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Microbial Biogeography and Core 
Microbiota of the Rat Digestive 
Tract
Dongyao Li1, Haiqin Chen1, Bingyong Mao1, Qin Yang1, Jianxin Zhao1, Zhennan Gu1, 
Hao Zhang1, Yong Q. Chen1,2 & Wei Chen1,3

As a long-standing biomedical model, rats have been frequently used in studies exploring the 
correlations between gastrointestinal (GI) bacterial biota and diseases. In the present study, luminal and 
mucosal samples taken along the longitudinal axis of the rat digestive tract were subjected to 16S rRNA 
gene sequencing-based analysis to determine the baseline microbial composition. Results showed 
that the community diversity increased from the upper to lower GI segments and that the stratification 
of microbial communities as well as shift of microbial metabolites were driven by biogeographic 
location. A greater proportion of lactate-producing bacteria (such as Lactobacillus, Turicibacter and 
Streptococcus) were found in the stomach and small intestine, while anaerobic Lachnospiraceae and 
Ruminococcaceae, fermenting carbohydrates and plant aromatic compounds, constituted the bulk 
of the large-intestinal core microbiota where topologically distinct co-occurrence networks were 
constructed for the adjacent luminal and mucosal compartments. When comparing the GI microbiota 
from different hosts, we found that the rat microbial biogeography might represent a new reference, 
distinct from other murine animals. Our study provides the first comprehensive characterization of the 
rat GI microbiota landscape for the research community, laying the foundation for better understanding 
and predicting the disease-related alterations in microbial communities.

A large variety of symbiotic microorganisms coexist in the mammalian digestive tract, with their number around 
10 times greater than the total number of mammalian somatic and germ cells1. They provide many functions 
that are not encoded in the host genome2. The microbiota inhabiting the digestive tract constitutes a complex 
ecosystem and plays a critical role in maintaining host physiological homeostasis3,4. In the last decade, with the 
rapid development of high-throughput sequencing technology, a large body of research has investigated the gut 
flora composition in humans5–7 and revealed its relationship to diseases8–12. However, most of the samples used in 
these studies were from feces9–11 and the appropriateness of using feces as a proxy for other GI segments remained 
questioned. On the other hand, because of ethical restrictions, microbiota profiling for given GI regions could 
only be found in a short list of studies, mainly through hospital-based endoscopic biopsies7,13,14.

Due to limitations in human research, murine models have become crucial in studies of the gut microbiota 
designed to obtain mechanism insights into different anatomical regions through radical and sometimes even 
destructive means. The rat is the first mammalian species to have been domesticated for scientific purposes. Initial 
foundation work began in the early 1900’s at the Wistar Institute of Philadelphia, where one of the first breeding 
experiments was recorded by Helen King15. As a long-standing model in biomedical research, rats have recently 
been used in numerous studies exploring the correlations between intestinal bacterial biota and various kinds 
of diseases, such as ulcerative colitis16, colon cancer17,18, mucositis19, gastric ulceration20, obesity21, diabetes22, 
hypertension23, anxiety24 and more. A comprehensive characterization of the normal rat microbiota landscape 
is a critical prerequisite to understanding and predicting disease-related alterations in microbial communities. 
However, our knowledge about the spatial structure of the microbial consortium in the rat is very limited.

The common intestinal symbiotic microorganisms usually act as key ecosystem service providers25 for mam-
mals. Understanding their co-occurring interactions with each other and with their hosts is of great importance 
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for microbiome research. However, the mammalian digestive system is composed of many different niches with 
distinct physicochemical conditions26–29. In the process of evolution, the commensal bacteria are selected by 
harsh intestinal environments and co-evolve with their hosts30. Facing the selection pressure and other challenges, 
microbes inhabiting different GI niches devoted extraordinary efforts to environmental adaption by employ-
ing distinct strategies, and in turn could provide indispensable ecosystem services at different anatomical sites. 
Amongst these, the mucus layer forms a distinct habitat with intimacy to host intestinal tissues, and the mucosal 
microbial metabolites are known to determine the differentiation and function of epithelial and immune cells31.

For these reasons, we have determined the baseline radial composition of taxa and microbial metabolites 
along the longitudinal axis of the rat digestive tract, analyzed the difference in community membership and struc-
ture and their relationship, unveiled the core microbiota and their co-occurrence relationships within different GI 
niches and compared the internal biogeographic maps of rats, other rodents as well as human beings. Our study 
aimed to answer the following questions: (i) How do microbial communities and metabolites change along the 
length of rat digestive tract? (ii) Which microbial assemblages inhabit each GI niche? Is there a core microbiota 
for a given GI region? (iii) Does the taxonomic profile in feces reflect that of other GI segments? (iv) Do similar 
physicochemical conditions in identical anatomical sites across host genotype backgrounds shape similar GI 
microbiota?

Results
Samples and Illumina sequencing.  The average lengths of small intestines (including duodenum, 
jejunum and ileum) and colons from 6 seven-week-old rats were 67.83 ±​ 1.35 and 11.67 ±​ 0.33 cm, respec-
tively. The relative mass of different gut segments varied, with the cecum being the largest digestive chamber 
(Supplemental Table S1).

Probably due to the low biomass of gastric and small-intestinal mucosally adherent microbiota, the extraction 
of microbial genomes in these mucus layers failed. Therefore, the sampling sites for each subject included gastric 
contents (Sto), duodenal contents (Duo), jejunal contents (Jej), ileal contents (Ile), cecal contents and mucus (Cec 
and Cem), proximal colonic contents and mucus (PCc and PCm), middle colonic contents and mucus (MCc and 
MCm), distal colonic contents and mucus (DCc and DCm) and feces (Fec). However, for subjects 1, 5 and 6, some 
colonic segments lacked luminal contents (Supplemental Table S2).

Illumina pair-end sequencing returned a total of 4,957,802 raw sequences across 75 samples from 6 rats. After 
assembly and quality filtering, a total of 4,009,159 sequences were used in downstream analyses. Each sample 
was covered by an average of 53,455 reads (ranging from 22,887 to 195,780). The Shannon diversity curves for all 
samples plateaued at current sequencing depth, while unfortunately the Chao1 curves failed to level off for most 
samples (Supplemental Fig. S1). This suggests that the current analysis has already captured most of the microbial 
diversity, although more phylotypes may be found by increasing the sequencing depth. Clustering at 97% identity 
produced 36,214 unique operational taxonomic units (OTUs) in total and 1,914 OTUs on average for each sam-
ple (ranging from 434 to 6,005). Good’s coverage of all samples averaged 98.1% (ranging from 96.1% to 99.3%) 
(Supplemental Table S2).

Microbial community diversity estimates.  The observed and estimated species richness, Shannon 
index (SI) and phylogenetic diversity (PD) were used to evaluate the community diversity for each sample 
(Fig. 1). Generally speaking, richness and diversity was lower in gastric and small-intestinal samples than in 
large-intestinal samples. Unexpectedly, given the relatively low biomass in this region, samples from the colonic 
mucus layer had the highest richness and diversity. In addition, the SI values of gastric samples showed much 
higher inter-subject variation. On the opposite side of the spectrum, Shannon diversity in colonic mucus layers 
was much more consistent across subjects than in any of the other sites tested.

