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Abstract: In this study, a novel hybrid surrogate machine learning model based on a feedforward
neural network (FNN) and one step secant algorithm (OSS) was developed to predict the load-bearing
capacity of concrete-filled steel tube columns (CFST), whereas the OSS was used to optimize the
weights and bias of the FNN for developing a hybrid model (FNN-OSS). For achieving this goal,
an experimental database containing 422 instances was firstly gathered from the literature and used
to develop the FNN-OSS algorithm. The input variables in the database contained the geometrical
characteristics of CFST columns, and the mechanical properties of two CFST constituent materials, i.e.,
steel and concrete. Thereafter, the selection of the appropriate parameters of FNN-OSS was performed
and evaluated by common statistical measurements, for instance, the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error (MAE). In the next step, the prediction
capability of the best FNN-OSS structure was evaluated in both global and local analyses, showing
an excellent agreement between actual and predicted values of the load-bearing capacity. Finally,
an in-depth investigation of the performance and limitations of FNN-OSS was conducted from a
structural engineering point of view. The results confirmed the effectiveness of the FNN-OSS as a
robust algorithm for the prediction of the CFST load-bearing capacity.

Keywords: concrete-filled steel tube column; machine learning; neural network; one step secant
algorithm; optimization

1. Introduction

Concrete-steel composite structure has been the subject of extensive researches and widely applied
in the construction industry as a result of the efficiency in combining the two most commonly used
materials: concrete and steel [1]. Concrete filled steel tube (CFST) column is a type of composite
structure that can replace traditional column structures, such as reinforced concrete columns or steel
columns [2]. The CFST column could take full advantage of the bearing capacity of concrete and steel
by overcoming the weaknesses of each component while working simultaneously in the structure.
Moreover, the CFST columns exhibit many advantages, especially the profit of the ductility, associated
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with the steel structures, and the stiffness of the concrete system. Thereby, the construction costs could
be reduced to the lowest level [3].

The typical characteristic of CFST is that the concrete material stuffing in the steel pipe hinders
local instability of the pipe wall while subjected to compression. Besides, the steel in the CFST section
is much more significant than that of reinforced concrete, positioned at the farthest end of the section.
This could significantly increase the bearing capacity of the structure [4–8]. Previous studies [9–13] also
showed that the CFST column has high flexibility, high energy absorption, and high reliability when
used for earthquake-resistant buildings. Moreover, it is able to reduce the impact on the environment
by eliminating formwork, and the steel pipes could be reused, or using high-strength concrete with
recycled materials. Compared with standard steel columns, CFST columns are especially useful when
subjected to compression. Therefore, in a load-bearing structure system, it is recommended to use
CFST columns for compressive structures [13–15]. With such bearing characteristics, the cross-section
of the CFST column is usually in the form of circle, square, rectangle, or ellipse [13]. For load-bearing
components in two uneven directions, the cross-section of CFST is usually chosen in the form of
rectangular or elliptical shapes [8,12,16,17].

So far, the CFST has been widely used around the world in various types of structures such as
compressive columns in tall buildings, steel pipe arch bridges, piles, transmission towers, and bracing
members in buckling restrained frames [2,12,18]. Therefore, the CFST column calculation regulations
have been included in several design standards, such as the “Load and resistance factor design LRFD
specification for structural steel buildings”, issued by the American Steel Works Institute, ANSI/AISC.
360-10 [19], Canadian Standards: Limit state design of steel structures, CAN/CSAS16.1-M94 [20],
Eurocode 4 (EC4) [21], Australian standard AS 5100 [22], Chinese standard CECS 28-2012 [23], and
Japanese standard JIS G 3192: 2005 [24]. In addition, an important number of empirical studies and
numerical works have been carried out, based on the mechanical properties of the CFST column
with different cross-sectional forms under the influence of axial load. Studies by Liu et al. [12,18],
Chitawadagi et al. [25], Schneider [26], Uy [6], Sakino et al. [27], and many other studies [10,28–31]
related to rectangular CFST columns with axial load have shown that the bearing capacity of CFST
columns depends on many factors, such as the changes in the pipe wall, the thickness of steel pipe,
concrete strength, cross-sectional area of steel pipe, steel pipe length, effects of concrete compaction,
effective load conditions and boundary conditions. However, in the above studies, there are still
some limitations, such as the difference between standard and experimental results [32], simplified
methods in design codes are not suitable for materials of high strength [33], the process of testing
axial compressions is time-consuming and labor-intensive. It is also difficult in numerical methods to
consider all the complex conditions and properties of the materials used [1]. At the same time, these
methods have not yet generally considered the factors affecting the load capacity of CFST column.
Therefore, it is necessary to develop a consistent and effective method to design CFST columns.

