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Abstract

Machine learning (ML) provides the ability to examine massive datasets and uncover patterns
within data without relying on a priori assumptions such as specific variable associations,
linearity in relationships, or prespecified statistical interactions. However, the application of
ML to healthcare data has been met with mixed results, especially when using administrative
datasets such as the electronic health record. The black box nature of many ML algorithms
contributes to an erroneous assumption that these algorithms can overcome major data issues
inherent in large administrative healthcare data. As with other research endeavors, good data
and analytic design is crucial to ML-based studies. In this paper, we will provide an overview of
common misconceptions for ML, the corresponding truths, and suggestions for incorporating
these methods into healthcare research while maintaining a sound study design.

Introduction

The mandate to adopt electronic health records (EHRs) in 2009 under the Health Information
Technology for Economic and Clinical Health Act has resulted in widespread electronic collec-
tion of health data [1]. With the increase in the use of electronic medical data comes an increase
in the amount of healthcare data that are generated. Such EHR data, insurance databases, and
other available clinical data have the potential to aid researchers in solving clinical problems.
Machine learning (ML) algorithms are quickly rising to the top of the list of tools that can
be used to address such problems. However, how to properly use ML methods in the clinical
setting is not widely understood. Liu et al. have published an article educating clinicians how to
read papers utilizing ML techniques in the medical literature [2]. Nonetheless, understanding
the use ofML approaches in healthcare is still needed, especially since precision and accuracy are
often key components of solutions to healthcare problems. The intended audience for this
manuscript is clinicians and translational researchers interested in learning more about the
overall process of ML and predictive analytics, clinicians interested in gaining a better under-
standing of the working framework for ML so that they can better communicate with the indi-
viduals creating such models, and analytics professionals that are interested in expanding their
skillset to better understand predictive modeling using healthcare data.

Here, we address some challenges specific to working with EHR data, some best practices
for creating a ML model through a description of the ML process, and an overview of various
different ML algorithms (with an emphasis on supervised methods but also give mention to
unsupervised techniques) that can be useful for creating predictive models with healthcare data.
Our goal is not to educate the reader on precisely how to utilize various different ML algorithms
but to better understand the process of creating predictive models for healthcare scenarios while
using ML techniques. We discuss the pros and cons of several supervised ML methods and also
note some additional considerations regarding the use of ML in healthcare that are outside the
scope of this manuscript. We finish with a discussion of the limitations of this paper as well as a
discussion of the field of ML in healthcare research.

Challenges Specific to Healthcare Data

Common sources of healthcare data include the EHR and claims submitted to payers for health-
care services or treatments rendered. Healthcare data stem from the need to support patient
care, protect clinicians from liability, and to facilitate reimbursement. Healthcare data are
not documented or collected for the purpose of research; thus, unique challenges exist when
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using this type of data for research. One widely used example EHR
dataset is Medical Information Mart for Intensive Care III, an
openly available database consisting of deidentified health data
associated with about 60,000 intensive care unit admission.
Different tables within the database compromise information on
demographics, vital signs, laboratory test results, medications,
and more [3].

It is important to understand the intent and meaning of health-
care data prior to using it as a secondary data source for research.
For example, presence of a single diagnosis for coronary artery dis-
ease does not necessarily mean a patient was diagnosed with coro-
nary artery disease; rather the diagnosis may be documented
because the patient was undergoing evaluation to determine
whether they had coronary artery disease and in fact coronary
artery disease was ruled out. In this example, an International
Disease Classification (ICD) code for coronary artery disease
was documented. Such medical nomenclature, including ICD
codes (for diagnoses), Current Procedural Terminology (CPT,
for procedures), and RxNorm (for medications) are used to docu-
ment services provided to patients but must be considered within
the context of the clinical workflows where they are used.
Healthcare data and medical nomenclature must be used in con-
cert with other healthcare data to decipher the context of the clini-
cal situation. In the case of the example above where
documentation of an ICD code reflects diagnostic differential
and not an actual diagnosis, there are multiple approaches that
can be taken to exclude such non-diagnostic cases: including
ICD codes documented on more than one encounter separated
by a certain time period or including ICD codes in the absence
of a CPT code for evaluation within a certain time period. The
approach to defining metrics for a given characteristic/variable
is complex and varies based on the specific variable. When
possible, metrics used to define specific variables should align with
approaches published in the literature or formalized computa-
tional phenotypes. A computational phenotype is a clinical
variable such as a diagnosis that can be determined using struc-
tured data and does not require clinician interpretation or manual
chart review [4]. Computational phenotypes, such as those avail-
able from eMERGE (https://emerge-network.org) or PheKB
(www.phekb.org), can be used to overcome the challenges of accu-
rately identifying certain characteristics within EHRs.