Manichanh et al. compared the difference between rat and human intestinal microbiomes and found that 
the number of observed species in a rat fecal sample was two to three times higher than in two human fecal 
samples at the same sequencing effort32. A similar phenomenon was also captured in our study when we 
compared the observed and estimated species richness of colonic mucosal samples from rats (1,563 ±​ 62 for 
observed and 3,072 ±​ 219 for estimated richness, respectively) and human beings14 (567 ±​ 84, 1,246 ±​ 182) 
(Supplemental Fig. S2).

Spatial organization of the microbial consortium.  The 16S rRNA is coded by the ribosomal RNA 
operon (rrn), which is frequently found in multiple copies. Current analysis pipelines usually produce estimates 
of per-taxon relative abundances based on the number of 16S genes recovered in a sequence library. Given the 
variable per-genome copy number of the 16S gene, these pipelines may introduce systematic bias when investi-
gating the genuine community structure of microbiota33. To address this issue, the ribosomal RNA operon copy 
number database (rrnDB)34 was incorporated into a copy number-correctional pipeline to describe the microbial 
consortium at different taxonomic levels along the longitudinal and transverse axes of the rat digestive tract.

At the phylum level, 21 different taxonomic groups were identified in this study (Supplemental Fig. S3 
and Table S3). The majority of taxa belonged to Firmicutes (78.77 ±​ 2.03%), with the rest distributed amongst 
Bacteroidetes (9.12 ±​ 1.56%), Proteobacteria (6.61 ±​ 1.31%), unclassified bacteria (2.67 ±​ 0.34%), Tenericutes 
(0.98 ±​ 0.21%), Actinobacteria (0.85 ±​ 0.14%), Cyanobacteria (0.48 ±​ 0.23%), Deferribacteres (0.30 ±​ 0.08%) and 
Deinococcus-Thermus (0.13 ±​ 0.09%). Other phyla such as Candidatus Saccharibacteria (i.e. candidate division 
TM7), Verrucomicrobia, Elusimicrobia, Lentisphaerae, Euryarchaeota, Acidobacteria, Planctomycetes, unclassi-
fied root, Chloroflexi, SR1, WPS-2 and Spirochaetes together comprised, on average, less than 0.1% of total con-
sortium composition. However, only Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were found 
in all samples. Although stomach and duodenum samples showed lower richness and diversity (Fig. 1), they har-
bored most of these phyla and groups (15 and 16 out of 21), which indicated a high level of phylum diversification 
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within the stomach and duodenum, even though a large portion of phyla were dominated by only a few gen-
era. Chloroflexi was only found in the stomach. The high level of phylum diversification and low level of genus 
diversification within these phyla could be construed as the result of transient DNA contamination from some 
environmental microorganisms, which died along the gastrointestinal transit. A similar degree of diversification 
was also observed in large-intestinal mucosal sites, especially in the distal colonic mucus, which was inhabited 
by 16 phyla, including the site-specific Spirochaetes. The relative abundances of 7 of the 8 most dominant phyla 
showed significant differences amongst sampling sites (Supplemental Table S4). Deinococcus, which was also 
detected in human gastric mucosa35, was more abundant in the stomach than other sites. Firmicutes comprised 
the majority of the microbial population in the small intestine, especially in the ileum (99.34 ±​ 0.09%). Relative 
abundances of Actinobacteria and Bacteroidetes were markedly higher in large-intestinal lumen than other bio-
geographic locations, while Deferribacteres was more abundant in the large-intestinal mucus layer. The relative 
abundance of Proteobacteria was highest in the cecal mucus and stomach, while the dominant genera within 
this phylum were completely different in these sampling sites (Fig. 2 and Supplemental Table S4). The relative 
abundance of Tenericutes was highest in proximal colonic mucus and contents, especially for subject 2. Moreover, 
Cyanobacteria, which was previously reported to be enriched in a human duodenal mucosal sample13, was more 
abundant in the rat stomach and jejunum but did not reach significance because of large inter-subject variations 
(FDR =​ 0.052, Kruskal-Wallis test).

At the genus level, 479 different taxonomic groups were identified (Supplemental Table S3). The relative abun-
dances of 130 genera or groups showed significant differences amongst sampling sites (Supplemental Table S4). 
In agreement with previous reports20,32,36, Lactobacillus and Turicibacter (27.77 ±​ 2.91% and 17.04 ±​ 2.09%, both 
belonging to Firmicutes) predominated in the rat digestive tract. However, other dominant phylotypes were apt 
to aggregate in certain anatomic regions. For example, Firmicutes subgroups Lachnospiraceae (genus unclassi-
fied, 7.75 ±​ 0.76%) and Ruminococcaceae (genus unclassified, 3.43 ±​ 0.31%) were mainly enriched in the colonic 
mucus. The relative abundance of Helicobacter (3.74 ±​ 1.23%, belonging to Proteobacteria) was remarkably 
higher in the cecal mucus layer than other sites37. Bacteroidetes subgroup Prophyromonadaceae (genus unclassi-
fied, 2.98 ±​ 0.53%) was abundant in the large-intestinal lumen and mucus (Fig. 2).

For the Lactobacillus genus, the populations from different anatomic sites showed homogeneous composi-
tions, including members from different species, such as L. hamsteri, L. intestinalis, L. acetotolerans, L. amylo-
lyticus, L. hominis, L. johnsonii, L. taiwanensis, L. gasseri, L. saniviri, L. reuteri, L. antri, L. frumenti, L. pontis, 
L. mucosae, L. plantarum, L. oeni and L. murinus (Supplemental Fig. S4), as predicted by 16S rRNA sequence 
alignments and phylogenetic tree predictions. The clade near L. hominis, L. johnsonii, L. taiwanensis and L. gasseri 

Figure 1.  Diversity measurements for each sample. (a) Observed richness, (b) estimated richness, (c) 
Shannon index and (d) phylogenetic diversity measurements at each anatomic site from the 6 rats, where 
each point represents a sample. Ten iterations of rarefied subsets of 22,880 sequences from each sample were 
used to calculate the average values for these metrics. Different letters (a,b) above the points mean significant 
differences between sampling sites (Nemenyi’s post hoc multiple comparison test, FDR <​ 0.05). Sto: gastric 
contents; Duo: duodenal contents; Jej: jejunal contents; Ile: ileal contents; Cec: cecal contents; PCc: proximal 
colonic contents; MCc: middle colonic contents DCc: distal colonic contents; Fec: feces; Cem: cecal mucus; 
PCm: proximal colonic mucus; MCm: middle colonic mucus; DCm: distal colonic mucus. The red bar at the 
bottom of the graphs is used to highlight luminal samples, and the blue line highlights mucosal samples.
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consisted of the 7 most abundant OTUs, making it the largest OTU clade within the phylogenetic tree and pre-
sumably indicating the predominance of these species along the length of rat digestive tract.

Furthermore, inter-subject variations were observed from the phylum to genus levels. Higher inter-subject 
variations were detected in samples from the upper GI tract than from the lower GI tract (Supplemental Table S5). 
Network-based analyses further confirmed this trend (Supplemental Fig. S5).