In recent decades, artificial intelligence (AI) or machine learning has progressively become
prevalent and applied in miscellaneous engineering fields [34–44]. The artificial neural network (ANN),
a well-known AI algorithm, has been widely used and applied to construction engineering. Various
contributions have demonstrated the potential of ANN in predicting the behavior of structural members
and materials in the field of mechanical engineering, especially in the field of construction [45–50].
Regarding the CFST columns, many studies related to AI have been conducted to study the CFST
behavior under different conditions. In the study of Al-Khaleefi et al. [51] and Wang et al. [52],
the relationship of fire resistance and load-deformation of the CFST columns with different dimensions
and parameters was predicted by ANN model. The load-bearing capacity of CFST under the effect
of the axial load has also been predicted based on ANN models in the studies of Du et al. [33] or
Sarir et al. [53]. However, the prediction capability of the proposed ANN model still needs further
improvements. Moreover, the performance and limitations of ANN have not been studied, especially
from a structural engineering point of view.
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Therefore, this study focused on the development of an AI model based on a feedforward neural
network (FNN) and one-step secant (OSS) algorithm to predict the load-carrying capacity of the
rectangular CFST columns under axial loading. The OSS algorithm was used in the training phase
of the FNN model to optimize the weights and biases associated with the neurons in the hidden
layer for developing a hybrid model (FNN-OSS), aiming at a better prediction of the load-bearing
capacity of rectangular CFST members. To this aim, a database consisted of 422 instances was collected
from published works in the literature. The input variables in the database contained the geometrical
characteristics of CFST columns, and the mechanical properties of two CFST constituent materials,
i.e., steel and concrete. The parameters of FNN and OSS were first carefully selected, following by
the evaluation of the performance of the FNN-OSS model. Next, the prediction capability of the best
FNN-OSS structure was evaluated in local and global analyses. Finally, discussions and limitations
on the robustness of the proposed FNN-OSS model were given through the prediction in function of
different classes of input variables.

2. Material and Methods

2.1. Database Construction
Composite CFST columns have been widely employed in various practical constructions as shown

in Figure 1. The role of these columns is important as they support all the weight of the entire structure
above. If the stability of even one structural component is not guaranteed, then the risk of damage to
the structure is significant.
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Various laboratory experiments have been performed in the literature to measure the load-bearing
capacity of rectangular CFST columns. As set forth in the literature, the experimental process followed
the steps below [55,56]: (i) design; (ii) processing of steel tube (welded or cold formed steel plates); (iii)
production of concrete; (iv) manufacture of composite members; and (v) loading and measurement
(see Figure 2 for schematic description of the test).
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Figure 2. Diagram of rectangular CFST column: (a) under axial loading, (b) cross-section, and (c) load-axial
shortening curve for determination of load-carrying capacity.

In this study, 422 tests on axially loaded rectangular CFST columns were gathered from the
available literature. The selection of tests was based on the following criteria (see Figure 3a for typical
test setup and instrumentations):

• Only monotonic uniaxial test was collected;
• The samples were fully loaded (both steel and concrete);
• Steel reinforcement, shear stub and tab stiffeners were not included in the samples.

In addition, a hypothesis was made such that the influence of initial geometric imperfections
and residual stress was negligible compared to the major geometric parameters and mechanical
properties of the constituent materials [57]. Diagram of CFST column under compressive loading is
presented in Figure 2. Figure 2a,b show geometrical parameters of the column such as cross-sectional
height and width, thickness of steel tube, and length of column. The strength of constituent materials
is characterized through yield strength for steel and cylindrical compressive strength for concrete.
The load-bearing capacity Nu of the column is determined as shown in Figure 2c.

Typical damages of CFST columns are presented in Figure 3b for local outward buckling, Figure 3c
for overall buckling failure, and Figure 3d for concrete core. In the presence of a concrete core, local
outward buckling failure of the external steel was observed in all specimens, as shown in Figure 3b.
This is the same as that observed by other investigations such as Han and Yao [58], Yan et al. [59].
On the other hand, the concrete core underwent shear failure (see Figure 3d). Slender CFST columns
may fail through overall flexural buckling, together with (minor) local outward bulges (see Figure 3c).
In several tests, tensile fractures were also observed in the steel wall [55,60] (see Figure 3b), because the
tube was formed by welding.
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Figure 3. Experimental tests on CFST columns: (a) typical test setup and instrumentations (linear
varying displacement transducers and strain gages were used to record the variations of displacement
and strains) (represented with permission from Du et al. [55]), (b) local outward buckling of steel
tube (represented with permission from Du et al. [55]), (c) overall buckling failure of slender column
(represented with permission from Du et al. [55]), and (d) damage of concrete core (represented with
permission from Lyu et al. [61]).

The details of 422 experimental results on CFST structures are summarized in Table 1. Table 2
shows the initial statistical analysis regarding the database, including notation, unit, min, quantile,
max, average, standard deviation, and coefficient of variation of all variables in the database. The input
variables considered were the height of cross-section (denoted as H), the width of cross-section
(denoted as W), the thickness of steel tube (denoted as t), the length of CFST column (denoted as
L), the yield stress of steel (denoted as fy) and the compressive strength of concrete (denoted as f’c).
The load-carrying capacity (denoted as Nu) was considered as the output of the problem. Figure 4
displays the classification of variables used in this study, including the number of data and the
distribution of values. Figure 5 displays the classification of the type of structures in highlighting the
L/H and H/W ratios. Table 3 shows the details of classification regarding the L/H ratio, H/W ratio with
the type of steel tube.

Table 1. Database information and the corresponding number of data.