Similarly, electronic systems often include more than one field
to enter a given data element. Thus, understanding which fields are
useful require understanding of the clinical context or workflows.
For example, there are often many fields in the EHR where blood
pressure can be documented and some may represent patient-
reported, which may not be relevant to all research questions.
Pertinent fields need to be collapsed and labeled accordingly. In
some instances, using a common data model such as the
Observational Medical Outcomes Partnership (https://www.
ohdsi.org/data-standardization/the-common-data-model/) can help
organize healthcare data into a standardized vocabulary. A
common data model is especially helpful when integrating health-
care data from disparate sources. One data field in health system A
may be used differently than the same field at health system B.
Common data models account for such differences, making it eas-
ier to accurately pool data from different sources.

While claims data are structured, much of healthcare data
within the EHR are unstructured, documented in the form of
free-text notes. It is critical to know what data are accurately rep-
resented within structured fields and what are not. Data within
unstructured documentation often represent a rich source of

information and may be necessary to accurately represent the sit-
uation. For example, if evaluating disease severity, patient-reported
outcomes are often essential, but these are often only documented
in unstructured clinical notes. When unstructured data are neces-
sary, text mining and natural language processing (NLP) methods
can be used. Such methods to transform unstructured data into
structured, analyzable data are becoming more mainstream, but
nonetheless do require additional time and can be highly complex.

Healthcare data are also fraught with errors and missingness.
Data entry is prone to simple human error including typos and
omission in both structured and unstructured data. In some
instances, typos and missing data need to be addressed or cor-
rected, but in the context of using healthcare data for ML applica-
tions, this is not always ideal. If the intent of a givenML application
is to create a predictive model that will continue to use healthcare
data, correction of errors would be counterintuitive, given these
errors are part of the data and need to be accounted for in the
model. TheMLmodels should be created using the actual data they
are being created to use, which may include representation of
errors and missingness. Further, missingness should not be auto-
matically considered an error. In healthcare, missing data can be an
indication of something meaningful and worthy of evaluating. For
example, absence of a given provider ordering a urine drug toxi-
cology screen for a patient prescribed high doses of opioids may
suggest suboptimal patient care and thus is important to capture.
Missing data can also be because the data were irrelevant in a given
situation. In healthcare, data are not always missing at random.
However, another type of missing data is the product of patients
receiving care across different health systems, which is unavoid-
able, and how it is addressed depends on the research question.

ML Process

The creation of a predictive model via ML algorithms is not as
straightforward as some in the realm of clinical and translational
research would like. However, once the process is fully understood
and followed, the creation of a predictive model can be straightfor-
ward and rigorous. Fig. 1 illustrates the overall process which is
described in this section. The process starts with the acquisition
of a worthy dataset (of sufficient size and scope), data preparation
which includes steps such as the appropriate treatment of missing
data, identifying all data sources/types, and the appropriate treat-
ment of identified errors. Next comes the selection of appropriate
ML algorithms for the problem at hand as not all methods work for
all types of outcomes. Once a method or methods have been
chosen, the model building process can begin. After a suitable
model has been built on the training dataset, the model should also
be evaluated by examining how well the created model also works
on the testing dataset. Finally, the ultimate model should be vali-
dated on a separate dataset before it can be used in practice for pre-
diction. Here, we discuss the common steps necessary for creation
of a predictive model based on EHR data for clinical use.

Data Acquisition

The data acquisition step is critically important for the success of
the final predictive model. This step often involves writing the
appropriate query for an EHR data warehouse to ensure that the
correct data for the question at hand are obtained. Before request-
ing the data, a clear understanding of the research question and
appropriate study designs is critical. The research question defines
the scope of the data request and the data requested must
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minimally address the research question. If the question is not
clearly defined, it is common to omit key data elements from
the request or request more data than necessary. When leveraging
EHR data for research, attention must be paid to how the data are
generated to minimize important biases that could undermine the
study question. Selecting the appropriate study design is founda-
tional and directs the sampling and data analysis necessary to effec-
tively achieve the study aims or objectives. This frequently involves
working with an informatician or analyst skilled in creating appro-
priate queries for relational databases used to store patient infor-
mation. An important step is also ensuring that the database that
one is working with is themost up-to-date version (or if not, know-
ing that is a limitation of the study).

Data Preparation

The EHR data acquired can be fraught with errors, whether the
data are pulled directly from an EHR software system (such as
Epic or Cerner) or compiled by a resident or fellow. Knowing
where potential errors may lie is key in knowing how to handle
the data downstream. Once potential errors have been identified,
they can be properly dealt with and corrected. Data preparation
also includes how one handles missing values as creating ML algo-
rithms with vast amounts of missing data can greatly bias the
resultant predictive model. Some ML methods implicitly handle
missing data, but when they do not, several methods exist for han-
dling missingness. One measure is to remove subjects who have
any missing data. This will reduce the sample size of the dataset
to ensure only complete information is analyzed, but this approach
often introduces selection biases. Another option is to impute the
missing data in some fashion. Common imputation methods are
replacing the missing value with the mean or median for a given
variable, replacing the missing value with zero or the most com-
monly occurring value for a given variable, or more intensive

