
Vol. 30 no. 23 2014, pages 3402–3404
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu558

Sequence analysis Advance Access publication August 20, 2014

BioBloom tools: fast, accurate and memory-efficient host species

sequence screening using bloom filters
Justin Chu*, Sara Sadeghi, Anthony Raymond, Shaun D. Jackman, Ka Ming Nip,
Richard Mar, Hamid Mohamadi, Yaron S. Butterfield, A. Gordon Robertson and Inanç Birol*
Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 4S6, Canada

Associate Editor: Alfonso Valencia

ABSTRACT

Large datasets can be screened for sequences from a specific organ-

ism, quickly and with low memory requirements, by a data structure

that supports time- and memory-efficient set membership queries.

Bloom filters offer such queries but require that false positives be

controlled. We present BioBloom Tools, a Bloom filter-based se-

quence-screening tool that is faster than BWA, Bowtie 2 (popular

alignment algorithms) and FACS (a membership query algorithm). It

delivers accuracies comparable with these tools, controls false posi-

tives and has low memory requirements.

Availability and implementaion: www.bcgsc.ca/platform/bioinfo/

software/biobloomtools

Contact: cjustin@bcgsc.ca or ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on April 30, 2014; revised on June 26, 2014; accepted on

August 13, 2014

1 INTRODUCTION

Pipelines that detect pathogens and contamination screen for

host sequences so they do not interfere with downstream analysis

(Castellarin et al., 2012; Kostic et al., 2011; Tang et al., 2013; Xu

et al., 2014). The alignment-based algorithms that these pipelines

use provide mapping locations that are irrelevant for classifica-

tion, and thus perform more computation than is needed. To

address this, we have developed BioBloom Tools (BBT).
BBT uses Bloom filters—probabilistic, constant time access

data structures that identify whether elements belong to a set

(Bloom, 1970). Bloom filters are similar to hash tables but do

not store the elements themselves; instead, they store a fixed

number of bits for every element into a common bit array.

Thus, they use less memory, but queries to the filter may

return false membership (hits) because of hash collisions in the

common bit array. The false-positive rate (FPR) resulting from

these false hits can be managed by increasing the size of the filter

(Supplementary Material). Using Bloom filters for sequence cat-

egorization was pioneered by the program FACS (Stranneheim

et al., 2010). Here, we describe a Bloom filter implementation

that includes heuristics to control false positives and increase

speed.

2 METHODS

We first build filters from a set of reference sequences by dividing the

sequences into all possible k-mers (substrings of length k). We compare

the forward and reverse complement of every k-mer, and include the

alphanumerically smaller sequence in the filter. We calculate the bit sig-

nature of a k-mer by mapping the sequence to a set of integer values using

a fixed number of hash functions (Supplementary Materials) (Broder and

Mitzenmacher, 2004). The bitwise union of the signatures of all the

k-mers constitutes a Bloom filter for the corresponding reference

sequences.

To test whether a query sequence of length l is present in the target

reference(s), we use a sliding window of k-mers. Starting at one end of the

query sequence, and shifting one base pair at a time along this sequence,

we check each k-mer against each reference’s Bloom filter. When a k-mer

matches a filter, we incrementally calculate a score:

s=
Xc

i=1

Xai

j=1

1� 1
j+1ð Þ

l� k

where c is the number of contiguous stretches of adjacent filter-matching

k-mers until the current position in the query, and ai is the length of the

i-th stretch. This heuristic penalizes likely false-positive hits. We evaluate

k-mers this way until we reach either a specified score threshold (s*) or

the end of the query sequence. If at any point we reach s*, we categorize

the query as belonging to the reference, and terminate the process for that

query. Further, we use a jumping k-mer heuristic that skips k k-mers

when a miss is detected after a long series of adjacent hits. This efficiently

handles cases in which the query has a single (or a few) base mismatch(es)

with the target.

