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Abstract: In this study, a linear model of the transformation of the stress amplitude due to the mean
value was used. The coefficient of the material sensitivity to cycle asymmetry with consideration
of the dependence of this coefficient on the number of fatigue loading cycles is also used. A three-
parameter surface model of limited stresses is proposed in this paper. The model is verified using the
results of fatigue tests for cyclic bending and torsion under mean loads. The tests are performed for
two types of alloy steels—S355J0 and S355J2G1W. Comparison of the allowable stress amplitudes
obtained experimentally with those predicted using the proposed model shows errors of no more
than 18%, with the area of the surface with the largest error being relatively small.

Keywords: mean stress; fatigue life; bending load; torsional load

1. Introduction

Structures and elements of machines can be subjected to time-varying loads, which
cause fatigue processes in the materials. These loads are most often of a complex nature.
Additionally, the mean load appears resulting from the self-weight of the structure or
initial loads related to the functions fulfilled by the structure. The asymmetry of the
fatigue load significantly influences the change of the allowable amplitudes; therefore,
an understanding of the mutual relations between the average load and the maximum
variable load is important when determining the durability of materials operating in such
conditions. In the literature, mathematical models of the influence of the mean load on the
fatigue life of construction materials are usually based on the basic strength properties of
the material, such as the strength or yield point. In engineering practice, these properties
are convenient to use because they do not require complex calculations or separate tests to
determine the model parameters (material properties).

The commonly used transformation relationships based on changes in the mean stress
values from zero are the Goodman, Gerber, and Marin models, which assess the mechanical
properties of materials using static tensile tests [1–4]. In these cases, reservations are raised
by the reference to the static properties of the material, which are not necessarily adequate
for the fatigue phenomenon. On the other hand, the Morrow and Kliman models use
material constants that characterize the fatigue properties of the material [5,6]. These
are the parameters describing the Manson–Coffin–Basquin fatigue strain characteristics,
namely the fatigue strength exponent and exponent of fatigue plastic strain. Another
very popular model was presented by Smith, Watson, and Topper (SWT) [7]. This model
is usually used in strain based fatigue analysis by combining the SWT parameter with
the strain–life equation proposed by Manson [8] multiplied by the Basquin power law
relation [9]. With the assumption that the plastic part of the strain amplitude is small and
can be neglected during the fatigue life assessment, which is a typical practice in high-cycle
fatigue, this model can only be expressed in terms of stress. A generalization of the SWT
model, taking into account the mean value of the load, is the Walker model [10], where in
special cases it is synonymous with the SWT model.
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As mentioned, the described models are widely used and have been repeatedly
verified by fatigue tests under the mean load. The tests can cover various types of materials
(steels, aluminum alloys) and loads (uniaxial and multiaxial, cyclic or random).

The well-known Goodman and Gerber relationships were verified by testing alloy steel
under random loading conditions, which were treated as the most general conditions [11].
While investigating different methods of assessing the mean value in the random waveform
of loading, it was shown that irrespective of the method used for counting the cycles, the
Goodman transform relation gave satisfactory results for fatigue life estimation.

Additionally, Pawliczek and Kluger [12] showed that for random loads with mean
values, the load irregularity factor is an important parameter. When increasing the value of
this coefficient, differences appear in the calculation of the fatigue damage accumulation
factor for each transformation model due to the mean value. In this case, the Goodman
model proved to be the most sensitive, with the differences in calculations being significant.

It is also pointed out in the literature that the limitation of the dependence of the Good-
man and Gerber model is significant at the fatigue limit level. Gasiak and Pawliczek [13]
and Kluger et al. [14] showed that the parameters of computational models considering the
mean value change with the number of cycles. Verification of the computational models for
so-called life-dependent material parameters was performed for specimens made of S355
alloy steel [13,14] and 7075-T651 aluminum alloy [14]. Taking these effects into account, a
more accurate estimation of the fatigue life of the materials was achieved.