Stratification of the microbial community.  The differences in microbial communities between samples, 
with respect to community membership and structure, were measured by unweighted and weighted UniFrac 
distances, taking the microbial phylogenetic information into consideration. Community membership, or the 
presence and absence of microbial lineages, was stratified by different categorical factors, such as anatomic region 
(adonis: R2 =​ 0.28; P ≤​ 0.001), sub-site (adonis: R2 =​ 0.37; P ≤​ 0.001), and niche location (adonis: R2 =​ 0.08; 
P ≤​ 0.001). This was further supported by the principal coordinates analysis (PCoA) of unweighted UniFrac dis-
tances (Fig. 3a–c), where samples clustered first by major anatomic region then by sub-site, gut regions pars-
ing out based on principal coordinate 1 (22.05% variation explained) and niche location (blocked within the 
large-intestinal regions) parsing out based on principal coordinate 2 (5.18% variation explained). A similar trend 
was also detected in community structure taking relative abundances of taxa into account (Supplemental Fig. S6). 
The taxonomic information overlaid onto the ordination plot illustrates the contribution of each taxonomic 
group toward sample similarity. PCoA plots with taxonomic information at the phylum and genus levels revealed 
that the Deinococcus-Thermus and Cyanobacteria were important in clustering of gastric and small-intestinal 
samples. Meanwhile, Bacteroidetes, Prophyromonadaceae (genus unclassified), Candidatus Saccharibacteria 

Figure 2.  Longitudinal and transverse distribution of dominant taxonomic groups at the genus level. 
The relative abundance of different genera was adjusted by the 16S rRNA copy number data. Sample ID 
abbreviations are in line with those used in Fig. 1. The number following the abbreviations stands for the subject 
number. For example, Sto1, Sto2, Sto3, Sto4, Sto5, and Sto6 stand for the gastric contents from the 1st, 2nd, 3rd, 
4th, 5th and 6th rat. Unclassified genera under a higher rank are marked by asterisks (*family; **order; ***class; 
****phylum; *****kingdom). A complete list of adjusted counts for each genus grouped by sample is presented 
in supplemental Table S3.
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contributed to the community similarity of fecal and large intestinal luminal samples, while Proteobacteria, 
Helicobacter, Deferribacteres, Tenericutes, Clostridiales (family unclassified), Lachnospiraceae (genus unclassi-
fied), Ruminococcaceae (genus unclassified) and Pseudoflavonifractor contributed to the community similarity 
of large-intestinal mucosal samples. In addition, intra-group variability was tested for equal dispersions based on 
the UniFrac distances, indicating significantly higher variation within the stomach and small intestine than other 
sites in respect to community membership (Supplemental Fig. S7).

The microbial community relationships between samples were calculated with UPGMA (Unweighted Pair 
Group Method with Arithmetic Mean) hierarchical clustering. In accordance with previous PCoA results, thir-
teen sampling sites formed 3 distinct clusters in respect to both membership and structure (Supplemental Fig. S8). 
To identify key phylotypes responsible for this differentiation, a partial least square discriminate analysis 
(PLS-DA) was performed based on taxa abundance data at the genus level. The R2Y of this model was 0.95, show-
ing high performance for the differentiation. The Q2 of this model was 0.82, showing good performance for the 
prediction. Parameter VIP (variable importance in projection) was used to select genera with the most significant 
contribution in discriminating the differentiation. A total of 146 genera with VIP >​ 1 were identified as discrim-
inative variables: 49 genera were enriched in the stomach and small intestine; 50 genera were enriched in the 
large-intestinal contents and feces; and 47 genera were enriched in the large-intestinal mucus layer. These genera 
formed 3 distinct blocks on the heat map (Fig. 4), where Adlercreutzia (VIP =​ 2.37), Coriobacteriaceae (genus 
unclassified, 2.41), Eubacterium (2.26) and Saccharibacteria (genera incertae sedis, 2.28) were the most discrim-
inative taxa in block 2. However, in block 3, Acetanaerobacterium (2.10, proteolytic), Anaerotruncus (2.61), 
Butyricicoccus (2.39), Flavonifractor (2.23), Hydrogenoanaerobacterium (2.28, proteolytic), Johnsonella (2.15), 
Pseudoflavonifractor (2.22), Sporobacter (2.36), Clostridiales (family unclassified, 2.04), Ruminococcaceae 
(genus unclassified, 2.29) and Mucispirillum (2.02, catalase-positive) had the most significant contribution in the 
generation of this model.

Furthermore, the microbial community was also partitioned by individual subject (adonis: R2 =​ 0.09; P =​ 0.02 
for membership and R2 =​ 0.14; P =​ 0.003 for structure, respectively), where sample points in PCoA plots were 
separated by different principal coordinates (Fig. 3d, Supplemental Figs S6 and S9).
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Figure 3.  Stratification of the microbial community membership driven by different categorical factors 
and taxonomic groups. Principal coordinates analysis of unweighted UniFrac distances between samples 
from rat digestive tract (performed on all OTUs), grouped by sampling (a) site (adonis: R2 =​ 0.37; P ≤​ 0.001), 
(b) region (adonis: R2 =​ 0.28; P ≤​ 0.001), (c) location (adonis: R2 =​ 0.08; P ≤​ 0.001) and (d) subject (adonis: 
R2 =​ 0.09; P =​ 0.02). The percent of variation explained by each coordinate is indicated in parentheses. The 
contribution of different taxonomic groups is represented by the size of the circles (grey) overlaid onto the 
PCoA based on phylogenetic information. Unclassified genera under a higher rank are marked as in Fig. 2.
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Core microbiota.  For each individual animal, the within-subject overlap of OTU clusters across anatomic 
regions was calculated with singleton sequences removed. The resulting Venn diagrams demonstrated almost 
consistent overlap patterns for each subject (Fig. 5a). Large-intestinal contents and mucus had the largest OTU 

Figure 4.  Abundance distribution of genera identified as discriminative variables. To show the distribution 
of the genera with lower abundance, data were centered and scaled in the row direction. Branches of the tree 
show taxon similarities. The biogeographic location for each sample and the phylum affiliation for each genus 
are indicated by different colorations. Genera with VIP >​ 2 are highlighted in red. Brighter colors along the 
cyan/black/yellow bidirectional spectrum indicate lower or higher abundances. Unclassified genera under a 
higher rank are marked as in Fig. 2.

Figure 5.  OTU overlap across sampling regions. (a) Venn diagrams demonstrating 97% OTU cluster 
overlap within subjects. Numbers correspond to unique OTU clusters within a subset. To highlight shared 
OTUs, singleton clusters were removed before analysis. (b) Correlation matrix showing the Spearman’s rank 
correlation amongst the 19 core OTUs shared across all subjects. The correlations were controlled for multiple 
testing by false discovery rate (*FDR <​ 0.05, **FDR <​ 0.01 and ***FDR <​ 0.001).
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overlap within a subject. Both regions also shared a large number of OTUs with feces, while luminal contents 
had more overlap than mucus layer except for subject 1. Gastric contents typically shared the fewest OTU clus-
ters with other sampling regions. Interestingly, small-intestinal contents were found sharing slightly more OTUs 
with large-intestinal mucus than contents in half of the subjects. A subset of 64–273 OTUs was present in every 
sampling region of each individual, with 19 of these OTUs being present in all subjects accounting for 30.58% of 
the total sequences. These core OTUs were classified as Clostridium sensu stricto, Clostridium XI, Lactobacillus, 
Turicibacter and Peptostreptococcaceae (genus unclassified) (Supplemental Table S6). The Spearman’s rank cor-
relation test was employed to identify the co-occurrence patterns amongst the core OTUs (Fig. 5b).

