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Ca21 acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell pro-

liferation, differentiation, migration and apoptosis. Store-operated Ca21 entry (SOCE) mediated by ORAI and the stromal interac-

tion molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of

intracellular Ca21 stores triggers activation of the endoplasmic reticulum (ER)-resident Ca21 sensor protein STIM to gate and

open the ORAI Ca21 channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in

cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the

recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells

of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed.

Ca21, one of the most versatile and universal signaling mole-
cules, is known to regulate numerous cellular activities, rang-
ing from short-term responses such as contraction and
secretion to long-term control of transcription, cell division
and cell death.1,2 Ca21 homeostasis in mammalian cells is
maintained through the coordinated actions of a repertoire of
Ca21 signaling components, including Ca21 channels, pumps
and exchangers, that are situated in the plasma membrane
(PM) or in intracellular organelles such as the endoplasmic

reticulum (ER) and mitochondria.3–5 Interruptions in Ca21

homeostasis may result in human diseases such as cardiovas-
cular disease, immunodeficiency, diabetes and cancer.6,7

Invasive cancer is the leading cause of death.8 Accumulat-
ing evidence suggests that Ca21-related signaling pathways
represent promising new therapeutic targets for cancer.2

Compared with nonmalignant cells, cancer cells undergo con-
stant remodeling of Ca21 signaling, with remarkable altera-
tions in the expression and/or activity of calcium channels
and pumps,9 as well as in intracellular Ca21-dependent sig-
naling components. Cancer cells do this to sustain their own
proliferation and to avoid cell death response.10 An under-
standing of the remodeling of Ca21 signaling and of channel
proteins in cancer is certainly anticipated to provide novel
opportunities for therapeutic intervention. Store-operated cal-
cium channels (SOCCs) are some of the most abundantly
expressed channels in nonexcitable cells in which the empty-
ing of intracellular Ca21 stores activates Ca21 influx through
the PM.11,12 In this review, we primarily focus on the role of
store-operated Ca21 entry (SOCE) in cancer.

Overview of SOCE
Back in 1980 sec, Putney proposed that the depletion of
Ca21 store directly results in the activation of Ca21 channels
in the PM, a process now referred to as SOCE.13 SOCE can
be activated by ligand-induced activation of membrane recep-
tors or by pharmacological manipulations that empty the
intracellular Ca21 stores that are located primarily in the ER.
The most well-studied example of store-operated channel
(SOC) is the calcium release-activated calcium (CRAC) chan-
nel that was initially characterized in human T cells and
mast cells.14,15 Under physiological conditions, stimulation of
diverse PM receptors such as G-protein-coupled receptors
(GPCR) activates phospholipase C (PLC), which hydrolyzes
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phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglyc-
erol (DAG) and inositol trisphosphate (IP3). IP3 binds to the
Ca21-permeable IP3 receptor (IP3R) on the ER membrane
and evokes Ca21 release from the stores into the cytosol.16

Once the stromal interaction molecule (STIM) protein senses
a drop in ER Ca21 levels, it undergoes conformational
changes with subsequent migration toward the PM to open
ORAI channels through direct physical coupling.12,17–20

Functional interactions between the IP3 receptors and tran-
sient receptor potential (TRP) channels have also been
reported to play modulatory roles during SOCE in certain
types of cells.21,22

Implications of STIM-ORAI in SOCE
During the last decade, the two major protein families STIM
and ORAI12,17–19 were identified. STIM proteins (STIM1 and
STIM2) are type I single-pass transmembrane proteins that
are located predominantly in the ER.23 As shown in Figure
1a, the domain structure of STIM1 includes the following: an
N-terminal signal peptide, a canonical EF hand Ca21-binding
motif, a hidden non-Ca21-binding EF hand and a sterile a-
motif (SAM) domain in the ER luminal region, a putative
coiled-coil domain (CCD), a STIM-ORAI activating region
(SOAR) or CRAC activation domain (CAD), a serine- or
proline-rich clusters and a polybasic C-tail in the cytoplasmic
region.24 The EF-hand domain is responsible for sensing the

Ca21 fluctuation in the ER lumen, whereas the cytoplasmic
domain, in particular the SOAR/CAD domain,25,26 directly
gates and opens the ORAI channels. At rest, STIM1 is evenly
distributed throughout the ER membrane. On depletion of
Ca21 stores, STIM1 undergoes rapid dimerization/oligomeri-
zation and moves into regions at the ER–PM junctions
(termed puncta) so that they can physically interact with
ORAI channels and elicits Ca21 influx within a few sec-
onds.27 The STIM1 homologue STIM2 acts as a weaker acti-
vator of ORAI channels and is responsible for the
maintenance of stable cytosolic and ER Ca21 concentrations
to prevent uncontrolled activation of SOCE.28,29