For complex multiaxial loading, the use of critical plane-based computational models
is suggested to describe fatigue phenomena, whereby the stress state is analyzed at a plane
considered critical for the material in terms of fatigue stress. Both normal and tangential
stresses in this plane are considered here as criterion quantities [15,16]. In addition, these
models consider a set of parameters describing the effects of load multiaxiality. The
so-called energy models are also used in the description of fatigue tests. These models
relate to the energy accumulated in the material during successive loading cycles, as
well as stresses and strains in the material, and refer to a critical level of strain energy.
Comparative analysis [16] has shown better performance of these models compared to
critical-plane-based models. Several relationships for considering the average load for both
the energy models and those based on the critical plane (e.g., McDiarmid, Papadopoulos,
Smith–Watson–Topper, Łagoda and Macha) were verified for studies of steel alloy S355J0
and 30NCD16 and aluminum alloy 2017A-T4 [15,16]. For all analyzed types of loads, with
the use of the stress–strain energy parameter, which takes account the effects of the mean
stress value, the results were close to the experimental results. The tests were conducted
under conditions of plane bending, torsion and with two combinations of proportional
bending with torsion to assess the contribution of the mean stress value. An interesting
proposal to consider the mean value for torsional loads was proposed by Bohm and
Nieslony [17]. In a linear model used to calculate the equivalent stress amplitude, they
proposed a correction factor based on interpolation of the stress amplitude for any value of
the stress ratio −1 < R < 0 based only on fatigue characteristics obtained under loading
conditions, for which R = −1 and R = 0. The life estimation algorithm was verified for
drilled specimens made of three aluminum alloys. For tests under torsional conditions
involving the mean value, good agreement was obtained for the life estimation based on
the baseline fatigue characteristics of the material at the zero mean value.

Pawliczek and Łagoda pointed to the problem of changes in material properties caused
by mean loads [18]. On the basis of studies available in the literature, they performed
simulation calculations, indicating that for materials particularly sensitive to cycle asym-
metry, changes in the strain–stress curve parameters result in large errors relating to fatigue
damage accumulation if these changes are not taken into account. This is especially true
for low-cycle loading.

Dowling [19] and Dowling et al. [20] conducted a comparison between the well-known
Smith–Watson–Topper (SWT) model and the extended model proposed by Walker for
mean value loads. Although the SWT model gave good results for fatigue life estimation,
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Walker’s model for low cycle loads proved to be better. The only disadvantage of the
Walker model was the difficulty in determining one of the equation parameters in the
experimental method. A set of 18 different materials [19,20] from both steel and aluminum
alloy groups were analyzed. Ince and Glinka [21] indicated that in general, the SWT model
expressed in stress equations reduces its application to high-cycle loading. Extending the
SWT model to the range of low-cycle loading, the authors proposed the introduction of
equivalent strains. The proposed model considers elastic and plastic strains and introduces
a correction due to the mean value of the load. The proposed mean stress correction model
was found to be better than the SWT model for Incoloy 901 superalloy and ASTM A723
steel, while both models provided equally good correlations with experimental data for
7075-T561 aluminum alloy and 1045 HRC 55 steel.

With respect to computational models based on stress–life (σ-N) or strain–life (ε-N)
curves, Kwofie and Chandler [22] proposed a correction that allows the use of the SWT
model for materials that show an increase in fatigue life when the average load is increased
(e.g., copper). The so-called mean stress sensitivity index can be determined from exper-
imental data. The effect of the increase in durability with an increase in the mean load
itself is explained by the natural tendency of the mean tensile load to enlarge a fatigue
crack. When the average load is very high, this could counteract the effect of the decreasing
plastic strain amplitude. The second element is the effect of cyclic creep, which usually
occurs for this type of material.