computational methods such as k-nearest neighbor imputation
or methods involving regression. Which method is best to choose
depends on the structure of the data and why the value is missing
[5]. In addition to cleaning the data, the data preparation step also
includes variable selection/feature reduction. While most algo-
rithms will create a model from any number of variables, culling
the number of variables chosen for the initial model creation
can help ensure the model is not overly complicated or large.
Common methods for variable selection include random forests
(choose the top x number of variables from the variable importance
list), least absolute shrinkage and selection operator [6], principal
component analysis [7] (choose the top × number of principal
components), stepwise selection procedures, and basic hypothesis
testing (choose those variables with a p-value less than a prespeci-
fied threshold). Common feature selection methods include filter
methods and wrapper methods. Filter methods are where one uti-
lizes some method (a hypothesis test or correlation coefficient for
example or linear discriminant analysis) to filter the variables
based upon some prespecified value or cutoff [8–10]. Wrapper
methods are an iterative process where variables are selected,
assessed for model accuracy, and then revised based on perfor-
mance. Common wrapper methods include forward selection,
backward elimination, and recursive feature elimination. The exact
number of variables to select is subjective and should be based on
the total sample size within the dataset. Additionally, one should
also consider model utility in making the decision for how many
variables to include in the final model. For instance, if a model is to
be clinically relevant and utilized in practice, a physician com-
monly prefers a model with fewer variables instead of one with
20 as that means less underlying data/testing is needed to inform
potential decision-making. These feature reduction and screening
methods can be used with or without an outcome in supervised and
unsupervised methods, respectively; however, feature screening
methods that look at the association between predictors and an
outcome must be based on the training data only in order to pre-
vent overfitting/bias [11].

Choosing a Method

Once your dataset has been checked for errors and missing values
have been dealt with, it is time to choose a method for the creation
of a predictivemodel. Not all methods work best for all questions of
interest, so it is important to know the format of the outcome var-
iable (is it binary, categorical, continuous?) as well as the format/
structure of the independent variables (are they categorical, con-
tinuous, normally distributed, correlated, longitudinal?). It is also
important to understand if you will be able to use a supervised
method or an unsupervised method. Supervised methods assume
that the ultimate outcome is known (for instance, this person has
Stage 1 cancer vs Stage 2 cancer). Unsupervised methods do not
have such assumptions.

Training/Testing

Despite which method is chosen above, the process of creating a
model is similar. Some users are tempted to throw all the data into
an algorithm and examine the result. This is less than ideal for cre-
ating predictive models that can be useful in the clinic. The reason
being is that such a model may be overfit for the data at hand (i.e.
the model works really well on the data that were used to create it,
but it does not perform well in other scenarios). To avoid overfit-
ting, themodel should be created initially on training data and then
separately evaluated on testing data. Typically with developing and

Fig. 1. Illustration of the iterative machine learning process.
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validating models (training and testing), the dataset is randomly
split into a training set (80% of the data) and a testing set (the
remaining 20% of the data). While the 80/20 split is commonly
used, other splits can be used as well. What is important is that
the training set is large enough in sample size to yield meaningful
results and also has characteristics that resemble the entire dataset
[12]. The model is initially created using only the training set.
Evaluation metrics are examined, and then the same model is
run using the testing dataset, and evaluation metrics for it are
examined. Sometimes, cross-validation techniques are also used
on the training dataset.

In general, cross-validation is any approach that leaves some of
the data out when creating the initial model and then includes it in
a testing fashion [11, 13–17]. This includes splits other than 80/20
(e.g. 60/40), repeated cross-validation (e.g. 80/20 split repeated five
times where each set is held out once), bootstrap sampling [18–21],
or subsampling. Nomatter the splitting method, if using a repeated
cross-validation technique, the process is repeated multiple times
so that different subsets of data are left out for separate runs of the
model building process, and the model performance metrics are
averaged for each subset of testing data to produce an overall aver-
age performance metric [22–26].

The amount of data and overall sample size required for predic-
tion models depend on multiple factors. The sample size consid-
erations are essential in the design phase of prediction modeling
techniques as the sample size is dependent on a variety of factors,
including the number of outcome events, the prevalence of the out-
come or the fraction of positive samples in the total sample size,
and the number of candidate predictor variables considered.
Additional considerations include the number of classes the model
is to predict. If the validation plan for the model is to develop the
model on a subset of data and then test the model on the remaining
subset, the sample size considerations should account for the split
dataset, particularly if the prevalence of the event is low, to ensure
the testing set will have ample events to perform.