ORAI1 is a four-pass transmembrane protein whose N-
and C- termini face the cytoplasm and is postulated to
assemble as a tetramer or hexamer in the PM (Fig. 1b).30–32

The first transmembrane segment of ORAI1 forms the ion-
conducting pathway, which mediates Ca21 influx.32–34 The
intracellular C-terminus of ORAI1 has been shown to form a
coiled-coil structure, which interacts with the SOAR/CAD
domain of STIM1.19,26,30,35–37 Disruption of coiled-coil for-
mations in the C-tail of ORAI1 impairs STIM1-mediated
activation of ORAI channels.35 The N-terminus of ORAI1 is
also essential for STIM1-mediated gating. It contains a cal-
modulin (CaM)-binding domain, which is involved in fast
Ca21-dependent inactivation of ORAI channels.38 In mam-
mals, ORAI1 has two other homologues (ORAI2 and 3) that

Figure 1. Schematic diagram of SOCE mediated by ORAI1 and STIM1. (a) STIM1 protein consists of a canonical EF hand, a hidden EF hand

and a SAM domain in the ER luminal domain, and CCD, SOAR and ERM domains as well as serine- or proline- and lysine-rich clusters on

the cytosolic side. (b) The ORAI1 protein contains four membrane-spanning regions and intracellular N- and C-termini. It also has a unique

R/P-rich region in the N-terminus and a putative coiled-coil domain in its intracellular C-terminus. (c) The stimulation of PM receptors acti-

vates PLC, which leads to the production of the second messenger IP3. IP3 binds to the IP3R and elicits rapid Ca21 release from the ER

lumen. STIM1 senses Ca21 decrease in ER and undergoes conformational changes to mediate ORAI gating, which results in Ca21 influx

through ORAI channels. The Ca21 increase activates NFAT and a number of other transcription factors such as NF-jB and CREB, among

others, which play crucial roles in cancer cells, endothelial cells, cells of the immune system and other nonhematopoietic cells.
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can also be gated by STIM1 following store depletion. How-
ever, the ORAI1 protein has the highest potency in the con-
duction of Ca21 currents, and thus the genetic depletion of
ORAI1 substantially impairs SOCE.39

Sustained elevation of intracellular Ca21 through CRAC
channels leads to the activation of the ubiquitous Ca21 sensor
CaM, which further activates the Ca21/CaM-dependent phos-
phatase calcineurin.40 Calcineurin dephosphorylates multiple
phosphoserines in the regulatory domain of the nuclear factor
of activated T cells (NFAT), which leads to the nuclear trans-
location of NFAT within minutes (Fig. 1c). In the nucleus,
NFAT can cooperate with multiple transcription factors such
as the activator protein 1 (AP1), forkhead box P-family pro-
tein (FOXP) and GATA to initiate the expression of multiple
genes. These genes can then regulate diverse cellular func-
tions,40 including cell survival, proliferation, migration, inva-
sion and angiogenesis. SOCE could also activate a number of
other transcription factors such as cAMP-responsive element-
binding protein (CREB) and nuclear factor-jB (NF-jB) via
the activation of calmodulin-dependent protein kinase II/IV
(CaMKII/IV) and IjB kinase (IKK), respectively.41–43 It has
been shown that SOCE-mediated CREB activation promotes
the proliferation of vascular smooth muscle cells (VSMCs).44

NF-jB, which is stimulated by SOCE, is well known for its
function in innate immunity, inflammation and oncogene-
sis.45,46 In turn, NF-jB stimulates the transcription of ORAI1
and STIM1, which play important roles in the regulation of
platelet secretion, aggregation and thrombus formation.47

Implications of TRP Channels in SOCE
The TRP proteins are nonselective cation channels that were
first identified in the trp mutant of Drosophila.48 To date,
approximately 30 different mammalian TRP channels have
been identified according to their sequence homology. The
TRP proteins have a common structure, including six
transmembrane-spanning domains (S1-S6) with a loop region
between the S5 and S6 domains and intracellular N- and C-
termini.49 The role of Drosophila TRP proteins in SOCE was
controversial as they were later found to behave as non-
SOCs.50 However, as the identification of TRP homologues in
mammals, a body of evidence has supported a role for TRP
channels in the conduction of SOCE, especially the transient
receptor potential canonical (TRPC) subfamily members;
these can be activated in response to stimuli, which results in
PIP2 hydrolysis.51 For example, the inhibition of transcrip-
tion of native TRPC1 and TRPC3 channels in HEK cells
could reduce Ca21 influx after the depletion of Ca21 stores.52

The knockdown of other TRPC channels such as TRPC4 can
inhibit SOCE in human corneal epithelial cells.53 Together,
these findings provide evidence to support a possible implica-
tion of TRP channels in SOCE in certain types of cells.53–55