In general, it can be concluded that it is not possible to indicate one universal calcula-
tion method due to the mean load, as both these factors affect the efficiency of calculations.
Numerous effects and parameters that are indicated as important elements for estimation
relate to material properties and loading conditions. Simple computational models (e.g.,
Goodman and Gerber models) do not guarantee good results for durability estimation,
which is important from the point of view of structural safety. A number of algorithms
indicate the necessity of basing such estimations on the results of experimental studies. The
purpose of this study is to learn the behavior of specimens made of S355J0 and S355J2G1W
steels under conditions of cyclic bending and torsional loading with the participation of
various mean values. In this paper, using a model of the transformation of stress ampli-
tudes due to the mean value, a general three-parameter limiting stress surface is defined in
the form of a relationship between the stress amplitude, mean stress value and the number
of fatigue cycles.

2. Transformation Model for the Mean Load Value in Relation to the Number of
Fatigue Cycles

The previously presented calculation models contain material properties that are
constant values. Meanwhile, some research results indicate that the fatigue properties of
the material may change with the number of cycles, and it is postulated that this effect
should be taken into account in calculation algorithms [14,16,23,24]. Some proposals extend
the applicability of the Goodman, Gerber, and other mentioned models in the range of low-
cycle fatigue by taking into account the current number of failure cycles in transformation
models [25,26].

In this paper, the influence of the mean load value on the limit amplitude value can
be described by the cycle asymmetry sensitivity ratio ψ, which is defined according to the
scheme of the two-parametric characteristic σa = f(σm). A simplified bilinear model of this
characteristic is presented in Figure 1.
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Figure 1. Interpretation of the cycle asymmetry sensitivity ratio based on the two-parametric
characteristic σa = f(σm).

The cycle asymmetry sensitivity ratio ψ can be expressed as:

ψ =
σ−1 − σ0

σ0
, (1)

where σ−1 is the stress amplitude for fatigue tests results under purely alternating loads
(R = −1), σ0 is the stress amplitude for fatigue tests results under purely pulsating loads
(R = 0), and R is the stress ratio R = σmin/σmax.

It is assumed that the factor ψ may change with the number of cycles N. Figure 2
shows the scheme used for determining the value of factor ψ depending on the number of
N cycles.
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Figure 2. Determining the dependence of the material sensitivity coefficient to cycle asymmetry on
the number of cycles.

If the results of fatigue tests for purely alternating loads (R = −1) are described with
line 1 in Figure 2, and for pulsating loads with line 2 in Figure 2, the material’s sensitivity
coefficient to cycle asymmetry for the life of N cycles can be calculated as:

ψ(N) =
σ−1(N) − σ0(N)

σ0(N)
, (2)

where σ−1(N) is the stress amplitude at the N cycle life level for loads with the cycle
asymmetry factor R = –1 and σ0(N) is the stress amplitude at the durability level of N cycles
for loads with the cycle asymmetry factor R = 0.

Equation (2) is explained in [27] for normal and shear stresses with these formulas.
Based on the fatigue characteristics for the tests at R = −1 and R = 0, it is possible to

determine changes in the material sensitivity coefficient to cycle asymmetry.
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It is easy to show that if the slope is the same for straight lines 1 and 2 in Figure 2,
the material’s sensitivity factor to cycle asymmetry is constant over the entire range of
fatigue life. If the lines shown in Figure 1 clearly differ in their slope, then the value of the
coefficient ψ changes with the number of fatigue cycles.

The changes of the ψ factor with the number of cycles N can be determined experi-
mentally using the equation:

ψ(N) = η · Nλ, (3)

where η, λ are parameters, the values of which are determined on the basis of fatigue tests
results under purely alternating (R = −1) and purely pulsating (R = 0) loads.

Taking the logarithm of Equation (3), the following expression is obtained:

logψ = log η + λ · log N. (4)

The relationship (4) describes the equation of a straight line in a bilogarithmic co-
ordinates system (Figure 3). The slope λ in Equation (4) is related to the angle ξ by the
following equation:

λ = tan ξ =
logψ1 − logψ2
log N1 − log N2

. (5)

Materials 2021, 14, x FOR PEER REVIEW 5 of 15 
 

 

Based on the fatigue characteristics for the tests at R = −1 and R = 0, it is possible to 

determine changes in the material sensitivity coefficient to cycle asymmetry. 

