vogel et al., 2013). M2 type macrophages are induced by
interleukin (IL)-13 and can secrete many anti-inflammatory
cytokines such as IL-10, to attenuate inflammation and
promote tissue damage repair (Shirey et al., 2008; Martinez
et al., 2009). Previous studies have shown that M1-type
macrophages can induce smooth muscle cell proliferation and
the release of vasoactive molecules such as nitroxide (NO) and
endothelin, to promote the oxidation of LDL and induce
cytotoxicity. Early AS plaques can be infiltrated by M2 type
macrophages, but with disease progression, the number of M1
type macrophages increases and becomes dominant (Kirbiš et al.,
2010). The increase of M1 type macrophages will promote the
occurrence and development of AS, and together with
transforming growth factor-β (TGF-β) released by M2-type
macrophages can inhibit the recruitment of inflammatory
cells, thus slowing down the development of AS (Shapouri-
Moghaddam et al., 2018).

Atherosclerosis and Adaptive Immunity
Adaptive immune cells include T cells and B cells. T cells are
closely associated with the development of AS. They exert pro-
inflammatory or anti-inflammatory effects by secreting different
cytokines or antibodies, and can also change phenotype
according to the microenvironment, which suggests that
T cells may have plasticity. In the process of AS, effector
T cells secrete corresponding cytokines to induce
differentiation into other cell subtypes (Munjal and Khandia,
2020). T cells can be divided into two major subgroups according
to the Cluster of Differentiation (CD), CD4+ T cells and CD8+

T cells (Gebhardt et al., 2011). Among these, naïve CD4+ T cells
are the most closely associated with AS (Arranz et al., 2015;
Grönberg et al., 2017). CD4+ T cells can differentiate into
different T helper cell subsets such as T helper 1 (Th1), T
helper 2 (Th2), T helper 17 (Th17), and Tregs according to
the different environments present in vivo (Gao et al., 2019;
Saigusa et al., 2020). Th1 cells promote the development of AS by
secreting IFN-γ, TNF-α, and IL-2 (Baidya and Zeng, 2005). Th2
cells regulate the progression of AS inflammation by secreting
anti-inflammatory factor IL-13 and pro-inflammatory IL-4. IL-13
is active against AS by stimulating macrophages to polarize into
the M2 subtype and by releasing IL-10 and TGF- β, as well as by
activating the signal transducer and activator of transcription 3
(STAT3) (Cardilo-Reis et al., 2012; Brunner et al., 2017; Bi et al.,
2020). However, IL-4 can increase the expression of CD36 on
macrophages to intensify the phagocytosis of macrophages, and
promote the progress of AS (Lee and Hirani, 2006). By secreting
IL-1β, IL-6, IL-17, TNF-α, and other pro-inflammatory factors.
Th17 accelerates the progression of AS (Taleb et al., 2015; Allam
et al., 2018; Munjal and Khandia, 2020). Tregs suppress the
immune response and inflammatory reaction by secreting
TGF-β and IL-10 to exert anti-AS effects (Pastrana et al.,
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2012). Thus, the above evidence indicates inflammation is an
important pathological factor causing AS, and the regulation of
AS inflammation depends on immune cells, inflammatory
factors, and other mediators. In recent years, studies on
inflammatory immune response associated with AS have
provided new approached for the treatment of AS.