Interaction Between STIM1, ORAI and TRPC Proteins
STIM1 can interact with all three ORAI proteins to induce
SOCE.56 Following the depletion of Ca21 stores, the EF-SAM

domains of STIM1 undergo oligomerization and initiate the
translocation of STIM1 into the ER–PM junctions, which
activates ORAI channels.27 As a precise feedback mechanism,
an elevation in the intracellular Ca21 concentration leads to
rapid Ca21-dependent inactivation (CDI) of the ORAI chan-
nel or dissociation of the STIM1–ORAI complex, which pro-
tects cells from ER Ca21 overload.57

The activation of ORAI channels is strictly dependent on
STIM1, while the involvement of STIM1 in TRPC activation
remains controversial.58 It was reported that STIM1 could
activate TRPC1, 2 and 4, where the ezrin/radixin/moesin
(ERM) domain and the cationic lysine-rich region of STIM1
are required for the binding and gating of TRPC channels,
respectively.59 STIM1 does not interact with TRPC3 directly
as it mediates the heteromultimerization of TRPC1 with
TRPC3.60 DeHaven et al. also reported that TRPC3 functions
as a STIM1-dependent channel in the presence of TRPC1.61

Overall, current evidence suggests that the depletion of
Ca21 stores results in a dynamic interplay between STIM1,
ORAI and the TRPC proteins, where STIM1 communicates
information from the ER lumen to the Ca21 channels at the
PM.62 ORAI channels may mediate Ca21 influx either inde-
pendently or together with the TRPC proteins.63,64 The coordi-
nation of the STIM1, ORAI and TRPC proteins in mediating
SOCE, as well as their possible regulatory mechanisms, is still a
topic of debate and warrants further investigation.

Role of SOCE in Cancer
SOCE mediated by the STIM and ORAI proteins has recently
been implicated in various processes during oncogenic trans-
formation such as malignant transformation, apoptosis, prolif-
eration, angiogenesis, metastasis and antitumor immunity. At
the tumor initiation stage, Ca21 signaling mediated by SOCE
is needed to induce genetic changes in premalignant cells.
These genetic alterations ultimately reprogram cells and cause
them to undergo malignant transformation.65 At the tumor
development stage, blood vessels are necessary for tumor
nutritional support. In cancer cells, SOCE promotes the secre-
tion of vascular endothelial growth factor (VEGF),66 which
activates SOCE in endothelial cells by binding to its receptor;
this subsequently promotes the proliferation of endothelial
cells.67 Interestingly, calcium signaling mediated by SOCE also
plays a critical role in the antitumor activity of cytotoxic T
lymphocytes (CTLs).68 The following sections summarize
recent advances in our understanding of SOCE in tumor cells
as well as in other cell types within the tumor environment.

SOCE Regulates Apoptotic Cell Death, Proliferation
and Metastasis of Cancer Cells
Sabbioni et al. reported that mRNA expression of STIM1 was
absent in human rhabdomyosarcoma and rhabdoid tumor
cell lines, and the forced expression of STIM1 caused growth
arrest in these cells.69,70 More recently, Flourakis et al. dem-
onstrated that the endogenous SOCE mediated by ORAI1 is
the principal source of Ca21 influx that triggers apoptotic cell
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death of human prostate cancer (PCa) cells. The inhibition of
SOCE through the knockdown of ORAI1 protects PCa cells
from death induced by diverse apoptosis-inducing stimuli.71

These findings led to the hypothesis that SOCE might serve
as part of a tumor-suppressing mechanism. Nonetheless,
accumulating evidence indicates that STIM/ORAI-mediated
SOCE promotes tumor growth and metastasis in a variety of
cancer types. Microarray data from 295 breast cancer samples
showed that breast cancer patients with a STIM1high/STIM2-
low profile demonstrated abnormally augmented SOCE and
displayed a significantly poorer prognosis.72 Enhanced
expression of ORAI1 and STIM1 as well as enhanced SOCE
were also reported in therapy-resistant ovarian carcinoma
cells.73 Furthermore, STIM1 or ORAI1 was overexpressed in
tumor tissues when compared with precancerous tissues in
patients with colorectal,74,75 cervical,66 liver,76 lung77 and
clear cell renal cancers.78 The potential anticancer and thera-
peutic value of targeting SOCE is strongly supported by the
fact that the knockdown or pharmacological inhibition of
STIM1–ORAI1 can efficiently restrain the growth and metas-
tasis of breast,79 colorectal,74,75 cervical,66 liver,76 nasopharyn-
geal,80 epidermoid,81 glioma,82 melanoma83 and clear cell
renal cancer cells.78 In addition, the blockage of STIM1-
mediated SOCE can significantly enhance chemotherapy-
induced apoptosis in lung and pancreatic cancer cells.77,84