It is easy to show that if the slope is the same for straight lines 1 and 2 in Figure 2, the 

material’s sensitivity factor to cycle asymmetry is constant over the entire range of fatigue 

life. If the lines shown in Figure 1 clearly differ in their slope, then the value of the 

coefficient ψ changes with the number of fatigue cycles. 

The changes of the ψ factor with the number of cycles N can be determined 

experimentally using the equation: 

 N)N( = , (3) 

where η, λ are parameters, the values of which are determined on the basis of fatigue tests 

results under purely alternating (R = −1) and purely pulsating (R = 0) loads. 

Taking the logarithm of Equation (3), the following expression is obtained: 

Nlogloglog +=  . (4) 

The relationship (4) describes the equation of a straight line in a bilogarithmic 

coordinates system (Figure 3). The slope λ in Equation (4) is related to the angle ξ by the 

following equation: 

21

21

loglog

loglog
tan

NN −

−
==


 . (5) 

 

Figure 3. Material cycle asymmetry sensitivity factor in a bilogarithmic coordinate system. 

The values of the cycle stress amplitude for purely alternating and purely pulsating 

loads can be determined from the equations describing the results of fatigue tests. 

For purely alternating loads: 

wA

wBww
N

ABN

1

11
10

loglog 







=+= −−  , (6) 

For purely pulsating loads: 

jA

jBjj
N

ABN

1

00
10

loglog 









=+=  , (7) 

Considering Equations (6) and (7), Equation (2) takes the following form: 

110 −= baN)N( , (8) 

Figure 3. Material cycle asymmetry sensitivity factor in a bilogarithmic coordinate system.

The values of the cycle stress amplitude for purely alternating and purely pulsating
loads can be determined from the equations describing the results of fatigue tests.

For purely alternating loads:

log N = Bw + Aw · log σ−1 ⇒ σ−1 =

(
N

10Bw

) 1
Aw

, (6)

For purely pulsating loads:

log N = Bj + Aj · log σ0 ⇒ σ0 =

(
N

10Bj

) 1
Aj

, (7)

Considering Equations (6) and (7), Equation (2) takes the following form:

ψ(N) = Na · 10b − 1, (8)

where a = 1
Aw
− 1

Aj
; b =

Bj
Aj
− Bw

Aw
,

Formula (5) for the calculation of the coefficient λ takes the following form:

λ =
log
(

Na
1
· 10b − 1

)
− log

(
Na

2
· 10b − 1

)
log N1 − log N2

, (9)
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According to Equation (3) and considering Equation (8), the coefficient η can be
determined as:

η =
ψ(N)

Nλ
=

Na
1
· 10b − 1

Nλ
1

=
Na

2
· 10b − 1

Nλ
2

. (10)

Equations (9) and (10) allow us to determine the values of the parameters λ and η in
Equation (3) describing the function of the change in the value of the coefficient of material
sensitivity to cycle asymmetry with the number of cycles N.

3. Limiting Stress Amplitude Surface Model

During the design of machine elements or structures due to the phenomenon of
fatigue, loading conditions are determined for the expected life of the elements. In the
case of cyclic loads with the contribution of the mean stress, the limiting stress surface is
represented in the σa-σm-N coordinate system as shown in Figure 4.
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Figure 4. Limiting stress amplitude surface σa = f(N, σm): 1—function describing influence of
mean stress value on permissible stress amplitudes σa = f(σm), 2—fatigue characteristics of material
σa = f(N).