Training Set Sample Size Planning for Predictive Modeling

Healthcare databases may contain thousands to hundreds of thou-
sands of available subjects. Given such a large sample size, it may
not be necessary to formally estimate the sample size needed for
building a predictionmodel. In other cases, the number of available
subjects will be limited and a formal sample size calculation will be
more useful. As discussed in Figueroa [27], there are two main
approaches to estimate the training dataset sample size needed
for building a prediction model: “learning curve” and “model-
based” approaches. “Learning curve”methods require preliminary
data on a set of subjects with all features/predictors and outcome of
interest measured [27–29]. One chooses a specific type of predic-
tion model and estimates the prediction accuracy of the model
when varying the sample size by leaving some of the subjects
out in an iterative manner. A “learning curve” is then fit to the
resulting prediction accuracies compared to the sample size used
to fit the model. One can then extrapolate from the learning curve
to estimate the sample size needed to obtain a desired level of pre-
diction accuracy. The main downside of this approach is the
requirement of substantial preliminary data. In contrast,
“model-based” approaches do not require preliminary data but
make strong assumptions about the type of data used in the study
(e.g. all predictors are normally distributed) [30–32]. Dobbin et al.
offer an online calculator for estimating the necessary sample size
in the training dataset that only requires three user input

parameters [31,33]. Despite its strong assumptions, Dobbin
et al. argue that their method is “conservative” in that it tends
to recommend sample sizes that are larger than necessary.
McKeigue provide R code for their method which also only
requires three user input parameters [32].

Model Evaluation

Once a model has been created using the training dataset, the
model should be evaluated on the test dataset to assess how well
it predicts outcomes for new subjects that were not used to
build/train the model. The reason for doing this is to ensure that
the model is not overfit for the data it was trained on and to also
ensure that the model is not biased toward particular values within
the training dataset [11]. Random chance alone could have
impacted the model fit from the training data, and evaluating
the model fit on the testing data can diminish this impact
[34,35] Several methods exist for evaluating predictive accuracy,
and usually a combination of techniques are used. Evaluation
methods for supervised learning with categorical outcomes include
assessing discrimination through the area under the receiver oper-
ating characteristic curve, which can be obtained by calculating the
C-statistic (“Concordance” statistic) and partial C-statistic for the
various models [36]. Additional steps include evaluating a confu-
sion matrix which indicates how many individuals the model cor-
rectly classifies and howmany individuals are incorrectly classified.
See Table 1 for a list of prediction accuracy metrics that can be used
for particular types of outcomes (e.g. continuous, binary, multi-
category, or time-to-event). The chosen evaluation metric would
be calculated for the training data and then separately for the test-
ing data. Ideally, the prediction accuracy would be high for both the
training and testing datasets. Calibration methods can be used to
assess how well the predicted outcomes correlate with the true out-
comes, including using scatter plots, reporting a regression slope
from a linear predictor, or using the Hosmer–Lemeshow test to
compare accurate predictions by decile of predicted probability
[37,38]. High accuracy for the training data with low accuracy
for the testing data indicate that the model is overfit for the data
and will likely not generalize well to other settings. Lastly, special
methods should be used when evaluating predictive performance
for categorical outcomes with unbalanced classes (i.e. when the
number of subjects per class is not approximately equal), such
as over-/undersampling, cost-sensitive methods, or precision
and recall curves [39,40].

Table 1. Metrics for evaluating prediction accuracy for various types of outcomes

Outcome type Prediction accuracy metrica

Continuous mean squared error (MSE), root mean squared
error (RMSE), mean absolute error (MAE),
proportion of outcome variance explained (R2)

Binary AUC, C-statistic, sensitivity, specificity, positive
predictive value (PPV), negative predictive value
(NPV), precision, recall

Categorical with three
or more categories

“one-versus-allb” versions of metrics for binary
outcome, multinomial log-likelihood

Time-to-event C-statistic, Integrated Brier Score

aMost of the above performance metrics are defined in Kuhn [79]. For machine learning with
time-to-event outcomes, Ishwaran [111] used the C-statistic [36], while Bou-Hamad [112]
used the Integrated Brier Score [113].
bFor a categorical outcomewith three ormore categories, “one-versus-all” versions ofmetrics
for a binary outcome can be usedwhich assess prediction accuracy for one category versus all
other categories combined.
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Parameter Tuning

If the model created does not fit the data well, or if the model is
overfit for the training data, parameter tuning is typically the next
step in the final predictive model creation process. Parameter tun-
ing involves fine-tuning of parameters that control the overall
complexity of theMLmodel. Hyperparameter tuning is sometimes
needed when using various techniques (such as neural networks,
support vector machines, or k-nearest neighbors) to optimize
the parameters that help define the model architecture.
Hyperparameters are parameters that cannot be automatically
learned from themodel building process, and rather, the user needs
to try a grid of values and use cross-validation or some other
method to find the optimized value [41]. Olson et al. and Lou pro-
vide guidance on several different methods for the tuning of hyper-
parameters and evaluate different methods for different algorithms
[42,43]. Tuning of the hyperparameters should only be done
utilizing the training data. The model creation process is highly
iterative, so once a change is made, the whole process is re-run
and re-evaluated.

Validation

Finally, once a model has been selected as being optimal for both
the training and testing datasets, and the variables of interest are
selected, the model ultimately needs to be tested a final time on
an independent dataset, known as the validation dataset, before
it can realistically be used in a clinical setting. This is to ensure
the model actually works well in practice, and on a dataset that
was independently collected (frequently from a different clinical
setting, but with the same initial standards as the training dataset).

