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The renaissance of peptides as prospective therapeutics has fostered the development

of novel strategies for their synthesis and modification. In this context, besides the

development of new chemical peptide ligation approaches, especially the use of enzymes

as a versatile tool has gained increased attention. Nowadays, due to their inherent

properties such as excellent regio- and chemoselectivity, enzymes represent invaluable

instruments in both academic and industrial laboratories. This mini-review focuses on

natural- and engineered peptide ligases that can form a new peptide (amide) bond

between the C-terminal carboxy and N-terminal amino group of a peptide and/or

protein. The pro’s and cons of several enzyme classes such as Sortases, Asparaginyl

Endoproteases, Trypsin related enzymes and as a central focus subtilisin-derived variants

are summarized. Most recent developments with regards to ligation and cyclization

are highlighted.
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INTRODUCTION

Due to the increasing length and complexity of peptide pharmaceuticals, there is a growing
demand for their green and efficient production (Lau and Dunn, 2018). Established methods such
as recombinant expression and solid phase peptide synthesis (SPPS) have several disadvantages
driving the need for new ligation and modification technologies. Using recombinant expression, it
is difficult to incorporate (multiple) unnatural amino acids (AAs) or include peptide modifications
such as (fatty acid) acylation or (C-terminal) amidation, which is much more straightforward
using SPPS. However, it is still a challenge to produce longer peptides using classical SPPS
due to the decrease in yield directly correlated to the peptide length. Incrementally more
impurities are generated, and consequently, the purification of the final product becomes more
demanding and increasingly costly. Therefore, several ligation methods have been developed
to ligate smaller peptide fragments, which can be produced in higher yield and purity. Many
chemical ligation methods such as native chemical (Dawson et al., 1994; Rohde and Seitz, 2010;
Conibear et al., 2018; Kulkarni et al., 2018; Agouridas et al., 2019), α-Ketoacid-Hydroxylamine
(Bode et al., 2006; Pusterla and Bode, 2012, 2015; Bode, 2017), Staudinger-(Maly et al., 2000;
Nilsson et al., 2000; Köhn and Breinbauer, 2004), or Serine threonine ligation (Liu and Tam,
1994; Li et al., 2010; Zhang et al., 2013; Tung et al., 2015; Lee et al., 2016; Liu and Li,
2018) have become powerful tools in chemical biology, giving the access to synthetic proteins
by using fragment ligation strategies. Besides chemical ligation, enzymatic ligation strategies
have gained increased attention in recent years due to their inherent properties such as
excellent regio- and chemoselectivity and the catalysis of reactions under mild conditions
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(Schmidt et al., 2017b; Nuijens and Schmidt, 2019). The variety
of enzymes used for enzymatic ligation mainly includes proteases
and engineered variants thereof as well as transpeptidases. Even
though proteases are very abundant in nature, few enzymes,
namely ligases, have been found that naturally catalyze the
reverse reaction, i.e., peptide bond formation. Triggered by this,
researches have started exploiting and engineering proteases to
act as ligases (Jakubke, 1995). In this mini-review, we describe
the currently existing set of ligases and recent developments,
both for intermolecular and intramolecular (cyclization) ligation.
Here, we consider only enzymes that catalyze the formation of a
native peptide bond. Roughly four classes of peptide ligases are
discovered up to date, i.e., Sortases, Asparaginyl Endoproteases,
Trypsin related enzymes and subtilisin-derived variants. The
main focus will be on the recent rise and applications of
subtilisin-type of enzymes.

SORTASES

In nature, Sortase A from Staphylococcus aureus catalyzes
the covalent anchoring of surface proteins to the cell wall
(Marraffini et al., 2006). First, it cleaves off the C-terminal
glycine of an LPXTG recognition motif (X = any amino acid)
and couples the threonyl carboxylate to the N-terminal amino
group of a pentaglycine peptide attached to peptidoglycan
(Figure 1.1A). This transpeptidation reaction by Sortase A
has been applied as a synthetic tool for peptide and protein
conjugation (Schmidt et al., 2017b) as well as for peptide and
protein (C-to-N, i.e., head-to-tail) cyclization (Antos et al.,

FIGURE 1 | (A) Starting materials for enzymatic ligation using Sortase (1.1), Butelase (1.2), Trypsiligase (1.3), and Peptiligase (1.4) variants. (B) Catalytic mechanism

(C) ligation products.