The mathematical description of the surface is a function f(σa, N, σm) that relates the
stress amplitude, mean value, and number of failure cycles. The search for a surface model
based on fatigue test results is a complex and complicated issue [28]. The surface shown in
Figure 4 carries information about the mutual relations of stress amplitude σa, mean stress
value σm (curve 1 in Figure 4), stress amplitude σa, and number of failure cycles N (curve 2
in Figure 4). Assuming a certain function σa = f(σm) to describe curve 1 and σa = f(N) to
describe curve 2, it is possible to determine the mathematical form of the limiting stress
surface. The accuracy of the mathematical model of the surface depends on the accuracy of
the adopted mathematical models describing curves 1 and 2.

Taking into account the coefficient of the material’s sensitivity to cycle asymmetry
and its interpretation presented in Figure 1, the relationship between the allowable stress
amplitude and the mean stress value can be described by the following formula:

σa = σ−1 − ψσm, (11)

where σa, σm are the amplitude and mean value of the asymmetric load (R 6= −1) and σ−1
is the stress amplitude of the symmetric (purely alternating) load (R = −1) equivalent in
terms of fatigue to the asymmetric load.
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Assuming that the effects of the mean value of the material are different for different
numbers of cycles N applied to the material and using Equation (3) to describe the change
the coefficient of material sensitivity to cycle asymmetry with the number of cycles to
failure, Equation (11) can be written in the following form:

σa = σ−1(N) − ψ(N) · σm = σ−1(N) − η · Nλ · σm, (12)

Experimental fatigue characteristics of the material for purely alternating loads
(R = −1, curve 2 in Figure 4) are described by the following equation:

(σ−1(N))m · N = σm
f · N0, (13)

where m is the slope of the Wöhler curve, σf is the fatigue limit, and N0 is the limit (edge)
number of load cycles.

Determining the stress amplitude σ−1(N) from Equation (13) and inserting it into rela-
tion (12), one obtains the limiting stress amplitude surface equation in the following form:

σa(σm, N) =

(
σm

f · N0

N

) 1
m

− η · Nλ · σm. (14)

Equation (14) represents a mathematical model of the limiting stress amplitude surface
determined from fatigue test results for purely alternating and purely pulsating loads,
assuming that the effect of the mean value on the stress amplitude is a linear function.

4. Fatigue Tests

The subjects of the study are S355J2G1W steel (European Standard EN 10155:1993,
Low-alloy rust-resistant steel, The European Committee for Standardization) and S355J0
steel (European Standard EN 10025:2019, Hot rolled products of structural steels, The
European Committee for Standardization) [12,27,29]. The strength properties are presented
in Table 1.

Table 1. Mechanical properties of tested materials.

Material Yield Strength
σY (MPa)

Ultimate Strength
σU (MPa)

Young Modulus
E (GPa)

Poisson’s Ratio
v

S355J2G1W 418 566 215 0.29

S355J0 357 535 210 0.30

Figure 5 shows the shape and dimensions of the specimen used in the tests.
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The tests were carried out on the MZGS–100 fatigue test stand (Opole University of
Technology, Opole, Poland) [30]. The stand allows testing for fatigue bending or torsion
and additionally proportional bending with torsion (not applied in this research). The tests
of cyclic bending and torsion were performed within the low and high range numbers
of cycles where the moment amplitude was controlled. The loads present sinusoidal
waveforms under a frequency range of 25–29 Hz. The nominal stress amplitude and
nominal mean stress value were used in calculations.

The results of fatigue tests were approximated by the following regression equation:

log N = B + A · log σa (15)

where σa is the bending stress amplitude (for torsion accordingly τa), N is the number of
cycles until failure, and A and B are the parameters of the regression equation.

The parameters in Equations (3), (14) and (15) were determined based on fatigue test
data from Pawliczek and Rozumek [27,29]. Fatigue tests were performed under cyclic
bending and cyclic torsion with the mean value of the load at fixed stress ratios R = −1,
R = −0.5 and R = 0 for S355J0 steel and for fixed mean stress values σm (τm) 0, 75, 150 and
225 for S355J2G1W steel. For each load level, the tests were carried out with a minimum of
3 specimens. A set of loading conditions for fatigue tests is presented in Table 2.