How ML is Used in Clinical and Translational Research

The use of ML with healthcare data can help with several different
types of clinical and translational research goals [44–46]. The type
of aim or research question will determine whichmethods are ideal
to use and which types of biases and misconceptions will be appli-
cable and should be avoided. The use of ML with healthcare data
can be generally classified into four different goals: (1) diagnostics
and clinical decision support tools, (2) -ome wide association
studies, (3) text mining, and (4) causal inference [47].

Diagnostics and clinical decision support tools are designed
to give healthcare workers and patients specific information to
enhance their clinical care. These tools are often specialized to
appropriately filter applicable data based on an individual patient’s
condition at a certain time. For example, a clinical decision support
tool might utilize the longitudinal health history of a patient with
high blood pressure to estimate their risk for a myocardial infarc-
tion in the near future. Techniques used for accomplishing this
that have been implemented with ML methods include imaging
diagnostics, risk stratification, and identification of prognostic
subgroups.

“-ome-wide” association studies leverage measurements of
large numbers of different variants in an -ome system to see if
any of them are associated with a disease outcome or health char-
acteristic. These could include the genome, phenome, exposome,
microbiome, metabolome, proteome, or transcriptome; often
referred to generally as ‘omics data. For example, a genome-wide
association study might identify a small list of polymorphisms that
are associated with an increased risk for obesity. These types of
methods are also used to predict clinical outcomes, like the
effectiveness of a drug, or for the identification of gene–gene

and gene–environment interactions. See Libbrecht and Noble
[48], Ghosh et al. [49], and Zhou and Gaillins [50] for a review
of ML methods applied in specific types of ‘omics data, or for inte-
grating multiple ‘omics data sources [51,52].

Text mining works by automating data extraction from unstruc-
tured clinical notes. The applications can include the identification of
patients that might benefit from participation in clinical trials, the
removal of protected health information from clinical records to be
used for research, the conduct of a systematic literature review, and
automated infectious disease surveillance systems [53].

Causal inference is the process of making an inference about a
specific intervention or exposure with respect to its effect. For
example, a causal inference study could be conducted with the goal
of determining if taking a specific drug increases the expected life-
span of patients with a certain disease. It is important to consider
confounding pathways, or those characteristics that could vary
with both the intervention/exposure and the disease outcome, so
that we are not misinterpreting an association as a causal effect.
Techniques used for accomplishing this that have been imple-
mented with ML methods include propensity score weighting
[54], targeted maximum likelihood estimation, marginal structural
models, heterogeneous treatment effects, and causal structure
learning [55–58].

Overview of ML Methods

Artificial intelligence (AI) is a scientific field within computer sci-
ence that focuses on the study of computer systems that perform
tasks and solve problems that historically required human intelli-
gence. ML is a subfield of AI that focuses on a special class of
algorithms that can learn from data without being explicitly pro-
grammed. This is accomplished by making inferences based on
patterns found in data. Although some human specification is
required, ML algorithms overall require less human input than
more traditional statistical modeling (i.e. deciding which variables
to include a priori). In general, there are three main ways that a
machine might learn from data: (1) supervised ML, (2) unsuper-
vised ML, and (3) reinforcement learning.

Supervised ML, most often used for prediction modeling, works
by mapping inputs to labeled outputs. This is used only when each
input used to train the model has a labeled output, for example, an
input of longitudinal measurements on a person collected during
their hospitalization might be used with a labeled output of
in-hospital mortality or unplanned readmission within 30 days of
discharge [59]. Supervised ML is also referred to more generally as
“predictive modeling,” or “regression” for quantitative outcomes,
and “classification” for categorical outcomes. Often, data with labels
are used to train a supervisedML algorithm and then the algorithm is
used to predict unknown labels for a set of new inputs. Mathematical
techniques used to develop supervised ML models include decision
trees and random forests [60–62], gradient boosting [63–65], neural
networks and deep learning [66–71], support vector machines [72],
and regularized/penalized regression [73].

Unsupervised ML works by finding patterns in unlabeled input
data. This category is commonly used for segmentation and clus-
tering problems such as identifying disease “sub-phenotypes” or
pattern recognition. For example, a registry of patients diagnosed
with asthma might be classified into different subgroups based on
their sensitivity to different types of indoor and outdoor allergens,
lung function, and presence of wheezing [74]. Mathematical tech-
niques used to develop unsupervisedMLmodels include clustering
(hierarchical, k-means), dimensionality reduction, Gaussian
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mixture models, principal component analysis, and independent
component analysis.