Twelve of the 19 core OTU clusters were classified as Turicibacter and were positively correlated with most 
of the other core OTUs, with the exception of Lactobacillus OTUs. This was exemplified by the lack of correla-
tion between OTU5972 (new reference, Turicibacter) and OTU588197 (greengenes reference, L. reuteri, L. antri 
and L. frumenti) (rho =​ −​0.413, FDR =​ 6.16E-4). OTUs from the same genus were positively correlated with 
each other, such as OTU5972 versus OTU2043 (new reference, Turicibacter) (rho =​ 0.904, FDR =​ 0) and also 
OTU588197 versus OTU574021 (greengenes reference, L. hominis, L. johnsonii, L. taiwanensis and L. gasseri) 
(rho =​ 0.872, FDR =​ 0).

For each anatomic region, the core microbiota across subjects was calculated via a detailed phylotype anal-
ysis. Different anatomic regions shared different common core microbiota both in amount and composition 
(Fig. 6a–d). These shared taxa accounted for 71.92, 84.45, 63.62 and 61.13% of the bacterial population in gas-
tric contents, small-intestinal contents, the large-intestinal lumen and the mucus layer, respectively (here the 
large-intestinal lumen region also involved fecal samples, given the fact that colonic contents are precursor 
of feces). The stomachs of the 6 rat subjects shared a small set of microbial community composed of 8 bacte-
rial genera (Fig. 6e), with Turicibacter occupying more than half of this core. To identify the co-occurrence 

Figure 6.  Core microbiota within different GI regions. The composition of core microbiota of (a) gastric 
contents, (b) small-intestinal contents, (c) large-intestinal lumen and (d) mucus layer. The large-intestinal 
lumen also involves fecal samples, given the fact that colonic contents are precursor of feces. Other taxa refer to 
non-core genera and unclassified genera under a higher rank. Co-occurrence patterns amongst the core genera 
across samples from (e) gastric contents, (g) small-intestinal contents, (i) large-intestinal lumen and (k) mucus 
layer, as determined by the Spearman’s rank correlation analysis. The correlations were controlled for multiple 
testing by false discovery rate and the genera were clustered using the UPGMA hierarchical clustering method 
(*FDR <​ 0.05, **FDR <​ 0.01 and ***FDR <​ 0.001). Refined co-occurrence networks for (f) gastric contents, (h) 
small-intestinal contents, (j) large-intestinal lumen and (l) mucus layer only based on correlations with absolute 
value of Spearman’s rho >​0.7 and FDR <​ 0.05. Each node represents a genus, colored according to its phylum-
level taxonomic affiliation (Supplemental Fig. S3). Genera with maximum abundance >​1% are outlined in red.
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patterns amongst these core genera, Spearman’s rank correlation was tested and then a refined network only 
involving strong correlation with statistical significance (|rho| >​ 0.7 and FDR <​ 0.05) was reconstructed. In the 
co-occurrence network for stomach microbiota (Fig. 6f), three aerobic bacteria belonging to Proteobacteria 
formed a small robust subnetwork. The presence of aerobes in the stomach may be explained by previous study 
revealing that the PO2 levels in this digestive chamber was about 58 mm Hg for living mice28. Furthermore, two 
of these aerobes Phyllobacterium and Pseudomonas can hydrolyze carbohydrate macromolecules in food, such 
as starch and insulin.

However, the core microbiota within the small bowel (14 bacterial genera) was found to form a more complex 
and modular network than that of stomach (Fig. 6g,h). Lactobacillus, which occupied 58.72% of the population 
in this digestive chamber, only had weak relationships with other genera. On the other hand, four facultative 
anaerobic genera with relatively low abundance (Globicatella, Lactococcus, Staphylococcus and Streptococcus) 
composed a small module, which might perform a unique function in this region.

Notably, the large-intestinal lumen (43 genera) and mucus layer (42 genera) had the largest core microbiota 
(Fig. 6i,k). Despite community memberships overlapping to some extent, the co-occurrence networks for these 
two adjacent compartments showed distinct topological properties (Fig. 6j,l). In the large-intestinal lumen, core 
microbiota formed a relatively sparse network (diameter: 8; centralization: 0.18; density: 0.17) where 28 anaer-
obic organisms belonging to 3 different phyla connected on average to 4.571 neighbors. Most of the members 
in this network were short-chain fatty acid (SCFA) producers. Interestingly, besides carbohydrate fermentation 
by saccharolytic bacteria, degradation of plant aromatic compounds might be another source of SCFA in the 
rat large bowel. Flavonifractor, first isolated from the human intestine, is known to convert quercetin and other 
flavonoids into acetic and butyric acids38. However, flavonoid compounds exist in nature primarily as glycosides, 
whereas Flavonifractor was previously described to be asaccharolytic39. In the co-occurrence network, we found 
that the neighbors of Flavonifractor, such as Pseudoflavonifractor and Barnesiella, were able to hydrolyze aescu-
lin (similar to flavonoid glycosides in molecular structure) into glucose and aesculetin38,40. The deglycosylating 
activity of these bacteria may facilitate the flavonoid conversion by Flavonifractor in the large-intestinal lumen. 
Meanwhile, bacteria potentially degrading lignocellulose complexes were also found in the network. Sporobacter, 
Parasporobacterium and Papillibacter were reported to degrade plant polyphenol methyl ethers into acetate and 
other volatile fatty acids by transferring the methyl group to various sulfides41–43. Sulfides may derive from the 
degradation of sulfur-containing amino acids by proteolytic bacteria, for example, Hydrogenoanaerobacterium44 
which was closely connected to Sporobacter and Papillibacter in the co-occurrence network. For most of these 
bacteria, the aromatic ring of plant compounds is cleaved to produce SCFA through the phloroglucinol pathway.

In the large-intestinal mucus layer, the core population of microbes formed several heterogeneous modules. 
Notably, 15 obligatory anaerobic organisms formed a dense subnetwork (diameter: 3; centralization: 0.43; density: 
0.49). Most of the genera in this subnetwork were affiliated to Lachnospiraceae and Ruminococcaceae, with an 
average of 6.8 neighbors connected to one another. Potentially lignin-degrading bacteria (Parasporobacterium 
and Sporobacter) also existed in the mucosal co-occurrence network, with their degrees remarkably higher than 
those in the luminal network. On the other hand, Roseburia, whose degree was 6 in lumen compared to 1 in 
mucus, was previously reported to possess amylolytic activity45,46 and may play a role in hydrolysis of resistant 
starch within the luminal syntrophic saccharolytic network where bacteria were more frequently exposed to 
non-digestible dietary carbohydrates than in mucus layer. It has been shown that carbohydrate utilization of 
Roseburia varies significantly between the species and strains, but the genes for starch degradation (GH13s) and 
the ability to utilize starch in vitro are well conserved47, indicating that this function plays an important role in 
Roseburia ecophysiology.

In addition, Johnsonella laid in the center of both networks as hub nodes connected by 8 and 10 neighbors 
respectively. This non-fermentative and non-proteolytic bacterium was previously reported to be associated with 
oral diseases48 and may play an important role in the co-aggregation of organisms residing in the large-intestinal 
lumen and mucus layer.