2009; Wu et al., 2011; van’t Hof et al., 2015). During catalysis
the motif R1-LPXT-G-R2 (R1,R2,,R3 = proteins, synthetic
peptides, solid supports or cells) is recognized and the Thr-
Gly amide bond is cleaved by the active site thiol to form
an acyl-enzyme (thioester) complex with glycine as leaving
group. The thioester complex is resolved by nucleophilic
attack of a peptide with an N-terminal glycine (GR3), yielding
a native R1-LPXT-G-R3 peptide bond, see Figure 1.1C for
ligation examples.

Sortase A is a very robust enzyme that can be produced
recombinantly in moderate yields (>40 mg/L) and is
commercially available. The peptide starting materials are also
easily accessible either via conventional synthetic or recombinant
strategies. Nowadays, the sortagging reaction has been adopted
for a wide range of applications such as protein ligation
(Policarpo et al., 2014), peptide fusion (Agwa et al., 2018),N- and
C-terminal labeling of proteins and antibodies (Beerli et al., 2015;
Chen et al., 2016), cell-surface modification (Swee et al., 2015),
protein immobilization (Ito et al., 2010), or peptide cyclization
(Jia et al., 2014). Already in 2004 sortagging was described
for protein/peptide ligation to another protein/peptide, even
containing unnatural AAs (Mao et al., 2004). This was further
extended to the coupling of fluorescent-labels or -proteins to
proteins of interest (Matsumoto et al., 2012, 2016; Ott et al.,
2016) and the cross linking of enzymes (Li et al., 2017) or
ligation of two protein domains (Omura et al., 2018; Raltchev
et al., 2018). Peptide ligation to proteins has, among others,
been exemplified by coupling peptides containing thioesters
(Ling et al., 2012), cell penetrating ability (Van Lith et al., 2017),
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non-canonical AAs (Ke et al., 2017), antimicrobial activity (Touti
et al., 2018), purification tags (Bellucci et al., 2013), isotopes
for labeling (e.g., NMR) (Freiburger et al., 2015; Williams et al.,
2016; Sonntag et al., 2017), or ligation handles such as azides
(Ta et al., 2018). More recent Sortase-catalyzed peptide ligation
examples include the synthesis of relaxin analogs (Wang et al.,
2018), spider venom peptides (Agwa et al., 2018), and labeled
peptides with e.g., lipids, biotin or PEG (Cheng et al., 2017).
Cyclization (Figure 1.1B) has been shown for the cyclotide
kalata B (Jia et al., 2014), for sunflower Trypsin inhibitor SFT-1
(Zhang et al., 2015), for cyclotide MCoTI-II via recombinant
expression coupled to Sortase A-mediated backbone cyclization
(Stanger et al., 2014), and for the synthesis of cyclic analogs of the
antibacterial peptide P-113 (Wu et al., 2017) and salivary peptide
histatin (Bolscher et al., 2011). In general, it could be shown
that (glyco-)peptides with 16 or more AAs could be cyclised
with good efficiency (>80% conversion). Besides peptides,
proteins such as the green fluorescent protein (Parthasarathy
et al., 2007; van’t Hof et al., 2015) or cytokines (Popp et al., 2011)
can also be successfully cyclised in moderate to excellent yields
(Rasche et al., 2016).