Reinforcement learning works by improving a sequence of deci-
sions to optimize a long-term outcome through trial and error [75].
It is similar to supervised learning, but a reward mechanism is used
in place of a labeled output. This category is often used within
healthcare to evaluate and improve policies. For example, a longi-
tudinal series of decisions regarding treatment options must be
made by a clinician within the context of managing sepsis (e.g.
mechanical ventilation, sedation, vasopressors) [76]. Unlike super-
vised learning which makes a one-time prediction, the output of a
reinforcement learning system can affect both the patient’s future
health as well as future treatment options. Often times, a reinforce-
ment learning algorithm will make a short-term decision based on
what it believes will result in the best long-term effect, even if that
means a suboptimal short-term outcome. Mathematical tech-
niques used to develop reinforcement learning models include
neural networks, temporal difference algorithms, Q-learning,
and state-action-reward-state-action.

Pros/Cons of Supervised ML Methods

Fernández-Delgado et al. [77] compared the predictive accuracy of
179 MLmodels (sorted into 17 “families” of different model types)
across 121 real datasets and found that random forests were con-
sistently among the best predictive models. Thus, random forests
can be recommended as one of the best “off-the-shelf”MLmodels.
Nevertheless, one can never know a priori which model will pro-
duce the highest predictive accuracy for a given application, thus it
is common practice to fit several different ML models and use

cross-validation to select a final model that has the highest predic-
tive accuracy. Each ML model has its own pros and cons which
should be taken into consideration when deciding which model
to use. In addition, when comparing multiple ML models, it is fre-
quently useful to also compare with one ormore simple, traditional
statistical models such as linear or logistic regression (or penalized
versions thereof). For example, a systematic review of 71 clinical
predictive modeling papers found no evidence for a difference
in predictive accuracy when comparing logistic regression (or
penalized logistic regression) with a variety of ML models [78].

Table 2 compares several key properties of different MLmodels
and classical statistical models such as linear or logistic regression.
These properties will now be briefly summarized and can be used
to help decide which ML model to use for a given problem. For a
comprehensive introduction to these ML models, see [79–81].

In contrast to classical statistical models like linear or logistic
regression, all of the ML models considered allow the number of
predictors (“P”) to be larger than the number of subjects (“N”), that
is, “P>N.” In addition, most of the ML models considered auto-
matically allow for complex nonlinear and interaction effects,
whereas classical methods (and penalized regression) generally
assume linear effects with no interactions. One can manually
explore a small number of nonlinear or interaction effects in
classical models, but this becomes practically infeasible with more
than a handful of predictors, in which case, ML models that auto-
matically allow for complex effects may be more appropriate.

Several ML methods can handle a large number of irrelevant
predictors (i.e. predictors that have no relationship with the out-
come) without needing to first identify and remove these predic-
tors before fitting the model. Tree-based methods [61] (e.g.

Table 2. General properties of different machine learning models (adapted from Kuhn [12] and Hastie et al. [2]): ✓= good, ○= fair, × = poor

Property

Classical
models (e.g.

linear,
logistic

regression)
CART

(single tree) Random forests
Boosted
trees

Support
vector

machines MARS
Neural

networks

Penalized
regression
(LASSO,
Ridge,

Elastic Net
[114])

Allows P> N × ✓ ✓ ✓ ✓ ✓ ✓ ✓

Automatic nonlinear and
interaction effects

× ✓ ✓ ✓ ✓ ✓ ✓ ×

Can handle many irrelevant
predictors

× ✓ ✓ ✓ × ✓ × ✓

#Tuning parameters 0 1 0–1 3 1–3 1–2 ≥2 1–2

Robust to outliers/noise in
predictors

× ✓ ✓ ✓ × × × ×

Handles missing values in
predictors

× ✓
a

✓
a

✓
a × ○b × ×

Necessary pre-processingc Corr CS CS, Corr CS

Computation time ✓ ✓ ○ × × ✓ × ✓

Interpretability ✓ ✓ × × × ✓ × ✓

R software packages lm(), glm() partykit,
rpart, tree

partykit,
randomForestSRC,

ranger, randomForest

gbm,
xgboost

e1071,
kernlab

earth nnet, tensorflow,
keras

glmnet,
ncvreg

aTree-based models can naturally handle missing values in predictors using a method called “surrogate splits” [61]. Although not all software implementations support this, example software
that does allow missing predictor values in trees are the rpart [115] and partykit [116] R packages.
Other acronyms: “P > N”: the total number of predictors “P” is much larger than the total number of samples “N”; CART: classification and regression tree; MARS: multivariate adaptive
regression splines; LASSO: least absolute shrinkage and selection operator.
bIn theory, MARS can handle missing values [11]; however, we are not aware of any free software that supports this.
cCorr: remove highly correlated predictors, CS: center and scale predictors to be on the same scale (i.e. cannot naturally handle a mix of categorical and numeric predictors on their original
measurement scales).
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classification and regression tree (CART) [82], random forests,
boosted trees) use a sequential process that searches through all
predictors to find the “optimal” predictor (that best improves
the predictive accuracy) to add to the tree at each step in the
tree-building process. Multivariate adaptive regression splines
(MARS) [83] uses a similar “step-wise” or sequential model build-
ing approach. In doing so, these methods automatically search for
the most important predictors to include at each step of the model-
fitting process, thereby disregarding unimportant predictors.
Penalized regression shrinks regression coefficients toward zero,
effectively disregarding unimportant predictors.