Shifts of microbial metabolites.  Ecological community and environment interact as both cause and 
effect. After stratification of the microbial community, distinct distribution patterns of microbial metabolites were 
found along the longitudinal axis of the rat digestive tract. The pH of various anatomic sites also differed, with the 
gastric contents having a relatively low pH (5.01 ±​ 0.29) and the rest being near neutral (Supplemental Table S7). 
The stomach was traditionally believed to represent a harsh environment for microorganisms due to low-pH 
acidic conditions. However, in our study the gastric digesta was found to be only moderately acidic, which is in 
agreement with earlier research indicating that gastric pH could increase with ingestion of meals49. Measurements 
of microbial metabolites revealed that the microbial community in the large intestine was more active than in the 
stomach and small intestine, with the cecum being the most active fermentation chamber. Lactate was the most 
predominant SCFA (accounting for more than 80%) in the stomach and small intestine (Supplemental Fig. S10), 
which may be linked with the predominance of Turicibacter, Lactobacillus and Streptococcus in these regions. 
These organisms were characterized as producing lactate as their main fermentative end-product50,51.

Constrained analysis of principal coordinates (CAP) was performed to discern the possible relationships 
between the microbial community and different environmental variables. In this case, instead of correlating the 
environmental variables a posteriori with the main ordination axes of the analyzed data set, we constrained the 
ordination axes themselves to be linear combinations of the supplied set of environmental variables. The length 
of a variable arrow indicating the gradient direction is proportional to the strength of the relationship of that 
variable to community composition. In the biplot of unweighted UniFrac CAP, samples from different anatomic 
regions were mainly separated by axis 1 (80.98% constrained variation explained) to which various volatile fatty 
acids (VFAs) and lactate were positively and negatively related, respectively (Fig. 7a). Various VFAs showed simi-
lar gradient directions where acetate and propionate appeared to be the most important environmental variables 
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(Mantel: r =​ 0.39; P ≤​ 0.001 for acetate and r =​ 0.41; P ≤​ 0.001 for propionate, respectively). When the concentra-
tions of various VFAs were summed up, the above trend remained evident (Fig. 7b), with total VFAs representing 
the greatest correlation with the community membership (Mantel: r =​ 0.35; P ≤​ 0.001).

Variance partitioning analysis (VPA) was further performed to assess the contributions of different categorical 
factors and environmental variables to the microbial community variance. The results of unweighted UniFrac 
VPA showed that 74.89% of the variance could be explained by these constraints. The biogeographic location, 
inter-individual variability and environmental variable could independently explain 16.41, 1.06, and 9.08% of the 
variation of microbial community membership, respectively. However, 47.49% of the variation was co-explained 
by biogeographic location and environmental variable, meaning that the community membership and the envi-
ronmental data had a fairly similar spatial structuring in the rat gut (Fig. 7c). Amongst these environmental varia-
bles, total VFAs could independently explain 34.04% of the variation, followed by pH (4.92%), ammonia nitrogen 
(NH3-N, 2.61%) and lactate (2.17%, Fig. 7d). Note that in the variance partitioning theory, the percentage value of 
co-contribution for multiple variables can be negative52 although in ecological practice, however, this is unlikely 
to occur. A similar trend was also observed by weighted UniFrac CAP and VPA for the community structure 
(Supplemental Fig. S11), apart from less overlap in contributions for biogeographic location and environmental 
variable (21.72%).

To further explore the responses of particular community members to the gradients of environmental var-
iables across the biogeographic locations, the correlations between different environmental variables and taxo-
nomic groups at the genus level were tested (Supplemental Fig. S12), then a network was constructed, where two 
topologically distinct modules respectively centered by different VFAs and pH were connected through lactate 
and NH3-N as bridges (Fig. 7e). Various VFAs co-aggregated together (average degree: 31.67; neighborhood 

Figure 7.  Correlations between environmental variables and microbial community membership. 
Constrained analysis of principal coordinates of unweighted UniFrac distances and environmental variables 
for luminal samples. Arrows indicate the direction and magnitude of environmental variables associated with 
bacterial community membership. The P-value of the Monte Carlo permutation test is shown on the upper 
left. (a) Each type of VFA was plotted independently. (b) The concentrations of several VFAs were summed 
up and plotted as total VFAs. Venn diagrams demonstrating percentages of community membership variation 
explained by (c) biogeographic location, inter-individual variability, environmental variable and separately 
explained by (d) different environmental variables (pH, total VFAs, lactate and ammonia nitrogen).  
(e) Correlation network of environmental variables and taxonomic groups at the genus level with absolute value 
of Pearson’s r >​0.4 and FDR <​ 0.05. Genera with maximum abundance >​1% are highlighted in bold.



www.nature.com/scientificreports/

1 0Scientific Reports | 7:45840 | DOI: 10.1038/srep45840

connectivity: 5.47; topological coefficient: 0.64) surrounded by taxa mainly belonging to Firmicutes, which may 
imply a better adaptability of these bacteria to the ecological circumstances where complex anaerobic fermenta-
tion provides an energetic advantage53 and a possible signaling communication strategy amongst these organ-
isms. It has been noticed that in complex microbial ecosystems, bacterial metabolites may act as chemical signal 
substances detected by a species to monitor the abundance of itself or its neighbors, which is known as quorum 
sensing54. On the other hand, most of the Proteobacteria and Bacteroidetes phylotypes were negatively corre-
lated to pH (degree: 52; neighborhood connectivity: 1.06; topological coefficient: 0.03), forming an asterisk-like 
structure.

Differences amongst murine gastrointestinal microbiota.  Historically, laboratory rodents have sig-
nificantly contributed to the knowledge in several areas of human health and disease. To investigate the biolog-
ical significance of the biogeographic map of rats, we compared the gastrointestinal microbiota from different 
murine animals. In different amplicon sequencing projects, researchers chose different protocols targeting var-
ious hypervariable regions in the 16S rRNA gene, which could cause difficulties to OTU binning for lacking 
alignable sequences. Here, a phylotype-based strategy was employed, where sequences of different variable 
regions were processed through an identical pipeline to obtain comparable phylotype abundance data. The ordi-
nation result for rat GI microbiota based on this strategy showed great similarities with those of Unifrac PCoA 
(Supplemental Fig. S13, protest: r =​ 0.95; P ≤​ 0.001 for unweighted and r =​ 0.81; P ≤​ 0.001 for weighted). The 
ordination result for mouse, rat and woodrat gastrointestinal microbiota showed that the rat microbial bioge-
ography represented a remarkably distinct landscape, where sample points mainly clustered according to the 
metadata recording host information (Fig. 8a). Besides the host genotype (adonis: R2 =​ 0.25; P ≤​ 0.001), anatomic 
region was another driver (adonis: R2 =​ 0.17; P ≤​ 0.001) for the stratification of murine gastrointestinal microbi-
ota (Fig. 8b). The sample similarity within a given anatomical region predominated in the PCoA plot in spite of 
the strong contribution of host genotype background variability. The dispersion pattern of intra-region variability 
was consistent with that found in rats when taking these murine gastrointestinal microbiota together into consid-
eration (Supplemental Figs S7 and S14). Despite the difference in the relative abundance (Supplemental Fig. S15), 
in the view of phylotype overlap, of the 3 rodents, the gastrointestinal microbiota of rats was most closely related 
to that of human, especially in the large-intestinal mucus layer (Fig. 8c,d). Nevertheless, these results must be 
interpreted with caution, because these amplicon sequences were derived from different studies using different 
DNA extraction methods, polymerase chain reaction (PCR) amplification protocols and sequencing platforms.