NUCLEAR RECEPTOR PEROXISOME
PROLIFERATOR-ACTIVATED RECEPTOR
GAMMA AND AS INFLAMMATORY
RESPONSE

Many cytokines are involved in the progression of AS, among
which the nuclear receptor PPARγ has become an important
regulatory factor in the inflammatory response (Ivanova et al.,
2015). PPARγ is a member of the nuclear receptor transcription
factor superfamily that regulates the expression of target genes. It
is mainly expressed in adipose tissue and the immune system, and
is closely related to adipocyte differentiation, body immunity,
insulin resistance, and vascular inflammation (Harris and Phipps,
2001; Finck et al., 2008; Pastrana et al., 2012). PPARγ has a critical
role in lipid metabolism, promoting free fatty acid uptake and
triacylglycerol accumulation in adipose tissue and liver
(Ahmadian et al., 2013). A large number of studies have
shown that activation of PPARγ can inhibit the development
of AS and stabilize plaques by suppressing the expression of
various inflammatory factors, improving endothelial cells
function, restraining the differentiation of monocytes into
macrophages and the proliferation and migration of smooth
muscle cells (Gao et al., 2011; Sanz et al., 2012). Activating
PPARγ can directly affect the anti-inflammatory effects on
vascular walls, attenuates the inflammatory response of blood
vessels, and reduces the formation of foam cells (McCarthy et al.,
2013). PPARγ inhibits the release of inflammatory factors such as
TNF-α and IL-6 produced by activated monocytes, decreases the
production of monocyte chemotactic proteins and reduces the
aggregation of monocytes (Ricote et al., 1999; McCarthy et al.,
2013; Lim et al., 2015). Additionally, when AS occurs, the WNT/
β-catenin pathway is activated and PPARγ expression is down-
regulated. The activation of the WNT/β-catenin pathway
enhances transcription of target genes involved in
inflammation, endothelial dysfunction, and VSMC
proliferation. However, the administration of PPARγ agonists
antagonizes the above phenomena and inhibits the WNT/
β-catenin pathway, with consequent suppression of the AS
inflammatory response (Vallée and Lecarpentier, 2018). In the
state of AS inflammation, the key macrophage inflammatory gene
expression lies in the activation of Nuclear factor-κB (NF-κB).
PPARγ acts as an upstream regulatory switch of the NF-κB
pathway to directly inhibit NF-κB phosphorylation.
Conversely, PPARγ can competitively bind p65 with NF-κB to
indirectly inhibit the activation of NF-κB, which leads to reduced
phagocytosis of ox-LDL by macrophages, thus slowing down the
process of AS (Olefsky and Glass, 2010; Jongstra-Bilen et al., 2017;
Sykes and Bennett, 2018) (Figure 1).Studies have shown that

PPARγ is the target of DNA methyltransferase 1 (DNMT1),
which is involved in regulating DNA methylation, and DNMT1-
mediated repression of PPARγ leads to worsening of AS
inflammation (Yu et al., 2016). Thus, activation of PPARγ can
effectively prevent and treat the progression of AS via different
pathological processes.

Clinical trials have reported that compared with glimepiride,
pioglitazone, a PPARγ agonist, significantly improves insulin
resistance and inflammatory reactions of the left main
coronary artery in diabetic patients, independently of
hypoglycemic effects (Nitta et al., 2013). For pre-diabetic
patients, PPARγ agonists can significantly attenuate the annual
growth rate of carotid intima-media thickness (CIMT).This
clinical effect does not depend on the control of other risk
factors (including blood glucose, insulin sensitivity index,
blood lipid, adiponectin, or plasminogen activator-1) (Saremi
et al., 2013). Japanese researchers determined that long-term
(2.5–4 years) use of PPARγ agonists significantly reduced
carotid intima-media thickness (Yamasaki et al., 2010). The
much-profiled PERISCOPE trial proved that treatment with
the PPARγ agonist pioglitazone for 18 months, reduced the
percentage of atherosclerotic plaque volume (PAV) by 0.16%,
while the PAV in glimepiride control group increased by 0.73%
base on intravascular ultrasound evaluation (Nissen et al., 2008).
Both basic and clinical studies have shown that activated PPARγ
plays multiple roles in suppressing AS inflammatory reaction,
alleviating/stabilizing plaques, and reducing acute cardiovascular
events.