ML models typically contain one or more main “tuning param-
eters” that control the complexity of the model. As described in the
section on Training/Testing, one can use cross-validation or the
bootstrap to select optimal values for these tuning parameters.
In general, themore tuning parameters amodel has, themore chal-
lenging it is to fit the model, since one needs to find optimal values
for all tuning parameters which requires searching across a large
grid of possible values. Models like CART, random forests,
MARS, and penalized regression, often only have fewer tuning
parameters that need to be optimized and thus may be consider-
ably easier to implement in practice. In contrast, boosted trees, sup-
port vector machines, and neural networks contain more tuning
parameters and thus can be more computationally challenging
to optimize.

Unlike most ML models, tree-based methods (e.g. CART, ran-
dom forests, boosted trees) have several additional unique benefits:
they are robust to noise/outliers in the predictors [11,79], and they
can naturally handle missing values in the predictors using a tech-
nique called “surrogate splits” [61]. Although the usual adage of
“garbage-in garbage-out” still applies, tree-based methods require
minimal data pre-processing of the predictors. For example, most
models require standardizing all predictors to be on the same scale,
whereas trees can naturally handle a mix of categorical and con-
tinuous predictors measured on their original scales, which may
be beneficial for EHR data. However, it is worth noting that earlier
versions of trees are biased toward favoring categorical variables
withmore categories and correlated predictors. “Conditional infer-
ence trees,” a newer framework for fitting tree-based models, have
solved these problems [61,84–86]. Among the models considered
in Table 2, neural networks, support vector machines, and boosted
trees generally have the longest computation time, followed by ran-
dom forests. Although rapid advances in computing power and
parallel computing means that all of these methods will still be
computationally feasible for most applications.

When deciding what ML model to use, it is also important to
consider the format/type of outcome that you are trying to predict.
Although not listed, all of themodels in Table 2 have been extended
to handle continuous, binary, or multi-category outcomes.
However, ML methods are still rather underdeveloped for
handling longitudinal or censored time-to-event (“survival”) out-
comes. Some recent work has extended tree-based methods (e.g.
CART, random forests) to handle such outcomes [87–89].

Lastly, the models can be compared by how “interpretable” they
are. Classical statistical models, CART (“single tree”), MARS, and
penalized regression are all easier to interpret. More complex ML
models like random forests, boosted trees, support vector
machines, and neural networks are much harder to interpret. In
general, one can fit a variety of ML models and assess their predic-
tive accuracy using cross-validation. If the cross-validated predic-
tive accuracy of a more interpretable model is comparable to an
uninterpretable model, then the more interpretable model should

be preferred. The next section discusses tools that can be used to
help interpret any ML model.

Interpreting Black-Box ML Models

ML models are often criticized as being “black-box” models: data
are input into a mysterious “black box”which then outputs predic-
tions. However, the user often lacks an explanation or understand-
ing for why the mysterious black box makes a given prediction.
Making black-box ML models more interpretable is an ongoing
area of research, and we will briefly summarize several important
contributions, all of which are implemented in the iml (“interpret-
able machine learning”) R package [90].

ManyMLmodels produce a type of “variable importance” score
[79] for each predictor in the model, allowing the user to rank the
predictors from most to least important in their ability to predict
the outcome. In addition, one can use “partial dependency plots”
[11] (PDPs) to visualize the estimated relationship between the
outcome and a specific predictor in the model. For each possible
value of the predictor of interest, the PDP will show you the
expected value of the outcome, after adjusting for the average
effects of all other predictors. For example, one may first rank pre-
dictors frommost to least important based on their variable impor-
tance scores and then use PDPs to visualize the relationship
between the outcome and each of the top 5 or 10 most important
predictors. Lastly, Friedman’s H-statistic [91] can be used to iden-
tify predictors involved in interactions.

Recently, several methods have been developed to help under-
stand why a ML makes a prediction for a particular subject. LIME
[92] (“Local Interpretable model explanations”) uses simpler more
interpretable models (e.g. linear or logistic regression) to explain
how a given subject’s feature values affects their prediction, and
the user can control exactly how many features are used to create
the “explanation.”The basic idea of LIME is to weigh all subjects by
how similar they are to the subject of interest and then fit a simpler
interpretable model “locally” by applying these weights. This sim-
pler model is then used to provide an explanation for why the ML
model made the prediction for the given subject (or subjects who
have features similar to that subject). “Shapley values” [93], origi-
nally developed in game theory, are another method for explaining
predictions from ML models. Shapley values explain how a sub-
ject’s feature values (e.g. gender, age, race, genetics) affect the mod-
el’s prediction for that subject compared to the average prediction
for all subjects. For example, suppose the model’s average pre-
dicted probability of having a particular disease is 0.10. Suppose
for a particular subject of interest, “Sam,” the probability of having
the disease is 0.60, that is, 0.50 higher than the average prediction.
To explain Sam’s prediction, each feature included in the model
will get a “Shapley value” that explains how the values of Sam’s fea-
tures affected the prediction. For example, Sam’s gender increased
the prediction by 0.15, Sam’s age increased the prediction by 0.30,
and Sam’s race increased the prediction by 0.05. Notice the sum of
the Shapley values equals 0.50, which was the difference between
Sam’s prediction and the average prediction for all subjects. See
Molnar [94] for more information on methods for interpreting
ML models.