The main drawbacks of Sortases are the strict sequence
requirements, which remain present in the ligation product, the
poor catalytic efficiency and reversibility of the reaction leading
to low yield and product hydrolysis. To expand sortagging
beyond the standard LPXT-G motif, Sortase homologs as well
as engineered variants have been reported, although with
limited success (Dorr et al., 2014; Antos et al., 2016; Nikghalb
et al., 2018). Besides the substrate scope, Sortase variants with
increased thermal and chemical stability (Pelay-Gimeno et al.,
2018) or activity (Beerli et al., 2015) have been described.
Another method to circumvent the poor reaction kinetics is
via proximity-based Sortase-mediated ligation (PBSL), which
enables ligation efficiencies of over 95%. For PBSL the target
protein and sortase are linked using the SpyTag-SpyCatcher
protein pair. Although after ligation the Spytag is cleaved off and
the target protein is released, this approach requires elaborate
reaction engineering and Spycatcher modified and His6-tagged
sortase is required in equimolar amounts (Wang et al., 2017).
Besides protein engineering, another successful strategy used is
reactant engineering that renders the transpeptidation reaction
irreversible. One approach uses modified depsipeptide substrates
that upon transpeptidation release non-reactive fragments,
e.g., a non-reactive hydroxyacetate moiety (Williamson
et al., 2012, 2014) or spontaneously form a diketopiperazine
(Liu et al., 2014).

In conclusion, when addition of the sorting sequence
LPXTG to a peptide or protein does not interfere with
its function, sortagging represents a powerful tool for site-
selective bioconjugation (Figure 1.1C). Nevertheless, its broad
application is still hampered by the low catalytic efficiency
(large quantity of enzyme required), long reaction times,
moderate yields and the high molar equivalents of one of the
substrates needed to drive the equilibrium toward product.
Despite the shortcomings, mainly due to easy accessibility of
enzyme and substrates, sortagging has become a popular tool in
chemical biology.

ASPARAGINYL ENDOPROTEASES

More recently discovered and a promising alternative to Sortases
is the application of asparaginyl endoproteases (AEP) such as

Butelase 1 (Nguyen et al., 2014; James et al., 2017; Jackson
et al., 2018). Butelase 1, isolated from the tropical plant
(Clitoria ternatea) is an Asx-specific (Asx = Asn or Asp)
cysteine transpeptidase that natively catalyzes peptide head-to-

tail cyclization in the biosynthesis of cyclotides (Craik et al.,
1999). As with Sortase, AEP enzymes cleave a recognition
sequence, in this case N-HV or D-HV, to form a thioester acyl-
enzyme intermediate that is resolved by nucleophilic attack by
a peptide N-terminal amine (Figure 1.2A). A major advantage
is the relatively short recognition sequence, the His-Val motif is
cleaved off and only an Asx residue is left as a footprint at the
ligation site.

Butelase 1 has a broad tolerance for the first (N-terminal)
residue to be coupled (any AA except Pro, Asp, and Glu), but at
the second position Ile, Leu, Val, or Cys is required (Nguyen et al.,
2016a). Compared to Sortases, Butelase 1 features substantially
higher catalytic efficiency (only ∼0.005 molar equivalents of
enzyme required). The peptide substrates containing the Asx-
His-Val motif can be easily prepared via straightforward SPPS or
recombinant expression. Butelase 1 has been shown to efficiently
promote intermolecular peptide ligation as well as head-to-
tail macrocyclization of peptides from 10 residues or longer in
nearly quantitative yields (Figure 1.2B) (Nguyen et al., 2014,
2015b, 2016b; Hemu et al., 2016). As in nature, it preferably
catalyzes cyclization over hydrolysis. For example, kalata B1,
GFP, and human growth hormone (somatropin) were cyclised
with excellent efficiency (>95% yield) (Nguyen et al., 2015b).
Furthermore, Tam and coworkers recently reported the first
chemical synthesis of large circular bacteriocins such as the 70-
mers AS-48 and uberolysin (Hemu et al., 2016). Interestingly,
Butelase 1 has the ability to cyclise peptides consisting of
almost exclusively D-AAs, except for the C-terminal Asx residue
(Nguyen et al., 2016a). Besides cyclization, Butelase-1 can be used
for the modification of live cell bacterial surfaces (Bi et al., 2017),
for the semi-synthesis of ubiquitin (Nguyen et al., 2015a), and
to prepare large circular bacteriocins, the largest antimicrobial
peptides known up to date (Hemu et al., 2016). Other possibilities
are the preparation of peptide dendrimers using lysine derived
scaffolds (Cao et al., 2016) or even the modification of proteins
(Nguyen et al., 2015a). For example, Ploegh et al. described a
one-pot dual labeling approach for the sequential modification
of heterodimeric proteins such as antibodies with different labels
at light and heavy chain, respectively, as well as an approach
for the sequential C-to-C fusion of two protein of interest
(Harmand et al., 2018). Butelase-1 can also be applied in the
synthesis of protein C-terminal thioesters and thus enabling
tandem chemoenzymatic ligations (e.g., via NCL) (Liu et al.,
2015). Butelase prefers intra- over inter-molecular ligations for
which a large excess of nucleophile is required and the N-
terminus of the acyl donor should be protected or outside the
Butelase substrate scope.