REGULATORY T CELLS AND
ATHEROSCLEROSIS INFLAMMATORY
RESPONSE

Structure, Classification, and Function of
Regulatory T Cells
Tregs are a special T cell subgroup that can regulate the functions
of various immune cells (Ou et al., 2018). CD4+ T cells can be
divided into CD4+CD25− effector T cells (Teff) and CD4+CD25+

Tregs according to the expression of the surface molecule CD25
(Liu et al., 2006). Activated Teff promotes the immune response,
while Tregs inhibit the immune response (Amin et al., 2017).
Tregs can be divided into natural Tregs (nTregs) and inducible
Tregs (iTregs) (Haribhai et al., 2016). Tregs can regulate different
immune responses, among which the natural
CD4+CD25+Foxp3+ Tregs are the most important (Luz-
Crawford et al., 2013). Foxp3, a forkhead box transcription
factor, is a specific morphological and functional marker of
Tregs and plays an important role in Tregs activity (Schmidt
et al., 2016).

Tregs main role is to participate in the regulation of the body’s
immune tolerance, terminating activated immune responses,
maintaining immune homeostasis, and inhibiting Teff (Veeken
et al., 2016). Tregs kill inflammatory cells by secreting granzymes
(Libby, 2015). Tregs regulate immune balance by producing
immunosuppressive cytokines, such as TGF-β and IL-10
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(Hang et al., 2019). Tregs can inhibit the activation of Teff by
directly inhibiting the expression of CD80 and CD86 on the
surface of APCs through a cytotoxic T-lymphocyte-associated
antigen-4 (CTLA-4)-dependent mechanism (Wing et al., 2008).
In addition, Tregs can inhibit the proliferation and differentiation
of effector T cells via contact with other effector T cells or by
secreting immunosuppressive factors such as TGF-β and IL-10.
The relationship between the degree of immune inflammatory
response and AS has been most widely studied. There is evidence
that Tregs inhibit the expression of pro-inflammatory IFN-γ, IL-
4, IL-17, IL-6, and chemokines secreted by Th1, Th2, and Th17 in
atherosclerotic plaques through the release of TGF-β and IL-10
(Albany et al., 2019; Ait-Oufella et al., 2021), which exert anti-AS
effects.

Mechanism of Regulatory T Cells-Mediated
Inhibition of Atherosclerosis Inflammation
The level and numbers of Tregs is a key factor in AS. Tregs can
participate in the pathological process of AS by intercellular
contact by inhibiting cytokine secretion and via
immunosuppressive enzyme production. In addition, Tregs
can also activate killer effector T Cells, and regulating the
maturation and function of DCs (Ait-Oufella et al., 2006;
Mallat et al., 2007; Chistiakov et al., 2015). Intercellular
contact is the main pathway through which Tregs exert their
immunomodulatory role. Tregs can complex with major
histocompatibility complex-II (MHC- II) through the T cell
receptor (TCR) and CTLA-4 to stimulate CD80/CD86
molecule expression on APCs, hence, intercellular contact and
negative immune regulation serve as the primary defense system

against AS (Sansom, 2000). In vitro experiments have shown that
deletion of CD86 and CD80 genes significantly reduce the
expression of Tregs in a mouse model, as a result, the AS
plaque lesion area is amplified (Pastrana et al., 2012).
Furthermore, Tregs also suppress the inflammatory response
and stabilize AS plaques. Tregs also modulate the secreting of
TGF-β and IL-10 and help in the prevention of immune
disorders. TGF-β can inhibit the secretion of IL-1 and IL-2,
and thus, affect the proliferation of Teff cells. IL-2, which is
secreted by Th1 and Th2 cells, can be inhibited by IL-10. IL-10
can also act as a suppresser of DCs and macrophages expressing
MHC-II. At the same time, inhibition of the CD28/B7 pathway
leads stimulation of T cell proliferation and activation. Thereby,
the inflammation response and AS progression can be effectively
attenuated and the plaque stability augmented (Chistiakov et al.,
2015). Tregs can promote the metabolism of tryptophan through
CTLA-4, reduce levels of tryptophan and inhibit Teff (Sojka et al.,
2009). Lastly, Tregs can also induce immune cells apoptosis and
suppress inflammation of AS immune cells by via perforin or
granase (Vignali et al., 2008). (Figure 2).