Nr. Reference Nr. of
Data

% of
Proportion Nr. Reference Nr. of

Data
% of

Proportion

1 Aslani et al. [62] 12 2.8 20 Lin [63] 12 2.8
2 Bergmann [64] 4 0.9 21 Matsui & Tsuda [65] 6 1.4
3 Bridge [66] 1 0.2 22 Mursi & Uy [67] 4 0.9
4 Chapman & Neogi [68] 2 0.5 23 Sakino et al. [56] 48 11.4
5 Chen et al. [69] 4 0.9 24 Sakino et al. [70] 36 8.5
6 Ding et al. [60] 5 1.2 25 Schneider [26] 11 2.6
7 Du et al. [55] 14 3.3 26 Shakir-Khalil & Mouli [71] 14 3.3
8 Dundu [72] 27 6.4 27 Shakir-Khalil & Zeghiche [73] 1 0.2
9 Fong et al. [74] 1 0.2 28 Tao et al. [75] 2 0.5

10 Furlong [76] 5 1.2 29 Tomii & Sakino [77] 8 1.9
11 Ghannam et al. [78] 24 5.7 30 Uy [79] 18 4.3
12 Grauers [80] 18 4.3 31 Varma [81] 4 0.9
13 Han [82] 66 15.6 32 Vrcelj & Uy [83] 8 1.9
14 Han & Yang [84] 4 0.9 33 Xiong et al. [85] 15 3.6
15 Han & Yao [58] 34 8.1 34 Yamamoto et al. [86] 8 1.9
16 Han et al. [87] 2 0.5 35 Yang & Han [88] 2 0.5
17 Khan et al. [89] 55 13.0 36 Yu et al. [90] 10 2.4
18 Knowles & Park [91] 6 1.4 37 Zhu et al. [92] 6 1.4
19 Lam & Williams [93] 15 3.6 Total 422 100.0
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Table 2. Initial statistical analysis of the database.

Parameter
Height of
Steel Tube

(H)

Width of
Steel Tube

(W)

Thickness
of Steel
Tube (t)

Length of
Column

(L)

Yield
Stress of
Steel (fy)

Compressive
Strength of

Concrete (f’c)

Load-Bearing
Capacity (Nu)

Unit mm mm mm mm MPa MPa kN
Minimum 60.00 60.00 0.70 60.00 194.00 7.90 105.40

Q25 101.60 100.00 3.00 450.00 320.00 26.39 808.08
Median 149.35 120.00 4.80 634.00 384.65 40.91 1537.00

Q75 195.00 160.00 5.48 1514.00 618.00 80.00 3183.00
Maximum 500.00 500.00 16.00 4500.00 835.00 164.10 17,900.00

Mean 154.02 141.72 4.80 1115.58 459.11 54.36 2500.92
StD 66.08 65.36 2.34 957.49 195.18 37.00 2602.94

CV (%) 42.90 46.12 48.87 85.83 42.51 68.06 104.08Molecules 2020, 25, x FOR PEER REVIEW 8 of 30 
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Figure 5. Classification of (a) L/H ratio and (b) H/W ratio, including the corresponding number of data.

Table 3. Details of classification of L/H ratio, H/W ratio, and type of steel tube.

N◦ L/H Ratio Number H/W Ratio Number Steel Tube Type Number

1 0–3 177 0.75–1.25 337 Cold formed 201
2 3–6 107 1.25–1.75 73 Welded box 193
3 6–9 14 1.75–2.25 12 Other 28
4 9–12 21 Total 422 Total 422
5 12–15 25
6 15–18 15
7 18–21 10
8 21–24 10
9 24–27 16

10 27–30 8
11 30–33 0
12 33–36 10
13 36–39 0
14 39–42 0
15 42–45 6
16 45–48 3

Total 422

The 422 data used in this work were randomly divided into two sub-datasets (under a
uniform distribution), 295 first configurations (70%) were served for training the model and 127 last
configurations (30%) were served as the testing part. This 70–30 ratio was selected as recommended by
Sharma et al. [94] and Salcedo-Sanz et al. [95] in order to ensure the effectiveness in the learning and
testing processes.

2.2. Methods Used

2.2.1. Feedforward Neural Network (FNN)

An artificial neural network (ANN) is a model/algorithm for information processing based on
biological neuron systems. It is built on the basis of many elements (called neurons), connected through
links (called link weights) that work used to solve a particular problem [96]. An ANN is designed
to solve a specific problem, for instance, classification or regression problem, pattern recognition,
through a process of learning from the training data. Generally, it is the process of adjusting the
weights between neurons so that the error function value is minimal. The basic structure of an ANN
usually consists of neurons grouped into input data layers, output data, and one or many hidden
layers [97,98]. Based on the linking method, ANN can be classified into two main types: the recurrent
neural network (RNN) and feedforward neural network (FNN). In particular, FNN is one of the most
basic forms of artificial neural networks and is used successfully in many applications [99,100]. In an
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FNN, data are processed in a single direction, meaning that data from the input layer will only be
transferred via hidden layers for calculation, and calculation results will be forwarded through the
output layer to generate output data. The process of adjusting weights so that the network knows the
relationship between the input and the desired output is called learning or training [101]. Currently,
the mathematical algorithm used to adjust the performance of the FNN is now widely used as the
backpropagation algorithm. The backpropagation algorithm uses a set of input and output values
to find the desired neural network. A set of inputs is put into a certain preset system to calculate
the output value, then this output value is compared with the actual value measured. If there is no
difference, there is no need to perform a test. On the contrary, the weights will be changed during the
backpropagation process to reduce the difference. The backpropagation network usually has one or
more hidden layers with sigmoid-like neurons, and the output layer is neurons with linear transfer
function [51]. However, in traditional BPNN networks, there are some shortcomings, such as slow
convergence speed and easy falling to a local minimum [102]. In order to speed up the convergence rate
and achieve higher accuracy, other training algorithms have been proposed and classified into three
groups, namely the steepest descent, Quasi-Newton, and conjugate gradient. In this work, Matlab
programming language (version 2018a [103]) has been employed for implementation of FNN.