3 BENCHMARKING

We compared BBT against two widely used Burrows–Wheeler

transform-based alignment tools that have low memory usage

and high accuracy—BWA (Li and Durbin, 2003) and Bowtie 2

(BT2; Langmead and Salzberg, 2012)—and against the C++

implementation of FACS (https://github.com/SciLifeLab/facs).

Tool versions and other details are provided in the

Supplementary Materials.

3.1 Benchmarking on simulated data

We used dwgsim (https://github.com/nh13/DWGSIM) to gener-

ate simulated Illumina reads from human, mouse and

Escherichia coli reference genomes. For each genome, we gener-

ated 1 million 2� 150bp paired-end (PE) reads and 1 million

100 bp single-end (SE) reads. We used E.coli because it is a

common contaminant and is genetically distant from human.*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

www.bcgsc.ca/platform/bioinfo/software/biobloomtools
www.bcgsc.ca/platform/bioinfo/software/biobloomtools
mailto:cjustin@bcgsc.ca
mailto:ibirol@bcgsc.ca
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu558/-/DC1
are those that
,
so
utilizes
 --
,
due to
due to
because of
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu558/-/DC1
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu558/-/DC1
-
employ
-
Transform
:
) (
,
https://github.com/SciLifeLab/facs
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu558/-/DC1
https://github.com/nh13/DWGSIM
.
XPath error Undefined namespace prefix

With mouse, which is commonly used in xenograft studies, we

tested categorization accuracy for species that are closely related
genetically.

Because FACS does not support PE reads, we used the 100 bp

SE reads to compare the false- and true-positive rates (FPR and

TPR, respectively) of BBT and FACS. We tested a range of

scoring thresholds for both tools. Using a k-mer size of 25 bp,
BBT generally matched or outperformed FACS (Fig. 1A and B).

We note that, for shorter k-mers, performance of BBT and

FACS algorithms would deteriorate, especially in distinguishing

sequences from closely related references. For both tools, longer

k-mers gave lower FPR but also lower maximum TPR

(Supplementary Figs S1 and S2), with BBT performing increas-

ingly better than FACS for longer k-mers.
To compare BBT and FACS to BWA and BT2, we used

2� 150bp PE reads. In our tests, overall, BBT performed com-

parably with the aligners and outperformed ‘fast’ and ‘very fast’

settings of BT2 in both false-negative rate (FNR) and false-

discovery rate (FDR; Table 1).

3.2 Benchmarking on experimental data

We used a single lane of 2� 150bp PE human DNA reads

(https://basespace.illumina.com/run/716717/2x150-HiSeq-2500-

demo-NA12878) generated with an Illumina HiSeq 2500 sequen-

cer to benchmark computational performance. For a controlled

comparison, we ran at least eight replicates for each tool, and we
measured CPU time, with all applications using a single thread.

We ran BBT with s*=0.1 and compared it with FACS, BWA

and BT2, using a range of run modes for the latter two tools. BBT

was faster than the fastest aligner/settings combination (BT2 very

fast) by at least an order of magnitude (Fig. 1C). The mapping
rates (categorization rates for BBT and FACS) of each tool were

comparable, at 96.69 (BT2 very sensitive), 96.57 (BT2 sensitive),

96.18 (BT2 fast), 95.97 (BT2 very fast), 99.76 (BWA mem), 95.12

(BWA aln), 95.81 (FACS) and 97.27% (BBT).

3.3 Memory usage

For categorization, using the human reference and simulated

reads, the peak memory usage (GB) for each tool was 3.8

(BBT), 4.8 (FACS), 3.1 (BWA aln), 5.2 (BWA mem) and 3.4

(BT2). These figures are for categorization only and do not

include the memory usage for creating the FM-indexes or

Bloom filters. Unless slower disk-based methods are used, creat-

ing an FM-index takes at least O(nlog(n)) bits of memory, where

n is the size of the reference sequence (Ferragina et al., 2012). In

contrast, Bloom filter memory usage is the same for the creation

and categorization stages, and takes O(-nlog(f)) bits of memory,

where f is the FPR and n is the number of input sequences.
We created filters using 3.2GB of memory for both FACS and

BBT. Assuming optimal numbers of hash functions are used,

filters with the same size should have similar FPRs. However,

in practice, we had to use different FPR settings in creating these

filters (FPR of 0.5% for FACS and 0.75% for BBT). We note

that the tools would differ from theoretical estimates because of

implementation-specific calculation differences.