Discussion
The rat is a long-standing animal model in biomedical research. More than a million publications on studies in 
which rats were used have been reported, illustrating the substantial amount of data that has been gathered on 

Figure 8.  Differences in microbial biogeographies of rodent and human digestive tract. Principal 
coordinates analysis of Bray-Curtis distances between samples from mouse, rat and woodrat digestive tract 
(performed on all taxonomic groups at the genus level), grouped by (a) host (adonis: R2 =​ 0.25; P ≤​ 0.001) and 
(b) anatomic region (adonis: R2 =​ 0.17; P ≤​ 0.001). The percent of variation explained by each coordinate is 
indicated in parentheses. Venn diagrams demonstrating the taxon overlap between different hosts at the genus 
level for (c) large-intestinal mucus and (d) feces.
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this species55. The first rat genomic sequence was published in 200456 and was the third mammalian genome to be 
sequenced after those of the human and the mouse. However, the intestinal microbiome, as the second genome 
for rats, has not been well characterized. Our knowledge about the spatial structure of the microbial consortium 
in normal rats is still very limited. Therefore, an investigation into the radial microbiota diversity and composition 
along the length of the rat digestive tract was carried out in the present study using a high-throughput 16S rRNA 
gene sequencing approach.

The sequencing results showed that the microbial community diversity increased along the longitudinal axis 
of the rat digestive tract, which was in conflict with the tendency previously found in mice, where gastric and 
duodenal samples had similar levels of diversity with large-intestinal samples. Gu et al. hypothesized that the 
existence and “vanishing” of “transient microbiota” could explain the relatively high diversity in the stomach and 
duodenum57. Nevertheless, in our results the absolute SI values were close to those in mice for these anatomic 
sites, whereas in the large intestine the diversity measurements were much higher, especially for the colonic 
mucus layer. This presumably implies that the rat’s large intestine houses a more complex micro-ecosystem, which 
was also supported by early research indicating that the number of bacterial species in rat feces was 2–3 times 
higher than that of human feces at the same sequencing effort32. A similar phenomenon was also captured in our 
study when comparing the colonic mucosal samples from rats and human beings.

Given the variable per-genome copy number of the 16S gene in bacteria and archaea, a copy number-corrected 
pipeline was employed to describe the microbial community composition in the rat GI tract. Besides 
Lactobacillus, a common commensal organism usually highly abundant in the laboratory rodent gut, another 
lactate-producing bacterium, Turicibacter, was also predominant in the rat digestive tract. The enrichment of 
this microorganism throughout the alimentary canal, especially in the stomach, might be a trait of rats and not 
of other murine animals. However, there are very few reports describing Turicibacter species and their biologi-
cal and clinical significance. Turicibacter sanguinis, the only species systematically described within this genus, 
was isolated from blood culture of a febrile patient with acute appendicitis50. Turicibacter rRNA gene sequences 
have also been PCR-amplified from human feces58 and ileal pelvic pouch contents from a subject with ulcerative 
colitis59. Presley et al. examined the bacteria-immune system interactions in mice and proposed a potential asso-
ciation between Turicibacter and immunoregulatory cells60. To date, there are only two published whole-genome 
sequencing projects for this genus61,62 and more cumulative work is further required to explore the potential 
interaction between this microorganism and its host.

The relatively high abundance of lactate-producing bacteria in the upper GI tract probably explains the enrich-
ment of lactate (accounting for more than 80% of SCFA) in the stomach and small intestine. Recent evidence for 
diverse and transcriptionally active microbiota within the stomach has challenged the traditional notion that 
the upper GI tract is nearly sterile35,63,64. However, the metabolic activity of Turicibacter, previously described as 
strictly anaerobic, needs to be further studied given the oxygen availability in the upper GI tract. On the other 
hand, the fermentative pattern in the lower GI tract was totally different from the upper, where increasing pro-
ductions of various VFA were observed, especially for butyrate, a preferred energy source for colonic epithelial 
cells65. Detailed phylotype analysis revealed that the VFA producers Lachnospiraceae and Ruminococcaceae con-
stituted the bulk of the core microbiota in the large intestine. Interestingly, besides carbohydrate fermentation, 
degradation of plant aromatic compounds might be another source of VFAs in the rat large bowel. In the micro-
bial co-occurrence network, several potential function modules were identified where bacteria cooperate with 
each other to convert flavonoid and lignin complexes into acetate and butyrate. Similar to the so-called quorum 
sensing mechanism54, there may exist a communication strategy amongst these ecosystem service providers using 
their metabolites as chemical signaling53.

VPA for rats showed that the GI microbiota community variation could be explained mostly by the biogeo-
graphic location and environmental variable. Unlike human beings, where inter-individual variability is a hall-
mark of GI microbiota14, the inter-individual variability of rats only contributed to a small part of the variation. 
This is not surprising because the animals used here have similar genetic composition and diet condition, in 
addition to the coprophagy of rats. Nevertheless, different anatomic regions in the digestive tract have distinct 
niche-specific physicochemical conditions, such as intestinal flow rate, redox potential, oxygen concentration, 
availability of nutrients and host immune response26,27,29. In accordance with previously imaged oxygen gradi-
ent28, the core microbiota in rat evolved from aerobic to facultative anaerobic to obligatory anaerobic along the 
longitudinal axis. The community membership and structure were mainly stratified by biogeographic factors such 
as anatomic region and sub-site, whereas the intra-region variability was significantly higher within the stomach 
and small intestine than other segments. This trend was still evident when comparing different murine gastro-
intestinal microbiota, even if host genotype background was also a strong driver. The ordination result showed 
that the rat GI microbial biogeography characterized in present study might provide a new reference for digestive 
tract-related disease research and that the murine animals may have co-evolved with their gut microbiota30.

Despite having the largest number of overlapping OTUs, the luminal and mucosal microbial communities 
showed notably radial segregation in the rat lower GI tract. PLS-DA for these two adjacent compartments indi-
cated that the key phylotypes responsible for this differentiation included several mucus-enriched proteolytic 
and catalase-positive microorganisms, which is in agreement with an earlier report66. The saccharolytic bacteria 
residing in the outer mucus layer may digest mucin glycans67 and help make polypeptides more accessible for 
proteolytic bacteria, enhancing syntrophic interactions. The topologically distinct co-occurrence networks of core 
microbiota for these intimate regions may fulfill different roles within this spatially defined ecosystem.

In conclusion, we have generated the first comprehensive characterization of the normal rat microbiota land-
scape, which will improve our understanding of the mechanism within various GI niches of this long-standing 
murine model as well as the development of dysbiotic microbiota associated with diseases. The rat digestive tract 
harbors many distinct niches, each containing a different microbial ecosystem that might provide indispensable 
services to the host. Our study also confirms that fecal samples cannot represent the whole microbiota in the 
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digestive tract, and attention should therefore be paid to ensure that the proper GI samples are selected and used 
for gut-related disease research.