2.2.2. One Step Secant Method (OSS)

Quasi-Newton Method

The Newton method is based on the second-order Taylor series expansion. It is considered as an
alternative algorithm to the conjugate gradient method, often used for fast optimization. For a given
function f (x), Taylor’s series of f (x) around xk can be written as below [104,105]:

f (xk + ∆x) ≈ f (xk) + ∇ f (xk)
T∆x +

1
2

∆xTA∆x, (1)

where A is an approximation of the Hessian matrix. The gradient of this approximation is:

∇ f (xk + ∆x) ≈ ∇ f (xk) + A∆x, (2)

We set this gradient to zero, thus:

∆x = −A−1
∇ f (xk) (3)

In machine learning applications, the latter reflects the actual values of the weights, biases
associated with the neurons [104]. The Newton algorithm is observed to achieve a faster convergence
rate than that of the conjugate gradient methods. However, it is complex, and the computation cost
of the Hessian matrix per iteration is expensive, especially in case of FNN. Later, a new class of
algorithm based on the Newton method is proposed. This is called the quasi-Newton (secant) method,
in which the computation of the second derivatives per step is avoided. The method lies in the update
process of an approximation of the Hessian matrix by performing the computation as a function of
the gradient. This algorithm requires more computation and storage per iteration than the conjugate
gradient methods but generally converges in fewer iterations.

One Step Secant Algorithm

Given that the quasi-Newton algorithm demands more significant storage space and computation
efforts, there is a need for a secant approximation that could avoid these disadvantages. The one-step
secant (OSS) method is an effort to take advantage of the conjugate gradient and the quasi-Newton
(secant) algorithms. In the OSS algorithm, the complete Hessian matrix does not need to be stored via an
assumption that the previous Hessian is the identity matrix. It also provides an additional advantage that
the actual search direction can be computed without inverting a matrix. In general, the OSS algorithm
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demands less storage and computation effort compared with the quasi-Newton algorithm per iteration,
but slightly more than the conjugate gradient algorithm. The OSS algorithm could be considered as a
compromise between the conjugate gradient algorithm and the full quasi-Newton algorithm.

2.2.3. Prediction Performance Assessment

In this work, common statistical measurements, such as the coefficient of determination (R2),
Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) were used to assess and validate
the FNN-OSS model. The R2 [106] allows identifying the statistical relationship between actual and
output data. This measurement yields a value between 0 and 1 inclusive, in which 0 is referred to the
case of no correlation, and 1 is referred to a total correlation. The formulation of R2 is [107,108]:

R2 =

N∑
k=1

(pk − p)(wk −w)√
N∑

k=1
(pk − p)

2 N∑
k=1

(wk −w)
2

, (4)

where N is the number samples, pk and p are FNN-OSS output and mean FNN-OSS values, while wk
and w are experimental and mean experimental values, respectively (k = 1 : N). In the case of Mean
Absolute Error, the low value of MAE indicates good accuracy of prediction output using the models.
MAE could be calculated using the following equation [109–113]:

MAE =

N∑
k=1

∣∣∣pk −wk
∣∣∣

N
, (5)

where, pk and wk are predicted and observed values, respectively (k = 1 : N). The formulation of RMSE
is described by the following equation [114]:

RMSE =

√√√
1
N

N∑
k=1

(pk −wk)
2 (6)

Finally, the Slope criterion is defined as the Slope of the linear regression fit between predicted and
observed vectors.

3. Results

3.1. Optimization of FNN-OSS Model

In this section, the optimization of the weight and bias parameters of FNN using OSS technique is
presented. Table 4 indicates the characteristics of FNN. As shown in various studies in the literature,
FNN with one hidden layer can solve many complex problems [115,116]. Therefore, in this study,
FNN model with one hidden layer was finally chosen, and 20 neurons were found as the best number.
With an architecture of 6-20-1, the model exhibited 120 weight parameters and 20 bias parameters in
the hidden layer, 20 weight parameters and 1 bias parameter in the output layer. Hence, there were
161 parameters to be optimized, as indicated in Table 4. It is worth noticing that in this work, global
optimization was adopted. The sigmoid function was chosen as an activation function for the hidden
layer, whereas the linear function was selected as an activation function for the output layer [117].
The standard mean square error cost function was selected for the optimization problem. Finally,
Table 5 indicates the description of the parameters of OSS used in this study.
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Table 4. FNN’s characteristics.

Parameter Notation Value and Description

Neurons in input layer ninput 6
Number of hidden layer nlayer 1
Neurons in hidden layer nneuron 20
Neurons in output layer noutput 1

Number of weight parameters in hidden layer ninput × nneuron = 120
Number of bias parameters in hidden layer nneuron (20)

Number of weight parameters in output layer nneuron × noutput = 20
Number of bias parameters in output layer noutput (1)

Number of total parameters to be optimized 161
Training algorithm OSS One Step Secant

Cost function MSE Mean square error
Activation function for hidden layer Sigmoid
Activation function for output layer Linear

Table 5. Parameters of OSS used in this study.

Parameter Value and Description

Initial step size 0.01
Maximum step size 26

Search routine linear
Lower limit 0.1
Upper limit 0.5

Scale tolerance 20
Maximum validation checks 6

Minimum gradient 10−10

Maximum iteration 1000

The evaluation of cost function during the optimization process is presented in Figure 6, for both
training and testing datasets. It should be noticed that the testing dataset was entirely new when
applying the model. It is seen that a good evolution of mean square error for the testing dataset was
obtained. In other words, there were no sudden changes during the optimization process. Finally,
the optimal iteration was observed at 70, where the mean square error for the testing dataset started to
increase [118]. The final configuration was used for performance analyses in the next sections.
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3.2. Prediction Capability Assessment

3.2.1. Global Analysis

The optimal FNN-OSS model identified in the previous section allowed predicting the axial
capacity of the CFST columns for the training, testing, and all datasets. Figure 7a–c present the
evolution of actual and predicted load-bearing capacity (Nu) in a sorted mode for the training, testing,
and all datasets, respectively. It is seen that the actual data located uniformly around the predicted one,
i.e., no sign of over-or under-estimations, was observed.
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On the other hand, Figure 8a–c present the regression graphs of actual and predicted Nu for
the training, testing, and all datasets, respectively. Again, the data located uniformly around the
diagonal line, showing that overfitting was prevented during the optimization process by using the
OSS technique. Moreover, as observed in Figure 8 of regression, the values of the predicted axial
capacity were not systematically too high or too low in the observation space.