Recent studies also indicate that ORAI3-mediated SOCE is
involved in the tumorigenesis of estrogen receptor-positive
breast cancer and non-small cell lung cancer.85,86

The molecular mechanisms of SOCE in the regulation of
cancer cell proliferation and migration can be summarized as
follows: (i) Inhibition of SOCE through STIM1 knockdown
results in the upregulation of p21 and the downregulation of
Cdc25C, cyclin E, cyclin D, CDCK2 and CDCK4, which
eventually elicits cell cycle arrest.66,82 (ii) SOCE blockade
through STIM1 or ORAI1 knockdown impairs focal adhesion
turnover and cell migration.66,76,79 Aberrant SOCE causes the
activation of the Ca21-regulated protease calpain and the
cytoplasmic kinase Pyk2, which regulate the focal adhesion
dynamics of migratory cervical cancer cells.66 The small
GTPases Ras and Rac are also regulators of focal adhesion
turnover. The expression of constitutively active Ras and Rac
could rescue the defects of focal adhesion turnover and
migration induced by the inhibition of SOCE in breast cancer
cells.79 (iii) Enhanced SOCE through STIM1 overexpression
promotes the migration of colorectal cancer cells via an
increase in the expression of cyclooxygenase-2 (COX-2) and
the production of prostaglandin E2 (PGE2).74 Ca21-depend-
ent transcription factor NFAT may play an important role in
this process.87 NFAT also induces the transcription of many
other proinvasive genes such as autotoxin.88 As described
above, STIM/ORAI-mediated SOCE plays important roles in
the proliferation and metastasis of cancer cells. The exact
function and mechanism are complicated and context-
dependent, as summarized in Table 1 below.

SOCE Regulates Tumor Angiogenesis
The recruitment of new blood vessels, or angiogenesis, repre-
sents one of the central hallmarks of cancer that is necessary
to support tumor growth and metastasis. During angiogene-
sis, endothelial cells proliferate so that new capillary blood
vessels can develop from preexisting microvessels; they then
form tubes and connect the tips of these tubes to create loops
to tolerate blood flow.94,95 VEGF and its receptors function
as critical regulators during angiogenesis.96 After binding to
its receptor, VEGF can elicit Ca21 entry via PLCg activation,
thereby inducing SOCE in human endothelial cells. The
knockdown of STIM or ORAI could reduce VEGF-induced
Ca21 influx in human umbilical vein endothelial cells
(HUVECs), and consequently inhibit cell proliferation,
migration and tube formation.67,97 On the other hand, in
cancer cells, SOCE can control the secretion of VEGF. For
example, in a mouse xenograft model, the inhibition of
SOCE resulted in decreased VEGF secretion in cervical can-
cer cells, which led to a reduction in neovascularization and
tumor growth.66

Endothelial progenitor cells (EPCs) are a population of
progenitor cells that may proliferate, migrate and acquire a
mature endothelial phenotype.98 After acute vascular injury,
EPCs are recruited from the bone marrow (BM) to sites of
tissue regeneration where they sustain neovascularization,
which is triggered by the increased availability of angiogenic
growth factors or chemokines such as VEGF and angiopoie-
tin.99 Emerging evidence indicates that EPCs contribute to
the sprouting of new tumor vessels to accelerate tumor pro-
liferation and metastasis.100,101 SOCE is essential for the pro-
liferation, motility and tubulogenesis of EPCs.102–104 A recent
study revealed that SOCE is upregulated and controls prolif-
eration and tubulogenesis in renal cellular carcinoma (RCC)-
EPCs.105 The higher amplitude of SOCE in these cells is asso-
ciated with the overexpression of STIM1, ORAI1 and
TRPC1. The suppression of SOCE in RCC-EPCs represents a
novel and promising method for ameliorating vascularization
in RCC.105

Collectively, augmented SOCE appears to promote angio-
genesis through the following possible mechanisms: (i) SOCE
in cancer cells regulates the production of VEGF, which is
critical for the formation of new blood vessels66; (ii) SOCE in
endothelial cells regulates the cell cycle and proliferation of
these cells97; (iii) Ca21-dependent activation of NFAT regu-
lates the expression of molecules such as tissue factor (TF)
and COX-2, which are essential for endothelial cell migration,
tube formation and angiogenesis.106–108

SOCE Regulates Antitumor Immunity
An increase in the intracellular Ca21 concentration is
required for a variety of cellular immune functions. Ca21

influx in immune cells occurs predominantly through the
SOCE process. Defects in SOCE that are caused by mutations
in the STIM or ORAI genes result in dysfunction of immune
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cells, including T cells, B cells, NK cells, dendritic cells, mast
cells, macrophages and neutrophils.109 For example, SOCE-
deficient NK cells display defective exocytosis of cytotoxic
granules. Moreover, pharmacological inhibition of SOCE
severely impaired the cytotoxicity mediated by primary NK
cells and CD81 effector T cells.110 Recently, Weidinger et al.
found that the normal function of SOCE in cytotoxic CD81