Table 2. A set of loading conditions for fatigue tests of specimens.

Material
Bending Torsion

σm (MPa) σa (MPa) τm (MPa) τa (MPa)

S355J2G1W

0 379 0 200

0 360 0 192

0 352 0 178

0 319 0 130

75 410 75 200

75 350 75 163

75 303 75 150

75 265 75 132

75 231 150 185

150 365 150 182

150 321 150 170

150 277 150 160

150 270 150 149

225 385 225 185

225 353 225 170

225 325 225 160

225 315 225 136

225 274
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Table 2. Cont.

Material
Bending Torsion

σm (MPa) σa (MPa) τm (MPa) τa (MPa)

S355J0

0 400 0 224

0 365 0 196

0 275 0 184

123 368 58 175

100 298 50 151

90 269 456 139

82 247 139 139

290 290 136 136

275 275 133 133

269 269

257 257

236 236

Table 3 shows the values of coefficients A and B of regression Equation (15) for bending
and torsion and the stress ratios R = −1 and R = 0, respectively.

Table 3. Parameters of regression equation.

Material Stress Ratio R
Bending Torsion

A B A B

S355J2G1W
−1 −12.73 38.03 −14.83 39.28

0 −17.29 30.78 −20.37 50.29

S355J0
−1 −7.19 23.93 −11.82 32.81

0 −10.73 31.40 −25.25 59.76

Analyzing the parameters contained in Table 3, it can be concluded that the values of
the A coefficient for bending and the presented materials are different in all cases. During
torsion, for R = −1, the values of the coefficient A show smaller differences than for R = 0,
where greater differences between their values are noticed.

Based on the data in Table 3, the coefficients η and λ of Equation (3) were determined.
The results of the calculations are shown in Table 4 and Figure 6 shows the functions for
the tested steels.

Table 4. Parameters of the function ψ = f(N).

Material Load Case
ψ(N) = η·Nλ

η λ

S355J2G1W
bending 1.01 −0.072

torsion 0.82 −0.113

S355J0
bending 3.16 −0.164

torsion 2.89 −0.131
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Figure 6. A graph of the function ψ = f(N) for tested steels.

The values of η and λ coefficients for bending and torsion show similar effects of
the mean stress value on the allowable stress amplitudes for both steels. Figure 6 also
indicates that for the durability range of 5 × 104 to about 7.5 × 105 cycles, the value of the
coefficient ψ decreases significantly, while for the high-cycle durability range, the value of
the material’s sensitivity factor to cycle asymmetry changes slightly.

In the case of S355J0 steel bending, this relationship was described by the function
ψ(N) = 3.16N−0.164. There is a visible decrease in the value of the factor in terms of
durability at N = (5 × 104–7.5 × 105) cycles. In the case of torsion, the function has the
form ψ(N) = 2.89N−0.131, while the nature of the curve is similar to that for bending.

In a similar way for S355J2G1W steel, we have ψ(N) = 1.01N−0.072 functions for
bending and ψ(N) = 0.82N−0.113 for torsion, respectively. The nature of the functions is
similar to that of S355J0 steel. However, it can be noted that the range of changes in ψ for
the maximum value at N = 5 × 104 and minimum value at N = 2.5 × 106 for S355J0 steel is
about 2 times larger than for the second material. This suggests a greater sensitivity of the
material to cycle asymmetry, especially in the low cycle load range.

5. Analysis of the Limiting Stress Amplitude Surface Model

This paper presents a mathematical model of the surface description of allowable
stress amplitudes depending on the value of the mean load and the number of cycles
to failure of the material. It was assumed that the influence of the mean load value
on the allowable stress amplitudes depends on the material’s sensitivity to cycle asym-
metry. A function was proposed to describe the change in the value of the material’s
sensitivity coefficient to cycle asymmetry, and its parameters were determined from fa-
tigue tests of specimens under purely alternating (R = −1) and purely pulsating (R = 0)
loading conditions.