As indicated in Table 6 for a summary of performance analyses, the values of MAE showed that
the average magnitude of the residuals between the predicted and target data were 212.916, 245.159,
and 222.620 kN, for the training, testing, and all datasets, respectively. The standard deviation of
such residuals was demonstrated through RMSE values, which were 301.111, 380.354, and 326.985 kN,
for the training, testing, and all datasets, respectively.
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(a) training data, (b) testing data, and (c) all data.

However, it is observed in both Figures 7 and 8 that there were several extreme values of Nu (i.e.,
higher than 8000 kN), which represented in a small number of data. These extreme values of Nu could
be considered as outliers and produced a higher value of RMSE than MAE (as the value of RMSE is
sensitive to outliers). In terms of the coefficient of determination, the R2 were 0.986, 0.982, and 0.984
for the training, testing, and all datasets, respectively. These satisfying values confirmed the strong
performance of the proposed FNN-OSS model. Finally, other error measurements such as ErrorMean,
ErrorStD, and Slope are also indicated in Table 6, showing that a good agreement between the predicted
and the actual values of axial capacity was obtained.

Table 6. Performance indicators of the optimal FNN-OSS model.

Indicator Training Part Testing Part All Data

R2 0.986 0.982 0.984
RMSE 301.111 380.354 326.985
MAE 212.916 245.159 222.620

ErrorMean 8.605 −10.279 2.922
ErrorStD 301.499 381.721 327.360

Slope 0.984 0.988 0.986
SlopeAngle 44.552 44.650 44.591
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3.2.2. Local Analysis

In this section, a local analysis of the prediction performance of the FNN-OSS model is presented.
To this aim, nine quantile levels (from 10 to 90% with a step of 10%) of the probability density function
of actual, predicted values of Nu were identified. The results are plotted in Figure 9a–c for the training,
testing, and all datasets, respectively. It is seen that the range of selected quantiles covered Nu from
about 500 to 6000 kN (corresponding to 10 and 90%, respectively). This point also confirmed that
the number of extreme values of Nu (i.e., higher than 8000 kN) was rather small, and the analysis
herein allowed concentrating on the most representative data. It is seen that, locally, a good agreement
between actual and predicted Nu was obtained. Thus, it could be stated that the FNN-OSS model was
efficient as proved at different quantile levels. Finally, the corresponding values of Nu at each quantile
levels are indicated in Table 7.
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Figure 9. Comparison between experimental and output predicted data at different quantile levels of
the distributions for (a) training data, (b) testing data, and (c) all data.

Table 7. Comparison of different quantile levels between predicted and actual data.

Quantile Training
Actual Predicted Ratio Testing

Actual Predicted Ratio All Data
Actual Predicted Ratio

0.1 501.71 478.92 0.955 577.80 502.51 0.870 505.59 494.66 0.978
0.2 682.00 666.38 0.977 759.93 766.54 1.009 716.37 702.09 0.980
0.3 890.00 903.50 1.015 909.00 920.13 1.012 899.69 912.10 1.014
0.4 1142.00 1164.17 1.019 1174.91 1193.35 1.016 1155.64 1175.72 1.017
0.5 1516.26 1520.30 1.003 1572.00 1510.30 0.961 1537.00 1515.30 0.986
0.6 2237.00 2234.19 0.999 2108.70 2222.24 1.054 2232.80 2222.24 0.995
0.7 2680.00 2673.99 0.998 2882.00 3093.02 1.073 2817.90 2795.47 0.992
0.8 3743.50 3732.15 0.997 4164.90 4045.63 0.971 3902.00 3899.69 0.999
0.9 5873.00 6018.26 1.025 6393.00 6453.91 1.010 6014.50 6074.74 1.010

Average 0.999 Average 0.997 Average 0.997
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4. Discussion

4.1. Comparison of Performance

In this section, the performance of the deveveloped ANN-OSS model is compared with: (i) existing
empirical equations in the literature and (ii) other machine learning models, when predicting the
load-carrying capacity of rectangular CFST columns. In terms of existing emprirical equations, Han
et al. [119] put forward the following equation for estimating the load-carrying capacity based on
statistical analysis:

NHan
u =

(
1.18 + 0.85

fyAs

f ′c Ac

)
f ′c Asc, (7)

where Ac, As, Asc are the areas of the concrete core, the steel tube, and the total cross section, respectively.
Similarly, Wang et al. [120] proposed the following equation:

NWang
u = na fyAs + nc f ′c Ac, (8)

where na and nc are as a function of material strength. In other study, Ding et al. [60] derived the
following formulation for predicting the load-carrying capacity of CFST members:

NDing
u = 1.2 fyAs + f ′c Ac, (9)

On the other hand, several widely used regression machine learning models such as
support-vector-machine (SVM) [121], fuzzy-logic (FL) [122] and ensemble boosted tree (EBT) [123]
were trained to compare the prediction performance with the FNN-OSS model.