T cells is required to retard tumor growth in xenograft mod-
els of melanoma and colon carcinoma. This is because
STIM1 and STIM2 deficiency in CD81 T cells significantly
impairs their production of IFN-g and TNF-a, their expres-
sion of Fas ligand and degranulation of CTLs.68 SOCE was
also shown to participate in the cellular immune response as
the blockage of SOCE by BTP2 significantly inhibited the
antihost CTL response, donor T-cell expansion and IFN-g
production in mouse models of graft-versus-host disease
(GvHD).111 Fuchs et al. reported that a homozygous R429C
point mutation in STIM1 in two patients completely abol-
ished SOCE in their T cells. This loss-of-function mutation
of STIM1 resulted in a lack of NKT cells and in abnormal
functions of NK- and FOXP3-positive regulatory T (Treg)
cells, and eventually impaired antiviral immunity, which
helps prevent chronic CMV and EBV infections.112 Shaw
et al. reported that STIM1/STIM2-mediated SOCE contrib-
uted to the differentiation and function of effector CD81 T
cells during early acute virus infection.113 More importantly,

SOCE was found to regulate CD40L expression in CD41 T
cells, which is essential for the maintenance of memory
CD81 T cells and their ability to mediate recall responses
and protection against secondary viral infections.113 Recur-
rent and chronic viral infections such as EBV, CMV and
human herpes virus 8 (HHV-8) result in the development of
virus-associated tumors in SOCE-deficient patients.113 For
example, it was shown that T-cell immunodeficiency caused
by STIM1 mutation accelerated the development of lethal
Kaposi sarcoma (KS) upon infection with HHV-8.114

ORAI- and STIM-mediated SOCE is also required for the
cell differentiation and functions of traditional effector CD41

T cells, including Th1 and Th2 cells.109 Notably, the prolifer-
ation of Th17 cells also appears to require SOCE.115 SOCE-
deficient CD41 T cells grown under Th17 polarizing condi-
tions in vitro failed to produce IL-17, which acts as a proin-
flammatory molecule to induce angiogenesis during tumor
progression.115 The production of IFN-g and IL-2 by Th1
cells is also decreased in the absence of SOCE.116 However,
IFN-g and IL-2 are commonly regarded as tumor inhibitory
cytokines.117,118 Thus, the exact role of CD41 T-helper cells
in tumor development is determined by its differentiation
status. Interestingly, effector CD41 T cells appear to require
varying degrees of SOCE for their maximal activity and
exhibit differential sensitivity toward SOC inhibitors. For
instance, the levels of SOCE required for the differentiation

Table 1. Aberrant SOCE in different cancer cells

Ca21 channel Cancer type Major effects Possible mechanisms Ref.

STIM1–ORAI1 Cervical cancer SiHa
and Caski cells

Promotion of tumor cell growth,
migration and invasion

STIM1 knockdown induces cell cycle
arrest, abolishes focal adhesion and
actomyosin formation, and
tumorigenesis

66,89

STIM1–ORAI1 Ovarian cancer A2780 cells Contribution to cisplatin resistance ORAI1/STIM1 enhances AKT activity 73

STIM1–ORAI1 Breast cancer MDA-MB-231
and 4T1 cells

Promotion of tumor metastasis Blockade of SOCE impairs focal adhesion
turnover

79

STIM1–ORAI1 Colorectal cancer cells Promotion of cell motility STIM1 overexpression causes upregu-
lated expression of COX-2 and PGE2
and promotes EMT

74,75

STIM1–ORAI1 Hepatocarcinoma
HCC-LM3 cells

Promotion of cell migration
and invasion

STIM1 knockdown impairs focal adhesion
turnover

76

STIM1–ORAI1 Glioblastoma U251 cells Promotion of cell proliferation
and invasion

STIM1 suppression induces cell cycle
arrest

82

STIM1–ORAI1 Epidermoid carcinoma
A431 cells

Promotion of cell and tumor growth STIM1 knockdown inhibits DNA synthesis
and decreases EGFR phosphorylation

81

STIM1–ORAI1 Melanoma cells Promotion of cell proliferation
and migration

SOCE activates the ERK signaling
pathway

83

ORAI3 Breast cancer MCF-7 cells Promotion of cell growth,
invasion and tumorigenesis

ORAI3 knockdown reduces c-Myc expres-
sion and activity

90

TRPC3 Ovarian cancer SKOV-3 cells Increase in cell proliferation
and tumor formation