As glycine for Sortases, the cleaved HV-dipeptide by Butelase
acts as a competitive nucleophile with the substrate of interest,
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therefore requiring a huge access of reactant. To overcome this
limitation, the use of thiodepsipeptide substrates is successful
in rendering the reaction irreversible (Nguyen et al., 2015a).
However, this strategy involves the use of unstable thioester
substrates and does not prevent hydrolysis of the product.
Besides the drawbacks of sequence specificity (Asx footprint),
hydrolytic activity and reversibility, Butelase-1 has to be isolated
from plants, therefore limiting its potential in biotechnological
applications. So far, recombinant expression has not been
successful, although this will probably be achieved in the near
future. Recently, a markedly less active AEP named OaAEP1,
has been recombinantly expressed in Escherichia coli. Although
titers were low (<2 mg/L), OaAEP1 has the advantage of
being a fully characterized enzyme that is able to cyclise a
diverse range of substrates (∼90 times slower than Butelase 1)
(Harris et al., 2015; Yang et al., 2017). Later studies showed that
the catalytic efficiency of native OaAEP1 could be improved
through structure-based enzyme engineering (Yang et al., 2017),
however, Butelase 1 is still most often the enzyme of choice
(Yang et al., 2017).

Clearly, Butelase type enzymes have some advantages over
Sortases such as minimal recognition motif, broader substrate
scope andmuch higher catalytic activity (Figure 1.2C). However,
poor accessibility of the enzymes has so far limited its application.

TRYPSIN RELATED ENZYMES

The use of native Trypsin and engineered variants for peptide
synthesis has been known for decades (Nuijens et al., 2012).
Recently, Bordusa et al. discovered a new engineered Trypsin
variant, termed Trypsiligase, which can be used for the N-
and C-terminal modification of protein or peptide substrates
(Liebscher et al., 2014b). Trypsiligase adopts an inactive partially
disordered zymogen-like conformation and represents a striking
example for substrate-activated catalysis, as it is exclusively active
in the presence of a YRH tripeptide motif and Zn2+ ions
(Liebscher et al., 2014b). Trypsiligase can be used for the efficient
labeling of proteins bearing an N-terminal RH motif, which
proceed via the use of activated substrates (such as peptidyl 4-
guanidinophenyl esters) as acyl donors (Figure 1.3A) (Meyer
et al., 2016). C-terminal modification can be achieved by a
transpeptidation reaction between a peptide- or protein-Y-RH
recognition sequence and a RH-X (X= peptide, tag) nucleophilic
acyl acceptor peptide (Figure 1.3B) (Liebscher et al., 2014a).
The ligation reaction is usually complete within minutes and
requires ∼0.1 molar equivalents of enzyme with an excess of the
corresponding acyl acceptor substrate (often 10 eq.) because it
needs to compete with the RH leaving group.

The Y-RH recognition motif is rare and only found in
0.5% of all known protein sequences (Liebscher et al., 2014b).
Therefore, the use of Trypsiligase is restricted with regards
to synthesis of native peptides and proteins, similarly to
Sortase A (Figure 1.3C). Another drawback is the presence
of the Y-RH sequence in the ligation product (C-terminal
protein modification) leading to a reversible reaction and
undesired hydrolysis.