For an illustration purpose, a set of input data gathered from Refs. [65,79,85,86,90,92] was used
and the values of inputs are indicated in Table 8 below, together with the experimental value of Nu,
as well as the prediction by using: (i) existing empirical equations (see Equations (7)–(9)); (ii) SVM,
FL, EBT models; and (iii) FNN-OSS model. For a comparison purpose, an indicator ∆ was computed
as below:

∆ =
Npredicted

u

Nexp .
u

× 100, (10)

where Npredicted
u and Nexp .

u are the predicted and experimental values of Nu, respectively. A summary
of statistical analysis of ∆ such as min, mean, max, standard deviation, and coefficient of variation is
also provided at the end of Table 8 (the value of ∆ is not shown in Table 8).

For the first six configurations in Table 8, it is seen that as empirical equations do not account the
effect of the column’s length, thus the prediction by using Equations (7)–(9) exhibits the same values.
Such a limitation is improved by using machine learning models, especially by using the FNN-OSS
approach. The mean value of ∆ is 128.3, 103.3, 120.4, 106.7, 107.3, 96.0 and 100.4% when using Han,
Wang, Ding, SVM, FL, EBT and FNN-OSS models, respectively. Moreover, the FNN-OSS approach
provides the best result in terms of coefficient of variation (10.2% compared to 31.1, 32.4, 30.7, 24.0, 26.4
and 11.2% of Han, Wang, Ding, SVM, FL, and EBT, respectively). From overall statistical performances,
it could be concluded that the FNN-OSS model exhibits highest efficiency and performance in order
to predict the load-carrying capacity of rectangular CFST columns. The performance comparison
presented herein demonstrates that the machine learning technique can assist in the initial phase of the
design of rectangular CFST members. In addition to a reliable prediction of load-carrying capacity, as
presented above, FNN-OSS can also assist in the creation of load-carrying capacity continuous maps,
within the ranges of the input variables adopted in this study.
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Table 8. Comparison of performance between FNN-OSS, existing equations in the literature and other prediction models.

H (mm) W (mm) t (mm) L (mm) fy
(Mpa)

f’c
(Mpa)

Exp. Nu
(kN)

Predicted by
Proposed

Equation of
Han et al.
2005 [119]

(kN)

Predicted by
Proposed

Equation of
Wang et al.
2017 [120]

(kN)

Predicted by
Proposed

Equation of
Ding et al.
2014 [60]

(kN)

Predicted
by SVM

(kN)

Predicted
by FL
(kN)

Predicted
by EBT

(kN)

Predicted
by

FNN-OSS
(kN)

Ref.

150 150 4.5 600 438.4 31.9 1623.1 1950.7 1674.0 2011.4 2134.2 2242.4 1282.6 1690.7 [65]
150 150 4.5 1200 438.4 31.9 1611.2 1950.7 1674.0 2011.4 2013.9 2107.3 1266.9 1613.8
150 150 4.5 1800 438.4 31.9 1598.2 1950.7 1674.0 2011.4 1893.5 1972.1 1266.9 1549.2
150 150 4.5 2700 438.4 31.9 1378.0 1950.7 1674.0 2011.4 1712.9 1769.4 1239.5 1446.1
150 150 4.5 3600 438.4 31.9 1161.8 1950.7 1674.0 2011.4 1532.3 1566.7 1152.4 1253.5
150 150 4.5 4500 438.4 31.9 923.7 1950.7 1674.0 2011.4 1351.7 1363.9 1152.4 1091.0

100.2 100.2 2.18 300.6 300.0 25.7 609.0 542.7 461.6 543.8 165.6 −108.9 621.1 492.3 [86]
200.3 200.3 4.35 600.9 322.0 29.6 2230.0 2421.2 2050.0 2404.1 2907.4 3314.9 2247.6 2262.0
300.5 300.5 6.1 901.5 395.0 26.5 5102.0 5443.9 4682.0 5607.5 5535.8 6561.6 4467.1 4835.7
100.1 100.1 2.18 300.3 300.0 53.7 851.0 872.9 712.4 799.6 590.7 376.3 791.2 708.9
200.1 200.1 4.35 600.3 322.0 57.9 3201.0 3754.5 3062.8 3437.2 3334.9 3802.7 2790.6 3231.9
300.7 300.7 6.1 902.1 395.0 52.2 6496.0 8191.4 6782.8 7751.9 5932.0 7014.5 6038.7 6509.3
100.1 100.1 2.18 300.3 300.0 61.0 911.0 959.3 778.0 866.5 702.0 503.4 816.6 775.9
200.3 200.3 4.35 600.9 322.0 63.7 3417.0 4035.5 3276.8 3655.9 3427.5 3909.0 2828.7 3435.8
110 110 5 330 784.2 28.0 1836.0 2093.5 1837.1 2256.2 2081.5 1874.7 2101.4 1913.9 [79]
110 110 5 330 784.2 28.0 1832.0 2093.5 1837.1 2256.2 2081.5 1874.7 2101.4 1913.9
160 160 5 480 784.2 30.0 2868.0 3257.3 2918.5 3592.2 3150.2 3212.3 3046.3 2824.6
160 160 5 480 784.2 30.0 2922.0 3257.3 2918.5 3592.2 3150.2 3212.3 3046.3 2824.6
210 210 5 630 784.2 32.0 3710.0 4678.3 4149.1 5138.3 4219.0 4549.9 3613.9 3894.0
210 210 5 630 784.2 32.0 3483.0 4678.3 4149.1 5138.3 4219.0 4549.9 3613.9 3894.0
100 100 1.9 300 404.0 96.1 1209.0 1410.2 1136.9 1250.5 1366.2 1183.2 1005.1 1044.1 [90]
100 100 1.9 300 404.0 96.1 1220.0 1410.2 1136.9 1250.5 1366.2 1183.2 1005.1 1044.1
100 100 1.9 300 404.0 96.1 1190.0 1410.2 1136.9 1250.5 1366.2 1183.2 1005.1 1044.1
100 100 1.9 300 404.0 96.1 1220.0 1410.2 1136.9 1250.5 1366.2 1183.2 1005.1 1044.1
100 100 1.9 900 404.0 96.1 1013.0 1410.2 1136.9 1250.5 1245.8 1048.1 979.8 1140.7
100 100 1.9 900 404.0 96.1 1010.0 1410.2 1136.9 1250.5 1245.8 1048.1 979.8 1140.7
100 100 1.9 1500 404.0 96.1 915.0 1410.2 1136.9 1250.5 1125.4 912.9 979.8 1225.9
100 100 1.9 1500 404.0 96.1 945.0 1410.2 1136.9 1250.5 1125.4 912.9 979.8 1225.9
100 100 1.9 3000 404.0 96.1 474.0 1410.2 1136.9 1250.5 824.4 575.0 488.7 478.9
100 100 1.9 3000 404.0 96.1 466.0 1410.2 1136.9 1250.5 824.4 575.0 488.7 478.9
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Table 8. Cont.