TRPC3 inhibition dephosphorylates Cdc2
and induces G2/M phase arrest

91

TRPC6 Gastric cancer AGS and
MKN45 cells

Increase in cell growth and
tumor formation in mice

TRPC6 blockade induces G2/M phase
arrest

92

TRPC6 Glioblastoma U373 MG
and HMEC-1 cells

Promotion of cell growth,
invasion and angiogenesis

TRPC6 is coupled to the activation of the
calcineurin–NFAT pathway

93
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and function of Th17 cells are higher than that of Th1 and
Th2 cells.119 Kim et al. reported that Th17 cells showed
higher sensitivity to the SOCE inhibitor than Th1 and Th2
cells.120

Until now, the possible mechanism of the regulation of
antitumor immunity by SOCE could be summarized as fol-
lows: (i) SOCE induces the activation of Ca21-dependent
transcription factors, which are essential for the development
and normal function of immune cells such as NFAT,121

CREB122 or activating transcription factor (ATF) 2123 and (ii)
SOCE mediates the production of cytokines and chemokines
that can directly kill cancer cells.

Because the function of the immune system during cancer
progression is paradoxical,124 it is necessary to be aware that
not all of the immune responses that are regulated by SOCE
are cancer protective. Thus, a clarification of the mechanisms
and functions of SOCE in different types of immune cells in
different stages of tumor development is important for a
deeper understanding of the role of SOCE in antitumor
immunity. In the early stages of tumorigenesis, SOCE is
important for the normal function of immune surveillance
system, which can prevent tumorigenesis. Once pathogens or
cells escape immune surveillance, more immune cells are
recruited and an inflammatory microenvironment is formed.
It has been shown that chronic inflammation is the cause of
various human cancers.125 For example, patients with inflam-
matory bowel disease (IBD) have an increased risk for colo-
rectal cancer.126 Sustained Ca21 flux via SOCE is necessary
for the activation of immune cells in cases of chronic inflam-
mation. Therefore, it is possible to avoid the initiation of
tumor formation by inhibiting SOCE-involved chronic
inflammation. However, as mentioned above, the functions of
different types of immune cells are diverse, and their role in
tumor immunity is sometimes different even for cells of the
same cell type. For example, Th17 cells can promote tumor
growth through IL-17 secretion, but it also prevents tumor
development via the induction of the recruitment and activa-
tion of cytotoxic CD81 T cells within tumors.127 Briefly, the
role of SOCE in antitumor immunity is complicated and
requires investigation in specific conditions. In particular,
Weidinger et al. demonstrated that SOCE in CD81 T cells is
critical for their cytotoxic activity against tumor cells.68 The
model used in this study was the engraftment of melanoma
and colon carcinoma cells into conditional gene knockout
mice, rather than a spontaneous tumor formation model.
The function of CD81 T cells against xenogeneic and alloge-
neic tumor cells may be different. The results should there-
fore be explained cautiously.

As mentioned above, distinct T-cell types need different
amounts of Ca21 influx for their function. Th17 and cancer
cells appear to require relatively large amounts of Ca21

influx. For example, genetic depletion of STIM1 alone can
readily lead to impaired Th17 cell function,128,129 suggesting
that Th17 cells react very sensitively to even partial blockade
of SOCE. By contrast, CTLs requires very little residual Ca21

influx for their function. Thus, the cytotoxicity of CTLs and
antiviral immunity mediated by CD81 T cells are only
impaired if both STIM1 and STIM2 are deleted in mice, in
which no residual Ca21 influx is present.68,113 Such CTL
defects were not observed in either STIM1 or STIM2 single
knockout mice, where moderate SOCE is still present in
CD81 T cells. The differential sensitivity of T lymphocytes
and cancer cells toward Ca21 influx might open a therapeutic
window, in which SOCE of cancer cells and proinflammatory
Th17 cells can be targeted without affecting antitumor func-
tions of CTLs, thereby maximizing the antitumor efficacy.

In summary, SOCE can directly regulate apoptotic cell
death, proliferation and metastasis of cancer cells. SOCE also
promotes VEGF secretion, which subsequently stimulates
SOCE in vascular endothelial cells and leads to their prolifer-
ation for angiogenesis. Interestingly, in immune cells, SOCE
plays a paradoxical role during cancer development. Figure 2
presents an overview of the primary signaling pathways that
are regulated by SOCE in cancer cells and in cells of the
tumor microenvironment. Because the function of immune
cells in cancer is complicated, the xenograft model that was
used in the latest work68 could not fully mimic the tumor
initiation and development process in vivo. Therefore, other
well-designed experiments should be conducted before a final
conclusion can be made with regard to the role of SOCE in
modulating antitumor immunity.