SUBTILISIN-DERIVED VARIANTS

Ligases from nature such as Sortase and Butelase rely on a

cysteine residue in the active site that forms a thioester with
the acyl-donor peptide. Over 50 years ago the active site serine

of a subtilisin protease was chemically converted to cysteine.
Although this enzyme had an increased acylation (ligase) over
hydrolysis (protease) rate, the enzyme activity was extremely
low (Polgár and Bender, 1967). A few decades later, Wells
et al. discovered that one additional mutation was required
to reduce the steric crowding created by the thiol residue to
restore the enzyme activity. This double mutant of a serine
protease from Bacillus amyloliquefaciens, i.e., subtilisin BPN′,
was termed Subtiligase (Braisted et al., 1997; Weeks and Wells,
2019). Although this mutant exhibits considerable ligase activity
it still lacks satisfactory efficacy, as a huge excess of the acyl
acceptor fragment is required to suppress substantial amounts
of hydrolysis. However, its ligase specificity has recently been
engineered in a proteome-wide screening approach, enabling
the N-terminal labeling of diverse proteins (Weeks and Wells,
2017). During the past 10 years there has been a revival of the
subtilisin based peptide ligases by the discovery of a novel Ca2+-
independent and stable variant, termed Peptiligase (Toplak et al.,
2016). This variant efficiently catalyzes peptide bond formation
between a C-terminal ester [preferably carboxyamidometyl
ester (Nuijens et al., 2016b), Figure 1.4A] fragment and an
acyl-acceptor nucleophile with, in many cases, insignificant
amounts of hydrolysis. Since the ester to amide conversion
via a thioester intermediate (acyl-enzyme complex) is virtually
irreversible, a theoretical quantitative yield of 100% can be
achieved using a one-to-one molar ratio of the substrates.
Peptiligase has a very high catalytic efficiency (<0.0003 molar
equivalents required) and the enzyme can be easily obtained
from Bacillus subtilis (>0.5 g/ L) (Pawlas et al., 2019). The
ligation reaction of unprotected peptide fragments proceeds
in aqueous media (neutral to slightly basic pH) at ambient
temperature with extremely high average ligation yields (up to
98% in <1 h). Only a low molar excess of acyl acceptor (1.1–2
molar equivalents) is required (Schmidt et al., 2017b). Compared
to other peptide ligases, Peptiligase is exceptionally thermostable
(TM = 66◦C) and tolerates the presence of organic co-solvents
[e.g., up to 50% (v/v) dimethylformamide (DMF)] and disrupting
agents (e.g., 2M urea or guanidinium chloride), therefore also
enabling the ligation of poorly soluble or folded peptides
(Toplak et al., 2016).

Peptiligase has six distinct substrate recognition pockets: four
recognizing the C-terminal part of the peptide (S1-S4), and two
involved in binding the N-terminal acyl acceptor part of the
peptide (S1′ and S2′). After it’s discovery, it was found that
especially the S1’ pocket was highly discriminating, only able to
accommodate small AAs such as Gly, Ser, and Ala. However,
using computational design and site-directed engineering, the
substrate scope of this pocket could be radically broadened
(Nuijens et al., 2016a). Several years of engineering focused
on ligation efficiency and broad substrate scope resulted in
the discovery of Omniligase-1 (Nuijens et al., 2016c). This
enzyme provides an excellent basis for efficient and completely
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footprint-free inter- and intramolecular peptide ligation for
almost any peptide sequence. For instance, it was shown that
Omniligase-1 could be applied for the synthesis of the 39-
mer pharmaceutical peptide exenatide in excellent yield (Pawlas
et al., 2019). Most importantly, it was later shown that the
enzymatic ligation technology using Omniligase-1 is scalable
and robust enough for industrial application (Nuijens et al.,
2016b). Exenatide was prepared at >100 gram scale with a
quantified ligation yield of 88% using crude fragments made by
chemical synthesis. The overall yield proved almost twice as high
compared to established solid phase productions methods and
the product was obtained within pharmacopeia specifications.
Besides exenatide, it was shown that ligation to proteins or
polymers, such as human serum albumin or the polymer
XTEN is also possible. Using 4 equivalents of ester, over 95%
N-terminal ligation efficiency leading to products >500 AAs
could be achieved (Nuijens, 2016). Finally, besides peptides
and conjugates, Omniligase-1 has been applied for the head-
to-tail cyclization of peptides. Peptides over 12 AAs, even
when containing isopeptide bonds, polyethylene glycol or D-
AAs in the sequence, were cyclised in over 95% efficiency
(Schmidt et al., 2017a). In the same article, the one pot synthesis
and folding of the natural occurring cyclotide MCoTI-II at
multi gram scale was described as well as the combination of
Omniligase-1 catalyzed cyclization with chemical rigidification
using tris(bromomethyl)benzene. Later, other disulfide rich
peptides such as kalata B1 and RTD-1 were synthesized and
successfully folded to their native conformations (Schmidt et al.,
2019). It was shown that due to the broad substrate scope and
traceless ligation, different sites could be used to synthesize
the cyclic peptides. Most recently, the cyclization technology
was combined with small organic scaffolds and other ligation
technologies such as oxime ligation and click chemistry (Richelle
et al., 2018; Streefkerk et al., 2019). Combining enzymatic
and chemical ligation technologies, tetracyclic peptides could
be synthesized in a one pot fashion that poses two distinct
biological activities.