H (mm) W (mm) t (mm) L (mm) fy
(Mpa)

f’c
(Mpa)

Exp. Nu
(kN)

Predicted by
Proposed

Equation of
Han et al.
2005 [119]

(kN)

Predicted by
Proposed

Equation of
Wang et al.
2017 [120]

(kN)

Predicted by
Proposed

Equation of
Ding et al.
2014 [60]

(kN)

Predicted
by SVM

(kN)

Predicted
by FL
(kN)

Predicted
by EBT

(kN)

Predicted
by

FNN-OSS
(kN)

Ref.

150 150 8 450 779.0 152.3 6536.0 7813.8 6055.8 6982.4 5572.8 6060.2 6403.0 7010.3 [85]
150 150 8 450 779.0 157.2 6715.0 7943.9 6142.0 7070.4 5647.6 6145.6 6403.0 6916.8
150 150 8 450 779.0 147.0 6616.0 7673.1 5962.5 6887.3 5492.0 5967.9 6375.1 7079.1
150 150 8 450 779.0 164.1 7276.0 8127.1 6263.5 7194.3 5752.8 6265.8 6403.0 6739.8
150 150 8 450 779.0 148.0 6974.0 7699.6 5980.1 6905.2 5507.2 5985.3 6403.0 7068.8
150 150 12 450 756.0 152.3 8585.0 10,076.1 7174.7 8427.2 6561.1 7338.7 7837.1 8722.7
150 150 12 450 756.0 157.2 8452.0 10,206.2 7250.9 8505.0 6635.8 7424.1 7837.1 8633.5
150 150 12 450 756.0 147.0 8687.0 9935.4 7092.2 8343.1 6480.2 7246.4 7723.4 8802.9
150 150 12 450 756.0 164.1 8730.0 10,389.4 7358.3 8614.5 6741.1 7544.3 7837.1 8477.2
150 150 12 450 756.0 148.0 8912.0 9962.0 7107.8 8358.9 6495.5 7263.8 7837.1 8789.0
150 150 12.5 450 446.0 152.3 5953.0 7796.7 5212.4 6059.2 6082.8 7015.5 6100.8 6055.0
150 150 12.5 450 446.0 157.2 5911.0 7926.8 5287.4 6135.8 6157.5 7100.9 6100.8 6042.5
150 150 12.5 450 446.0 147.0 6039.0 7655.9 5131.2 5976.4 6002.0 6923.2 6015.0 6036.6
150 150 12.5 450 446.0 164.1 6409.0 8109.9 5393.0 6243.6 6262.8 7221.1 6100.8 5980.2
150 150 12.5 450 446.0 148.0 6285.0 7682.5 5146.5 5992.0 6017.2 6940.6 6100.8 6042.6
197 197 6.4 600 437.9 21.0 2730.0 3038.9 2665.7 3276.4 3462.5 3933.0 3032.7 2879.8 [92]

198.5 198.5 6.1 600 437.9 20.4 3010.0 2931.7 2581.4 3174.5 3407.7 3863.9 2919.2 2808.2
200.5 200.5 6.3 600 437.9 19.3 2830.0 2991.0 2639.0 3254.0 3486.0 3964.7 2919.2 2865.5
201 201 10.3 600 381.7 21.0 3980.0 4165.4 3459.7 4281.9 4445.3 5233.3 3955.0 3689.9
201 201 10 600 381.7 20.4 3920.0 4028.7 3366.3 4167.2 4358.5 5124.1 3955.0 3567.5

199.5 199.5 10.1 600 381.7 19.3 3900.0 3981.2 3325.7 4126.1 4336.2 5098.5 3685.4 3542.5
Min of ∆ 89.1 75.8 89.3 27.2 −17.9 78.6 80.8

Mean of ∆ 128.3 103.3 120.4 106.7 107.3 96.0 100.4
Max of ∆ 302.6 244.0 268.3 176.9 148.7 124.8 134.0
StD of ∆ 40.0 33.5 37.0 25.6 28.4 9.8 10.2
CoV of ∆ 31.1 32.4 30.7 24.0 26.4 10.2 10.2



Molecules 2020, 25, 3486 17 of 26

4.2. Local Performance and Limitations

In this section, the performance and limitations of the FNN-OSS model are discussed from a
structural engineering point of view. It should be noticed that there were 422 compressive test results
collected in this study from the available literature. However, such a number of data might not
guarantee that all the possible ranges could be covered. To reveal this problematic, the performance of
the FNN-OSS model based on the coefficient of determination R2 was highlighted at different classes of
variables. More specifically, Figure 10a–g show the R2 values in function of the length-to-height ratio,
height-to-width ratio, yield strength of steel, compressive strength of concrete, thickness of steel tube,
length of column, and manufacturing type of steel tube, respectively. In these figures, the number
of data in each class was highlighted for better illustration. Histograms of variables could also be
consulted in Figure 4 from the previous section.