The analysis of the limiting stress amplitude surface model was based on the data
shown in Tables 3 and 4. The experimental surfaces results for tests with stress ratios R =−1
and 0 are presented in [27,29]. The experimental surfaces of the limiting stress amplitudes
were determined using Kriging multiparameter approximation [31], then the mathematical
formula based on Equation (14) for the surfaces describing the different loading cases for
both steels was determined.
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Figures 7–10 show the experimental surfaces and their mathematical expressions for
analyzed steels and load cases, respectively.
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Figure 7. Limiting stress amplitude surface for S355J0 steel under bending load: (a) experimental model; (b) mathemati-
cal model.
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cal model.
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Figure 9. Limiting stress amplitude surface for S355J2G1W steel under bending load: (a) experimental model; (b) mathe-
matical model.
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Figure 10. Limiting stress amplitude surface for S355J2G1W steel under torsion load: (a) experimental model; (b) mathe-
matical model.

To determine the effectiveness of the results from predicting allowable stress ampli-
tudes σa using the proposed model, the relative error of the stress amplitudes calculated
from the theoretical model versus the experimental results was determined:

δ =
σa(model) − σa(exp)

σa(exp)
100%. (16)

Figure 11 shows the distribution of relative error as a function of mean stress and
number of cycles N for specimens made of S355J0 steel.
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Figure 11. Relative error of calculated stress amplitudes versus experimental results for bending and torsion of S355J0 steel:
(a) bending: (b) torsion.

The maximum error for bending is 14% at σm = 80 MPa and life N > 1 × 106 cycles.
For torsion, the error is 16% for τm = 40 ÷ 60 MPa and life N > 1 × 106 cycles.

Figure 12 shows the relative error areas of the calculation results versus the experi-
mental results for bending and torsion of S355J2G1W steel specimens.
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The maximum error for bending is 14% at σm = 75 MPa and life N > 1.5 × 106 cycles.
For torsion, the maximum error is 18% for τm = 60 ÷ 90 MPa and life N > 1.5 × 106 cycles.
For durability N > 2.3 × 106 and τm = 75 MPa, the error reaches 20%, although this error
covers an insignificant region of the plane of limit stresses.

6. Conclusions

On the basis of the obtained results of experimental research and the conducted
analyses, the following conclusions were formulated:

1. The effect of the mean load value on the allowable stress amplitudes was taken into
account by means of a linear relationship, in which the variation of the material’s
sensitivity coefficient to cycle asymmetry with the number of cycles to failure was
taken into account;

2. A mathematical model of limiting stress amplitude surfaces was determined, which
was verified by the results of fatigue tests for S355J0 and S355J2G1W steel specimens
subjected to cyclic bending and torsional loading with different values of the mean
load. For both S355J0 and S355J2GW1 steels in bending, a maximum error of 14%
appeared for fatigue life N values greater than 1 × 106 cycles and a mean stress value
of about 80 MPa. For torsion, similar trends were observed for both materials, with an
error of 18%. Compared to bending for torsional loading, the estimation error of more
than 14% covered a wider range of the average load in the range of about 40–90 MPa;

3. For both tested materials, it was observed that the greatest error in estimating allow-
able stress amplitudes occurred for a life of N = 1 × 106 cycles, which may have been
due to the largest scatter of experimental tests for loads in the high cycle fatigue range;

4. The proposed model proved to be effective in estimating the maximum stress am-
plitude values for low-cycle fatigue over a wide range of mean loads, where the
estimation error was less than 10%.

The algorithm proposed in this paper for determining the values of permissible stress
amplitudes provided consistent results with those of the experimental tests. The model can
be applied to components subjected to bending as well as torsional loads. This requires
that the characteristics for purely alternating and purely pulsating loads are appropriate
for the type of loading.
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