In addition to Peptiligase variants with a broad substrate scope
such as Omniligase-1, enzyme engineering efforts also yielded
Peptiligase variants with redesigned substrate profiles that allow
selective peptide couplings. For instance, variants that can
discriminate between small and large side-chains, hydrophobic
and polar or negative vs. positive charge. One example is
the development of a Peptiligase variant for the synthesis of
Thymosin-alpha-1, termed Thymoligase. This enzyme has a
preference for a positively charged AA in P1 (Lys or Arg) and
a negatively charged AA in P1′ (Asp or Glu) (Schmidt et al.,
2018). Two crude 14-mer peptides could be ligated in high
efficiency to make the 28-mer product, which could be isolated
in >98% purity after one single preparative HPLC step. Besides
peptides, the substrate specific ligases could also be used for
the selective coupling to heterodimeric proteins, such as the
heavy/light chain of antibodies or A- and B-chain of insulin
(Nuijens, 2016). Antibodies with two different tags could be
prepared with almost quantitative ligation efficiency and heavy

vs. light chain selectivity. A summary of possible peptide ligation
and cyclization reactions is illustrated in Figure 1.4B.

In addition to using esters, thioester substrates have recently
been described as more efficient substrates for Subtiligase-
catalyzed ligation, drastically broadening the substrate scope (Tan
et al., 2018). Moreover, sequential enzymatic ligations (coupling
followed by activation) could be performed, e.g., using peptide
hydrazides (Fang et al., 2011; Flood et al., 2018) or enzyme-
catalyzed expressed protein ligation (Henager et al., 2016).

In conclusion, both Peptiligase and Subtiligase variants
represent valuable tools in peptide-peptide ligation, as well
as for the site-specific modification of proteins (Figure 1.4C)
(Schmidt, 2019). In particular, Peptiligase variants such as
Omniligase-1 have the potential to establish as the preferred
method for the synthesis of long (pharmaceutical) peptides
and protein-conjugates in a cost-efficient and environmentally
friendly approach. Peptiligase-mediated coupling is scalable and
can be used either as a versatile stand-alone technology or as
an addition to chemical ligation methodologies (e.g., NCL) or
intein-based protein ligation in both academic research labs and
industrial settings.

RECOMMENDATIONS

Clearly, a diverse set of ligases is available for peptide ligation
and cyclization, all with their own specific advantages and
disadvantages. When an enzyme recognition motif in the ligation
product is not an issue and one of the reactants can be used in
high excess, Sortase mediated ligation is most straight forward.
The enzyme is efficient and easily accessible to any laboratory.
For peptide cyclization’s Butelase is one of the most efficient
enzymes known, although application could be challenging
because the enzyme is hard to obtain. It is less efficient for
intramolecular ligations since a large excess of one of the
reactants is required and protecting groups might be needed.
For protein labeling, Trypsiligase is a highly selective ligase,
with a very specific recognition motif. Because of the similarities
to Sortase (recognition motif, transpeptidation, excess of one
reactant), the latter is more often applied simply because it
is commercially available. For traceless ligation and cyclization
of peptides, Peptiligases are the best option. There is no need
for a large excess of the reagents and the enzymes are easy to
produce. However, an active ester starting material is required,
which is relatively easy for peptides but not straight forward
for proteins.
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