As shown in Figure 10a, most of the data were classified as short and medium columns (i.e.,
284/422 data, L/H ratio lower than 6). There were a few data for slender columns and no data for
several values of L/H ratio. The values of R2 showed that the FNN-OSS model exhibited a good
prediction capability for CFST columns with L/H ratio lower than 20, especially for the cases of L/H ratio
lower than 10 (i.e., for short and medium columns). Nonetheless, considering the slender columns,
a minimum performance of R2 of 0.87 was observed, compared to an R2 of 0.98 using all data.

Figure 10b highlights the performance of the FNN-OSS model in function of the shape of the
cross-section. It is seen that for almost of data, the cross-section was square in shape (i.e., 337/422
data). However, the performance of the FNN-OSS model is quite strong for all classes, as the minimum
value of R2 was about 0.94, as illustrated in Figure 10b. Nonetheless, more data should be collected
for rectangular cross-sections as a perspective of this work to enhance the prediction performance of
the model.

Figure 10c,d present the performance of the FNN-OSS model in function of mechanical strength
of constituent materials, i.e., steel and concrete, respectively. It can be seen that the steel yield strength
was mostly found in the range between 200 and 800 MPa, whereas the concrete compressive strength
was varied between 20 and 140 MPa. In terms of prediction performance, the FNN-OSS model showed
an excellent prediction capability for all classes of mechanical properties of the constituent materials.
On the contrary, as pointed out in Figure 10d, not much data were collected for high strength concrete
(i.e., higher than 70 MPa). Consequently, it is considered as a current limitation of the constructed
model. It should be noticed that the concrete core exhibits a critical role in the composite CFST
members, as it prevents the inward buckling of the steel tube [124,125].

Figure 10e presents the performance of the FNN-OSS model in function of the thickness of the
steel tube. It is seen that there was not much data related to extremely thin-walled members (i.e.,
thickness inferior to 2 mm). Consequently, the performance of the FNN-OSS model for thin-walled
structures was poor. However, for thickness superior to 2 mm, the performance of the prediction
model was excellent, exhibiting a coefficient of determination higher than 0.95. As demonstrated in
various studies in the literature, the thickness of the steel tube exposes a crucial role in the macroscopic
behavior of the composite CFST columns [126,127]. Thus, this variable should be carefully investigated
in further researches.

Finally, Figure 10f presents the performance of the FNN-OSS model in function of manufacturing
types of steel tube. It is seen that almost rectangular steel tubes were manufactured as cold-formed or
welded box (94% of the total data). As the number of classes is small (i.e., three classes), the performance
of the FNN-OSS model was guaranteed. It could be concluded that the prediction model could work
well for cold-formed and welded box tubes. However, for other types (28/422 data), the prediction
performance was quite poor. This observation suggested that: (i) more data should be collected, and (ii)
the manufacturing types of steel tube should be an input variable (i.e., categorical) in further studies.
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5. Conclusions and Outlook

In this study, a consistent and effective machine learning algorithm was developed to estimate
the load-bearing capacity of rectangular concrete-filled steel tubes. In particular, a novel hybrid
machine learning model, based on a combination of feedforward neural network (FNN) and one step
secant method (OSS), was proposed. Regarding the development and validation of the model, an
experimental database containing 422 instances was gathered from the available literature, including
six inputs representing the geometrical and material properties of rectangular concrete-filled steel
tubes. Common statistical measurements, namely the coefficient of determination, mean absolute error,
and root mean square error, were used for the assessment of the proposed machine learning model.

The model parameters of both FNN and OSS were first carefully selected, following by the local
and global analysis on the prediction capability of the model. The results confirmed the effectiveness of
the proposed FNN-OSS algorithm with excellent regression capability, i.e., R2 = 0.986, 0.982, and 0.984
for the training, testing, and all datasets. The advantages and limitations of the FNN-OSS model were
finally given under a structural engineering point of view by analyzing the prediction performance
with respect to different classes of input variables.

Overall, a robust machine learning algorithm for predicting the CFST load-bearing capacity
was developed and thoroughly analyzed in this study. The results of this study might be useful for
engineers and/or researchers to quick estimate the axial capacity of rectangular CFST columns, within
the ranges of the input variables adopted in this study (see Table 2), and without the burden of the costly
resources associated to finite element analysis. Moreover, the methodology proposed in this study can
be applied to study other mechanical properties of CFST members based on experimental database.
For instance the load-carrying capacity in the presence of loading eccentricity can be predicted if such
an information can be gathered from the experimental tests. Similarly, the proposed appoach can be
applied to predict the load-carrying capacity of CFST members with steel reinforcement, different
cross-sectional shapes, or under fire loading, etc., if experimental database can be collected from the
available literature. Finally, the prediction function can assist to the initial phase of design and analysis,
before carrying out any laboratory experiments.
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