Methods
Chemicals and Reagents.  Analytical standards (acetic, propionic, isobutyric, butyric, isovaleric and valeric 
acids, lithium L-lactate, Ammonium sulfate) and sodium nitroprusside were purchased from Sigma-Aldrich 
Company (St. Louis, MO, USA). P-hydroxydiphenyl was purchased from J&K Scientific Ltd. (Beijing, China).

Animals and sample collection.  Six male-specific pathogen-free (SPF) Sprague-Dawley rats aged 6 weeks 
(Shanghai Laboratory Animal Center, Shanghai, China) were used in this study.

All of the protocols used in this study were approved by the Ethics Committee of Jiangnan University, 
China (JN NO. 20140926-0204-35-1), and the procedures were carried out in accordance with the European 
Community guidelines (Directive 2010/63/EU) for the care and use of experimental animals. All rats were 
co-housed in one cage in a temperature- and humidity-controlled room under a strict 12 hour light–dark cycle. 
Irradiation sterilized commercial rodent chow (main ingredients: corn, soybean meal, wheat and fish meal. 
Shuangshi animal feed Technology Ltd. Suzhou, Jiangsu, China) and autoclaved water were given ad libitum 
during the one-week acclimatization period, after which feces were collected. Rats were transferred to separate 
sterilized cages, and feces were collected in individual clean EP tubes (Axygen Scientific, Union City, CA, USA). 
After this, the rats were weighted and then euthanized by intraperitoneal injection of 200 mg/kg sodium pento-
barbital euthanasia solution. Abdomens were rinsed in 75% ethanol and dried with a paper towel before incision. 
Stomach, duodenum, jejunum, ileum, cecum and colon were excised and immediately weighed as a whole. The 
colon was subsequently divided equally into three parts as proximal, middle, and distal. Each GI section was then 
placed in a clean petri dish and cut lengthwise. The luminal contents were carefully emptied into the petri dish 
using forceps without scraping the surface and then collected into clean EP tubes. The gastrointestinal wall was 
then washed twice with phosphate-buffered saline, and the mucus layer was scraped off with a rubber spatula then 
stored at −​80 °C for further microbiota analysis. Luminal contents from each GI section and feces were divided 
into aliquots for various uses (described below) and stored at −​80 °C until analysis.

Determination of microbial metabolites.  A portion of luminal samples were divided into aliquots for 
the determination of pH, volatile fatty acids (VFAs), lactic acid and ammonia nitrogen.

To determine the pH, samples (50 mg) were diluted 1:5 in Milli-Q water. The pH was measured using a Mettler 
Toledo pH meter with an InLab®​ Solids pH electrode (Mettler Toledo, Columbus, OH, USA).

To determine VFAs, samples (50 mg) were resuspended in 500 μ​L of saturated NaCl solution and acidified 
with 20 μ​L of sulfuric acid (10%); 800 μ​L of diethyl ether was then added to extract the fatty acids. After shak-
ing for 2 min, the mixture was centrifuged at 14,000 g for 15 min. The supernatant was then dried using 0.25 g 
of Na2SO4 and the concentration of VFAs (acetic, propionic, isobutyric, butyric, isovaleric and valeric acids) 
was analyzed via Gas Chromatography (GC-2010 plus, Shimadzu, Kyoto, Japan) fitted with a quadrupole Mass 
Spectrometry unit (GCMS-QP2010 Ultra, Shimadzu, Kyoto, Japan), which was equipped with a Rtx-Wax column 
(length =​ 30 m, id =​ 0.25 mm, thickness =​ 0.25 μ​m, Restek, Evry, France). Helium was used as carrier gas at a 
constant linear velocity of 35.0 cm/sec. The injection volume was 1 μ​L with a split ratio of 1:10. The injection tem-
perature was set at 240 °C and the GC temperature program was as follows: begin at 100 °C, increase to 140 °C at 
the rate of 7.5 °C/min, followed by 60 °C/min to 200 °C, and hold at 200 °C for 3 min. The ion source temperature 
was set at 220 °C. The analytes were detected using the single scan mode (acetic, butyric, isovaleric and valeric 
acids: 60 m/z; propionic acid: 57 m/z; isobutyric acid: 43 m/z). The concentration of VFAs was calculated using the 
external standard method and expressed as μ​mol/g sample.

Lactic acid in samples (50 mg) was determined by the p-hydroxydiphenyl method as previously described68. 
Lithium L-lactate was used as a standard and the concentration of lactic acid was expressed as μ​mol/g sample.

Ammonia nitrogen in samples (50 mg) was determined by the indophenol method as previously described69. 
(NH4)2SO4 was used as a standard and the concentration of NH3-N was expressed as μ​mol/g sample.

DNA extraction, PCR amplification, quantification, and sequencing.  Total genomic DNA was 
extracted from all samples (100 mg) using FastDNA®​ Spin Kit for soil (MP Biomedicals, Santa Ana, CA, USA) 
according to the manufacturer’s instructions. DNA quality was assessed by the 260/280-nm and 260/230-nm 
absorption ratios, measured with an ND-2000 spectrophotometer (Nanodrop Inc., Wilmington, DE, USA) and 
agarose gel electrophoresis.

Due to the low biomass of several mucus samples, a nested PCR protocol was used to amplify the bacterial 16S 
rRNA gene from all samples. For the first round of amplification, the near full-length 16S rRNA gene was amplified 
using primers 27F (5′​-AGAGTTTGATCCTGGCTCAG-3′​) and 1492R (5′​-GGTTACCTTGTTACGACTT-3′). 
In the second round, modified fusion primers 520F (5′ ​-AYTGGGYDTAAAGNG-3′ ​) and 802R  
(5′​-TACNVGGGTATCTAATCC-3′​) containing a seven-base barcode were used to amplify the V4 region. Ten 
cycles were used for the first PCR round and 30 cycles were used for the second round. The PCR amplification 
was carried out with the GoldStar Best High-Fidelity DNA polymerase (CWBIO, Beijing, China) following the 
manuals. The first round of amplification consisted of an initial denaturation step at 95 °C for 10 min, followed by 
10 cycles, where 1 cycle consisted of 94 °C for 30 s (denaturation), 55 °C for 30 s (annealing) and 72 °C for 1 min 
30 s (extension), and a final extension of 72 °C for 5 min. The procedure for the second round of PCR amplifi-
cation was 95 °C for 10 min; 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 30 s, repeated for 30 cycles; and 72 °C for 
5 min. Negative controls were always performed to verify the lack of amplification without DNA template. PCR 
products were excised from a 1.5% agarose gel, recovered using QIAquick®​ Gel Extraction Kit (QIAGEN, Hilden, 
Germany) and quantitated using the Quant-iTTM PicoGreen®​ dsDNA Assay Kit (Life Technologies, Grand Island, 
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NY, USA). Libraries were prepared using TruSeq Nano DNA LT Kit (Illumina, catalog no. FC-121-4001) and 
sequenced with the Miseq Reagent Kit v3 (600 cycles-PE, Illumina, catalog no. MS-102-3001).