Therapeutic Potential of SOCE in the Treatment of
Cancer
As knowledge of SOCE in human disease accumulates, there
has been an increased interest in the development of SOCE
inhibitors that can be used to fight against cancer. Several
small-molecule SOCE inhibitors have been developed over
the past decades, which hold promise in the treatment of
cancer.

SKF-96365

Primarily introduced as an inhibitor of receptor-operated cal-
cium entry (ROCE),130 the imidazole compound SKF-96365
was found to block SOCE in various cells such as mast, rat
basophilic leukemia (RBL) and Jurkat cells.131–133 SKF-96365
could block STIM1 overexpression-induced SOCE augmenta-
tion and NFAT nuclear translocation; this indicates that
STIM1 is one of its potential targets.59,134 As an inhibitor of
SOCE, SKF-96365 prevented tumor cell metastasis in a
mouse model of breast cancer.79 In another study, the block-
ade of SOCE by SKF-96365 retarded the growth and angio-
genesis of cervical cancer cells.66 However, SKF-96365 is not
selective for CRAC channels and could block other Ca21

channels,131 and thus more studies need to be performed to
specifically delineate its mechanisms in various types of can-
cer cells.
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2-APB

Initial studies reported that 2-APB could inhibit IP3-induced
Ca21 release in rat cerebellar microsomes in a dose-dependent
manner.135 Later, it was found that its inhibitory effect was
mainly due to a blockade of SOCE.136 In addition, this inhibitory
effect was IP3 receptor-independent and was more potent when
it was applied extracellularly.137 In native immune cells, 2-APB
modulates SOCE activity in a paradoxical manner in that it exerts
stimulatory effects at low concentrations and inhibitory effects at
high concentrations.137 This dual regulation is also observed in
HEK293 cells.138 It is speculated that low doses of 2-APB stimu-
late Ca21 influx by promoting STIM1–ORAI1 interactions, while
high doses inhibit SOCE in part due to its inhibition of STIM1
redistribution.138 Interestingly, high doses of 2-APB could force-
fully activate the ORAI3 channel and change its ion selectivity
independently of STIM1 or Ca21 store depletion.56,139 It has been
postulated that 2-APB directly binds to the ORAI3 channel,
which results in an increase in channel conductance and limits
selectivity. 2-APB was reported to inhibit the proliferation of hep-
atoma, cervical and gastric cancer cells66,140,141 and the migration
of cervical and colorectal cancer cells.74,89

Bistrifluoromethyl-pyrazole derivative, BTP2

First identified as a compound that blocks IL-2 production in
lymphocytes,142 BTP2 could potently and specifically inhibit
SOCE in T lymphocytes without interference with other
important Ca21 influx pathways.143 Additionally, BTP2 does

not appear to affect STIM1 redistribution or STIM1–ORAI1
coupling.144 Preincubation of Jurkat T-cells with BTP2 inhib-
its SOCE at an IC50 of approximately 10 nM.143 As men-
tioned above, the blockade of SOCE by BTP2 prevented
antigen-induced T-cell responses through the inhibition of
the antihost CTL response, donor T-cell expansion and IFN-
g production in mouse models of GvHD.111 BTP2 could also
inhibit antigen-induced cytokine secretion in mast cells,
which is important in inflammation and antitumor immu-
nity.145 Mercer et al. showed that the actin reorganizing pro-
tein Drebrin was the target of BTP2 because the knockdown
of Drebrin in Jurkat T cells inhibited SOCE similar to what
occurred after treatment with BTP2.146

Anti-ORAI1 monoclonal antibodies

Because the ORAI1 protein is the pore subunit of the calcium
channel responsible of SOCE and may serve as an attractive
therapeutic target, specific anti-human ORAI1 monoclonal
antibodies (mAbs) have been generated.147 Recently, Cox et al.
described a newly generated anti-ORAI1 mAb with specificity
for the second extracellular loop that can inhibit T-cell activa-
tion in vitro and T-cell-mediated GvHD in vivo. This indicates
its therapeutic potential for the treatment of autoimmune dis-
eases and prevention of xenograft rejection.148

Other small molecular inhibitors

In recent years, several other small molecules have been
developed as specific inhibitors of SOCE.120,149,150 For

Figure 2. Proposed roles of SOCE in cancer. In tumor cells, SOCE promotes cancer cell proliferation via the upregulation of Cdc25C and the

downregulation of p21. It also promotes cancer cell metastasis via the modulation of calpain- and Pyk2-mediated focal adhesion turnover

or through upregulating the expression of COX-2, PGE2 and autotoxin. SOCE also contributes to drug resistance through an enhancement of

AKT activity. In cancer cells, SOCE boosts the secretion of VEGF, which facilitates endothelial cell proliferation, angiogenesis and tumor

growth. SOCE-mediated chronic inflammation through activation of Th17 cells is speculated to promote tumor growth. However, in NK,