ApoE-/- mice treated with a high-fat diet showed a decreased
number of Tregs and an increased incidence of AS, however
treatment with Tregs may prevent the formation of AS plaques
(Wang et al., 2014). Tregs can inhibit the formation of foam cells
in vitro and induce the differentiation of macrophages towards
the M2 phenotype (anti-inflammatory phenotype), and the
protective cytokine IL-10 secreted by Tregs can prevent the
formation of fatty streaks and atherosclerotic plaques (Liu
et al., 2011). Zhang et al. showed that in the AS-vulnerable
plaque model, Tregs sorted and purified in vitro can stabilize
vulnerable plaques and reduce the rupture rate of plaques by

FIGURE 1 | The anti-atherosclerosis pathways of PPARγ. The activation of PPARγ can recruit Tregs to improve endothelial function, inhibit the release of TNF-α, IL-
6, and other inflammatory cytokines, reduce the production of MCP-1, suppress the differentiation of monocytes to macrophages and foam cells. In contrast, PPARγ
activation can directly inhibit NF-KB phosphorylation or can indirectly inhibit the activation of NF-KB by competitively binding p65 to reduce the production of pro-
inflammatory cytokines and restrain AS.
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inhibiting the expression of MMP-2 and MMP-9 and other
cytokines in a dose-dependent manner, via TGF-β and IL-10
secretion by Tregs (Meng et al., 2013). Kasper et al.’s in vivo
studies confirmed that Tregs deficiency or inactivation disrupted
the stability of the body’s immune internal environment, and
leads to the amplification of the inflammatory response and
worsened the progression of AS (Kasper et al., 2016). The size
of the AS plaque increased significantly in CD4+CD25+Treg-
deficient mice. Transferring the wild-type (WT) Tregs of mice to
ApoE-/- mice, the plaques of the aortic sinus were found to be
significantly reduced (Mor et al., 2007). The area of AS plaque
increased in Foxp3+Tregs deficient mice (Salomon et al., 2006).
These studies suggested that by increasing the number of Tregs
and enhancing functions, AS can be effectively prevented and
treated, findings that are promising for transferring basic research
to clinical application.

Clinical studies have shown that Tregs are closely associated
with the occurrence of acute coronary syndrome (ACS) and AS
plaque vulnerability, while the development of ACS is associated
with low levels of circulating immunosuppressive Tregs (Dietel
et al., 2013) and increased infiltration of pro-inflammatory DC
and Teff cells (Rohm et al., 2015). The levels of Tregs and IL-10 in
unstable patients were significantly lower than those in stable
patients (George et al., 2012). Few reports have evaluated the
effects of drugs on Tregs in AS. Statins can also significantly

improve the number and function of Tregs in the peripheral
blood of healthy individuals and of AS patients (Rodríguez-Perea
et al., 2015). Based on the above animal studies and clinical
evidence, a strategy of targeted regulation of Tregs is expected to
become an important immunotherapy for the prevention and
treatment of cardiovascular and cerebrovascular diseases caused
by AS.