Bioinformatic Analysis.  A unique barcode was used to label each sample and multiplex Illumina sequenc-
ing resulted in 4,957,802 paired-end reads. Forward and reverse raw sequences were assembled using SeqPrep 
(https://github.com/jstjohn/SeqPrep) in QIIME package70 (Quantitative Insights Into Microbial Ecology, v1.9.1) 
with default parameters (minimum allowed overlap: 15 bp; minimum allowed fraction of matching bases: 90%; 
maximum mismatched high quality bases: 2%). Reads that could not be assembled were discarded. Sequences 
with fraction of consecutive high quality base calls (phred score >​29) lower than 75%, containing ambiguous 
bases, or lacking a perfect match to given barcodes were removed. When a sequence had more than 3 consecutive 
low quality base calls (phred score <​30), it was truncated. Reads identified as host genome were exclude by blast 
against the rat reference genome71 (Ensembl assembly Rnor 6.0, e-value <​ 1e-10, % alignment >​0.97).

Raw reads of 42 samples from 6 C57BL/6 mice57, 2 samples from 3 C57BL/6 mice72 and 30 samples from 5 
woodrats (Neotoma albigula)73 were downloaded from the NCBI Short Read Archive (SRA) under accession 
number SRA061180, ERP000288 and SRP022360, respectively. Raw reads of 85 samples from 6 C57BL/6 mice74 
were downloaded from Figshare under accession number 1499145. Raw reads of 17 samples from 4 human 
beings14 were downloaded from the Rapid Annotation using Subsystems Technology for Metagenomes database 
(MG-RAST) under accession number mgp1982. These reads were filtered as above and used in further analysis 
combining the reads from rats. To exclude host genome contamination, reads from mice and human beings were 
blasted against reference genome (Ensembl assembly GRCm 38.71 and GRCh 38) while reads from woodrats 
were not screened for lack of host genome data.

An open reference OTU picking pipeline was performed against the greengenes database75 (release 13.8) to 
cluster reads with >​97% similarity using UCLUST76 v1.2.22. Representative sequences from each cluster were 
aligned with the PyNAST aligner77 to the greengenes core set, and then a de novo taxonomic tree was constructed 
using FastTree78 v2.1.3.

The taxonomic abundance of each sample was calculated with Ribosomal Database Project (RDP) classi-
fier79 v2.10.2 trained with 16S rRNA training set No. 14 using a bootstrap cutoff of 50%. Subsequently, a gene 
copy number adjustment for 16S rRNA sequences was performed. The 16S rRNA copy number data is provided 
by rrnDB website34 (https://rrndb.umms.med.umich.edu/). A customized script was used to extract and merge 
abundance data at different taxonomic levels.

To minimize the difference of sequencing depth amongst samples, a rarefied OTU subset was generated 
by evenly resampling 22,880 sequences per sample (without replacement) for further alpha and beta diversity 
analysis. OTU richness, Chao1 richness estimator, Shannon index (SI) phylogenetic diversity (PD) were used 
to estimate the alpha diversity in each sample, involving ten resampled data (without replacement). The differ-
ences amongst the microbial communities were determined based on the phylogenetic information within each 
sample with both the unweighted and weighted UniFrac analysis80. UPGMA (Unweighted Pair Group Method 
with Arithmetic Mean) trees of these metrics were calculated within QIIME and plotted using FigTree v1.4.2. 
Jackknife values were calculated with 100 sets of 18,000-sequence rarefied tables of 75 samples and with 100 sets 
of 16,000-sequence rarefied tables of 13 pooled samples (sequences were merged within anatomic sites across 
subjects). Principal coordinates analysis (PCoA) and constrained analysis of principal coordinates81 (CAP) of 
unweighted and weighted UniFrac distances were calculated in QIIME and R-package vegan82 then visualized 
by EMPeror83.

In order to inspect the composition of lactobacilli to a higher-level resolution, a phylogenetic tree of represent-
ative sequences of dominating Lactobacillus OTUs and Lactobacillus-type strains was constructed using MAGE84 
6.06, then visualized by Interactive Tree of Life85 (iTOL, http://itol.embl.de/). The 16S rRNA sequences of bacteria 
affiliated to Lactobacillus were retrieved from the GenBank database according to the List of Prokaryotic names 
with Standing in Nomenclature86 (LPSN, http://www.bacterio.net/).

Statistical Analysis.  The differences in alpha diversity measurements, relative abundances of taxa, pH and 
concentrations of microbial metabolites amongst different groups were analyzed using Kruskal-Wallis rank sum 
test by stats package in R87. Nemenyi’s post hoc multiple comparison test between all possible group combinations 
was performed by kruskalmc implemented in R-package pgirmess. P-values were adjusted for multiple testing by 
false discovery rate (FDR) using the Benjamini & Hochberg method88.

Permutational multivariate analysis of variance89 (PERMANOVA) was employed to describe the strength and 
significance that a categorical factor has in determining variation of ecological distances. Variance partitioning 
analysis90 was performed to assess the contributions of biogeographic location, inter-individual variability and 
different environmental variables (pH, SCFAs and ammonia nitrogen) to the microbial community variance. The 
correlations between community membership or structure, as measured by unweighted and weighted UniFrac 
distances, and different environmental variables, were assessed using Mantel test91. The significance of the results 
from CAP, PERMANOVA and Mantel tests was tested by 999 Monte Carlo permutations. PERMANOVA was 
performed using adonis implemented in vegan.

Partial least square discriminate analysis (PLS-DA) was performed based on the relative abundances of gen-
era using Simca-p +​ 11.0 (Umetrics AB, Umea, Sweden). R2 was the index of how much the model can explain 
over all the cases. Q2 was the index of how much the model can predict over all the cases. Variable importance 
in projection (VIP) reflects the discriminative power of variables. Variables with VIP >​ 1, which were important 
contributors to generation of the model, were used to build a heat map in R studio using pheatmap package.

Spearman’s rank correlation was used to evaluate the co-occurrence relationships between taxa. Correlations 
between abundances of particular genera and gradients in pH as well as microbial metabolites were determined 
using Pearson’s correlation coefficient by rcorr implemented in R-package Hmisc. False discovery rate values were 
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estimated using the Benjamini & Hochberg method to control for multiple testing. Correlation networks were 
visualized by Cytoscape92 v2.8.1 using the force-directed method for laying out the graphs.

In order to compare samples targeting different hypervariable regions in the 16S rRNA gene, filtered sequenc-
ing data from different studies were processed with the identical taxa annotation pipeline, then the taxonomic 
abundance data at the genus level were extracted and combined to calculate Bray-Curtis dissimilarities amongst 
different samples. To remove sampling depth heterogeneity, abundance data were square-root transformed and 
Wisconsin double-standardized. A principal coordinates analysis (PCoA) was then performed based on the 
Bray-Curtis distance matrix. To assess similarities between different community ordinations, a Procrustes anal-
ysis was performed within vegan and visualized by EMPeror. Venn diagrams were constructed using R-package 
VennDiagram.

To test for intragroup dispersion, inter-sample UniFrac and Bray-Curtis distances were tested for equal 
intra-group dispersions using betadisper93 implemented in vegan. The significance was calculated using ANOVA 
with Tukey’s HSD post hoc test.

Data access.  The sequencing data from this study were deposited in the NCBI Sequence Read Archive (SRA) 
under accession no. SRP076251.
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