CD81 T and Th1 cells, SOCE is required to inhibit tumor progression.
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example, the blockade of calcium influx by RO2959, which
was developed by Roche, could inhibit proliferation and acti-
vation of human T cells as well as cytokine production in
these cells.150 Kim et al. reported that compound 5D pre-
vented the development of experimental autoimmune
encephalomyelitis (EAE) in mice, potentially via the inhibi-
tion of the differentiation of Th17 cells according to tests in
animal models.120

Until now, no SOCE inhibitors have been approved to
treat cancer patients. Carboxyamidotriazole (CAI), a novel
synthetic compound that can inhibit stimulated calcium
uptake, was reported to exert potent antitumor effects,151,152

and has recently been investigated in preclinical studies and
clinical trials. Several phase I/II/III clinical trials (http://clini-
caltrials.gov/) that involve CAI are currently underway. A
phase II trial of CAI in patients with relapsed epithelial ovar-
ian cancer showed that CAI could promote disease stabiliza-
tion in these patients. Given its limited toxicity profile, it
may serve as a maintenance therapy for this disease.153

Conclusions and Perspectives
SOCE, an essential component involved in maintaining intra-
cellular Ca21 homeostasis, regulates several aspects of the
malignant behavior of cancer cells, including tumor growth,
angiogenesis and metastasis. SOCE represents a promising
target for anticancer therapy. The molecular mechanisms and
the consequences of aberrant SOCE signaling are context-
dependent. As shown in Supporting Information Figure 1,
AKT, ERK, NFAT and COX-2 are critical molecules that act
downstream of SOCE. Because the molecular compositions of
SOCE and their interactions are complicated, our under-
standing of the role of SOCE in cancer cells is still limited.
STIM/ORAI-mediated SOCE appears to play a dual function
during tumorigenesis. On one hand, augmented SOCE has
been reported to promote tumor growth and metastasis in a
number of cancer types. On the other hand, STIM1 causes
growth arrest in the human rhabdomyosarcoma and rhab-
doid tumor cell lines RD and G401.70 In addition, ORAI1
has been reported to facilitate apoptosis of PCa cells, and the
knockdown of ORAI1 leads to drug resistance.71 Thus, the
function of SOCE in tumors is inconsistent in different cell
types and tumor stages. A careful analysis is necessary to
determine the effects of SOCE on tumors.

More attention should be paid to the role of SOCE in
immunosuppression. As discussed above, SOCE participates
in cytotoxic T-cell differentiation and activation, and during

the process of tumorigenesis, the host immune system plays
an important role in immune surveillance. In the early stages
of tumorigenesis, a small number of premalignant epithelial
cells act independently of oncogenic pathways and angiogen-
esis. Hence, SOCE inhibitors may not exert anticancer effects,
but rather, they may promote tumorigenesis because of their
immunosuppressive function. After tumor formation, tumor
cells acquire immune tolerance, and immune cells in the
tumor tissue secrete large amounts of inflammatory cytokines
that in turn promote the proliferation of tumor cells and
angiogenesis. Based on the aforementioned discussion, there
might be specific thresholds of SOCE signaling, so as a thera-
peutic window might exist, in which functions of cancer cells
and proinflammatory Th17 cells can be targeted with moder-
ate SOCE inhibition without affecting antineoplastic func-
tions of NK, CTL and Th1 cells. The blockage of SOCE
could suppress tumor growth through the following three
mechanisms: (i) the inhibition of proliferation and metastasis
of cancer cells; (ii) the inhibition of the activation of immune
cells that secrete tumor-promoting inflammatory cytokines
and (iii) the inhibition of vascular endothelial cell prolifera-
tion, migration, tube formation and angiogenesis.

Because the STIM and ORAI proteins are ubiquitously
expressed, toxicity to normal cells should also be considered
when SOCE inhibitors are applied systemically. An ideal
solution is to develop a class of chemical modulators of
CRAC channels that specifically targets tumor cells or tumor
vascular endothelial cells. Alternatively, local drug adminis-
tration could achieve enhanced antitumor effects while reduc-
ing toxicity. Furthermore, some known downstream signaling
pathways that are regulated by SOCE such as AKT, ERK,
COX-2 and NFAT are specifically overexpressed or activated
in tumor tissues. These pathways can also be considered for
cancer intervention. Since the discovery of the STIM and
ORAI proteins, we have witnessed tremendous progress in
the mechanistic dissection of SOCE and functional character-
ization of SOCE deficiency in murine models. Because SOCE
plays paradoxical roles in tumorigenesis and tumor progres-
sion, the specific role of SOCE in different stages of and
types of cancer warrants further investigation.
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