Open-Source Software for ML

All of the ML models discussed can be fit within the free open-
source software R [95]. The caret R package [96] and tidymodels
R package [97] both provide a unified framework for training/
tuning and testing over 200MLmodels. Table 2 lists a few example
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R packages for fitting specific ML models. See the “CRAN Task
View Machine Learning & Statistical Learning” website [98] for
a more comprehensive list of ML R packages. Python also offers
free open-source software for ML [99,100].

Special Considerations of ML in Healthcare Research

Interpretation

As previously discussed, the “black box” nature of ML methods
makes it difficult to understand and interpret the predictions.
Although there are some tools that can be used to help interpret
ML, further research is still needed for making ML more transpar-
ent and explainable. Transparency is especially important when
used to make decisions that will impact a patient’s health.

Fairness/Equity

ML learns from data recorded on past historical examples.
However, such historical data can also capture patterns of preex-
isting healthcare disparities and biases in treatment and diagnosis.
ML models trained using such data may further perpetuate these
inequities and biases [101]. In addition, if a particular subgroup of
patients is under-represented or more likely to have missing data
used to train the ML model, then the ML model may produce
inaccurate predictions for the subgroup, which can also further
exacerbate existing healthcare disparities [102]. Methods and
guidelines are being developed to help ensure fairness and equity
when using MLmodels [101–103], but more work is needed. After
clinical implementation, ML models should be regularly evaluated
for fairness and equity among different minority subgroups. There
exist several definitions of fairness and equity within precision
medicine that cannot all be simultaneously satisfied, but in general,
model evaluation should be conducted for different minority sub-
groups to ensure that the model performs equally well within
each group.

Need for Translational Prospective Studies Demonstrating
Utility of ML

The vast majority of ML in healthcare has been demonstrated
using retrospective historical data where outcomes are already
known [44–46]. There is a crucial need to demonstrate the utility
of ML-based prediction and decision/support tools in real-time
prospective studies.

Legal/Regulatory Issues

If an incorrect medical decision is made based on a complex ML
decision support tool, it is unclear what entity should be held liable
for that decision [45]. Government regulations for ML-based clini-
cal support tools are still being developed [104].

Limitations

The authors realize that we have not included mention of several
new and important techniques namely in the fields of deep learn-
ing, AI, and NLP. We agree that the methods mentioned above are
important in the field of predictive modeling and have a place in
the analysis of healthcare data. We have chosen to exclude them
from this paper as their use is more advanced and requires a more
in-depth knowledge of the underlying mathematical and concep-
tual processes needed to utilize such applications. Deep learning,
for instance, involves utilizing multiple layers of neural networks

where each network trains a more complicated task. TensorFlow
is one example of deep learning and Pytorch is another.
Reinforcement learning trains a system to answer multiple ques-
tions in sequence. NLP allows data to be extracted from physicians’
notes to be used in analytical applications. All of these are impor-
tant, recent advances in the field of predictive analytics. Their use,
however, is more complex (more training steps, the creation of
multiple networks) than the more routine ML process presented
above and thus outside the scope of this paper [105,106].
Additionally, the use of AI and NLP in healthcare is still under
scrutiny [107,108] and best practices for their use are still being
adopted.

Discussion

ML algorithms have the potential to be powerful and important
tools for healthcare research. Here, we have provided researchers
with cautionary notes regarding the use of EHR data, insurance
databases, and other clinical data with ML algorithms. We have
presented the healthcare researcher with a ML pipeline for prepar-
ing the data, running the data through various algorithms using
separate training/testing datasets, evaluating the created predictive
model, tuning any necessary model parameters, and finally validat-
ing the predictive model on a separate dataset. In addition, we
mention several commonly used ML algorithms frequently refer-
enced in the healthcare literature, and the pros/cons of various
supervised methods. Finally, we also mention several considera-
tions for using ML algorithms with healthcare data that, while
important, are beyond the scope of this article. Our goal with
the concepts and methods described in this article is to educate
the healthcare researcher to better understand how to properly
conduct a ML project for clinical predictive analytics. We should
also note that ML methods do not always perform better than tra-
ditional statistical-based methods such as logistic regression [109].
The clinician or translational researcher should familiarize them-
selves with the differences between traditional statistical-based
methods and ML methods and utilize what works best for their
specific questions of interest [110].
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