Finally, to demonstrate the scalability of BBT, we built a

filter for 5182 bacterial sequences (representing 6� 1010 unique

25-mers), using 6.8GB of memory, corresponding to an FPR of

0.75%.

ACKNOWLEDGEMENTS

The authors thank Genome Canada, British Columbia Cancer

Foundation, and Genome British Columbia for their support,

and Irene Li, Rene Warren and Karen Mungall for useful

discussions.

Fig. 1. Performance comparisons of BBT against FACS, BWA and BT2. Receiver operator characteristic curves of BBT and FACS using simulated

100bp SE reads fromHomo sapiensmixed with (A) E.coli and (B)Mus musculus filtered against anH.sapiens Bloom filter using a k-mer size of 25 bp; (C)

CPU time benchmark comparing BT2 (for a range of built-in settings), BWA (using aln and mem settings), FACS and BBT, on one lane of human

2� 150bp PE Illumina HiSeq 2500 reads

Table 1. Benchmarking results using simulated paired end 2� 150bp

reads

Tool and Settings FNR FDR FDR

(H.sapiens) (M.musculus) (E.coli)

BT2 very sensitive 1.40� 10–5 2.03� 10–2 0

BT2 sensitive 7.52� 10–4 9.08� 10–3 0

BT2 fast 1.26� 10–2 5.90� 10–3 0

BT2 very fast 1.34� 10–2 5.65� 10–3 0

BWA aln 3.26� 10–3 8.14� 10–4 0

BWA mem 0 1.92� 10–1 1.00� 10–4

FACS 1.22� 10–1 9.88� 10–3 0

BBT (s*=0.1) 8.42� 10–3 3.78� 10–3 0

Note: All reads were treated as SE reads for FACS.

3403

BioBloom tools

-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu558/-/DC1
to
,
) (
1.1
https://basespace.illumina.com/run/716717/2x150-HiSeq-2500-demo-NA12878
https://basespace.illumina.com/run/716717/2x150-HiSeq-2500-demo-NA12878
8
to
%
%
%
%
%
%
%
,
,

Funding: The work was funded by Genome Canada, British
Columbia Cancer Foundation and Genome British Columbia.

Conflict of interest: none declared.

REFERENCES

Bloom,B.H. (1970) Space/time trade-offs in hash coding with allowable errors.

Commun ACM, 13, 422–426.

Broder,A. and Mitzenmacher,M. (2004) Network applications of bloom filters: a

survey. Int. Math., 1, 485–509.

Castellarin,M. et al. (2012) Fusobacterium nucleatum infection is prevalent in

human colorectal carcinoma. Genome Res., 22, 299–306.

Ferragina,P. et al. (2012) Lightweight data indexing and compression in external

memory. Algorithmica, 63, 707–730.

Kostic,A.D. et al. (2011) PathSeq: software to identify or discover microbes by deep

sequencing of human tissue. Nat. Biotechnol., 29, 393–396.

Li,H. and Durbin,R. (2003) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, 25, 1754–1760.

Stranneheim,H. et al. (2010) Classification of DNA sequences using bloom filters.

Bioinformatics, 26, 1595–1600.

Tang,K.-W. et al. (2013) The landscape of viral expression and host gene fusion and

adaptation in human cancer. Nat. Commun., 4, 2513.

Xu,G. et al. (2014) RNA CoMPASS: a dual approach for pathogen and host

transcriptome analysis of RNA-Seq datasets. PLoS One, 9, e89445.

3404

J.Chu et al.