PEROXISOME
PROLIFERATOR-ACTIVATED RECEPTOR
GAMMA, REGULATORY T CELLS, AND
ATHEROSCLEROSIS INFLAMMATION

Peroxisome Proliferator-Activated
Receptor Gamma and Regulatory T Cells
In 2012, a study published in Nature found that activated PPARγ
is a key molecule that regulates the accumulation, phenotype, and
function of Tregs, and inhibits visceral adipose tissue (VAT)
inflammation. PPAR-γ expression by VAT Treg cells was
necessary for the complete restoration of insulin sensitivity in
obese mice by the thiazolidinedione drug pioglitazone (Cipolletta
et al., 2012). Studies have shown that PPARγ can mediate the
metabolic reprogramming of macrophages by mediating fatty

FIGURE 2 | The multiple anti-AS mechanisms of Tregs. Tregs can kill effector T cells via direct contact with T cells, and inhibit the secretion of pro-inflammatory
cytokines and the production of immunosuppressive enzymes by secreting TGF-β and IL-10. Tregs can also 1) inhibit the secretion of IL-1 and IL-2 to influence the
proliferation of effector T cells by secreting TGF-β and IL-10; 2)suppress the secretion of IFN-γ, TNF-α and IL-4 by Th1 and Th2 cells; and 3) reduce the expression of
MHC II on DC and macrophages membrane, and affect the stimulation of CD28/B7 pathway on T cells, and consequently play an important role in inhibiting,
slowing down the process of AS and increasing the stability of plaques.
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acid and cholesterol synthesis, and can modify the polarization of
macrophages toward anti-inflammatory or pro-inflammatory
phenotypes (M2 or M1) to regulate the immune system. There
are significant differences in the metabolic reprogramming of
macrophages with different phenotypes. For instance, M1
macrophages obtain energy through the anaerobic glycolysis
pathway; M2 macrophages produce adenosine triphosphate
(ATP) through aerobic glycolysis pathway (Rodríguez-Prados
et al., 2010). Interference with cell metabolism by Tregs
expressing PPARγ could inhibit adipose tissue inflammation
in obese patients, and thus, Tregs may become a new target
for the prevention and treatment of inflammation and insulin
resistance (Hamaguchi and Sakaguchi, 2012).

Treg aggregation relies on PPARγ pathways in many organs
and tissues. Oral polyunsaturated fatty acids (n-3 PUFA) can
promote the proliferation of liver Tregs and prevent Con
A-induced liver injury, which is achieved through the
upregulation of PPARγ and TGF-β by free fatty acids (Lian
et al., 2015). By increasing the percentage of
CD4+CD25+Foxp3+ Tregs and decreasing the percentage of
CD3+CD4+IFNγ+T cells and CD3+CD4+IL-4+ T cells,
pioglitazone can alleviate the liver and spleen injury of
mice infected with Schistosoma japonicum. The mechanism
of action is achieved by upregulating the expression of PPARγ
and Foxp3 (Zhu et al., 2018). In bronchiolitis obliterans caused
by lung transplantation, treatment with the PPARγ agonist
pioglitazone can significantly increase the Treg-specific
marker Foxp3 and can decrease the expression of
inflammatory markers, such as TNF-α, IL-2, so as to reduce
lung transplantation postoperative inflammation (Neujahr

et al., 2009). In the stomach, Helicobacter pylori can reduce
insulin resistance through a PPARγ-dependent mechanism
and modulates macrophage and Treg infiltration into the
abdominal white adipose tissue (Bassaganya-Riera et al.,
2012). The transcriptional regulators BATF and IRF4 were
necessary for VAT-Treg differentiation through direct
regulation of ST2 and PPARγ expression (Vasanthakumar
et al., 2015). These effects and mechanisms of Tregs are
also realized by PPARγ activation.

Mechanism of Peroxisome
Proliferator-Activated Receptor Gamma-
and Regulatory T Cells Mediated Inhibition
of Atherosclerosis Inflammation
Tregs expressing PPARγ can inhibit the inflammatory
response, maintain autoimmune tolerance, and play an
important role in the progression of AS, mechanisms that
have recently received much attention. Activation of PPARγ
recruits Tregs and inhibit the inflammatory reaction of the
vascular wall and slows down the progression of AS (Castrillo
and Tontonoz, 2004). Activated by free fatty acids and their
metabolites, PPARγ can increase the quantity of Tregs
(Pacella et al., 2018; Atif et al., 2020), to promote Tregs to
secrete TGF-β and IL-10, and consequently play a role in
inhibiting vascular inflammation and anti-AS (Feuerer et al.,
2009; Cipolletta et al., 2011). In addition, Tregs are recruited
to VAT inflammatory areas by chemokines or via recognition
of tissue-specific antigens, to promote the expression of
PPARγ at inflammatory sites (Cipolletta, 2014). PPARγ

FIGURE 3 |Mechanism of the combined action of PPARγ and Tregs against AS. Tregs expressing PPARγ in VAT exert inhibitory effects on immune cells activity
and prevents the occurrence and development of inflammation. Foxp3 is a specific molecule of Tregs. The ectopical co-expression of Foxp3 and PPARγ can induce an
increase in Treg levels and the release of cytokines such as TGF-β and IL-10 to inhibit inflammation and exert anti-AS effects. In addition, PPARγ indirectly induces the
expression of Tregs by promoting the transformation of macrophages to the anti-inflammatory M2 type and induces the secretion of cytokines such as TGF-β and
IL-10 by M2 type macrophages. PPARγ also inhibits the inflammatory response and plays a role in the anti-AS by activating the TGF-β/Smad signalling pathway and
inhibiting the Th1, Th2, Th17/Tregs ratio.
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may increase the number of Tregs by the ectopic co-
expression of Foxp3 and PPARγ (Hamaguchi and
Sakaguchi, 2012). PPARγ can promote the transformation
of macrophages to the anti-inflammatory M2 type by
regulating the gene expression related to M2 type
macrophages, and also secretes cytokines such as TGF-β
and IL-10, to indirectly induce the expression of Tregs,
and inhibit the inflammatory response and resulting anti-
AS effect (Le et al., 2018; Lin et al., 2021). The mechanism of
involving PPARγ agonist pioglitazone inhibiting the
progression of AS in ApoE-/- mice may be achieved by
regulating the TGF-β/Smad signaling pathway (Fan and
Watanabe, 2003; Lei et al., 2010), or by regulating Th1/
Tregs (Ali et al., 2020) and Th17/Tregs (Tian et al., 2017)
cell levels by activating PPARγ. (Figure 3). PPARγ and Tregs
interact with each other to inhibit the immune inflammatory
response and jointly play an anti-AS role.

CONCLUSION

It is well known that a variety of complex factors can promote
the occurrence and development of AS. The pathological
process of AS includes the formation and rupture of arterial
subintimal plaques and secondary complex lesions, such as
calcification, thrombosis, and intraplaque hemorrhage. In
essence, AS is a chronic and progressive inflammatory
disease, in which inflammation and immune regulation are
responsible for the pathological process of AS. In recent
years, inhibition of the inflammatory response to increase
plaque stability, prevent plaque rupture, reduce secondary
thrombosis, has achieved good results, and represents a
research hotspot in the prevention and treatment of AS. A
large amount of evidence shows that PPARγ and Tregs interact

with each other during AS progression, play a role in regulating
immune cytokines, suppress the inflammatory response, and
exert anti-AS effects. The main mechanisms of synergistic anti-
AS effects include 1) the activation of PPARγ in adipose tissue,
which increases the number of Tregs by inducing the expression
of Foxp3, and inhibits the proliferation of effector T cells; 2)
PPARγ promotes the differentiation of Tregs by inducing the
polarization of macrophages to the M2 phenotype; and 3) the
combined effect of PPARγ and Foxp3 ectopic co-expression
increases the quantity and enhances the function of Tregs. In
consideration of the basic and clinical evidence supporting
PPARγ and Treg inhibition of the immune inflammatory
response, the delay in the progression of AS, and
stabilization of AS plaques, with the objective of suppressing
immune inflammation, anti-AS PPARγ agonists or Tregs
preparations may be proposed as effective prevention and
treatment of AS.
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