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Abstract
Many complex systems produce outcomes having recurring, power law-like distributions

over wide ranges. However, the form necessarily breaks down at extremes, whereas the

Weibull distribution has been demonstrated over the full observed range. Here the Weibull

distribution is derived as the asymptotic distribution of generalized first-order kinetic pro-

cesses, with convergence driven by autocorrelation, and entropy maximization subject to fi-

nite positive mean, of the incremental compounding rates. Process increments represent

multiplicative causes. In particular, illness severities are modeled as such, occurring in pro-

portion to products of, e.g., chronic toxicant fractions passed by organs along a pathway, or

rates of interacting oncogenic mutations. The Weibull form is also argued theoretically and

by simulation to be robust to the onset of saturation kinetics. TheWeibull exponential pa-

rameter is shown to indicate the number and widths of the first-order compounding incre-

ments, the extent of rate autocorrelation, and the degree to which process increments are

distributed exponential. In contrast with the Gaussian result in linear independent systems,

the form is driven not by independence and multiplicity of process increments, but by incre-

ment autocorrelation and entropy. In some physical systems the form may be attracting,

due to multiplicative evolution of outcome magnitudes towards extreme values potentially

much larger and smaller than control mechanisms can contain. The Weibull distribution is

demonstrated in preference to the lognormal and Pareto I for illness severities versus (a)

toxicokinetic models, (b) biologically-based network models, (c) scholastic and psychologi-

cal test score data for children with prenatal mercury exposure, and (d) time-to-tumor data

of the ED01 study.

Introduction
Regulation of chronic chemical toxicants generally involves the use of a quantal dose—re-
sponse function, i.e. a relationship describing the fraction of a population (human or animal)
expected to become ill as a function of the level of exposure to, or dose of, a stressor (often a
chemical) after a certain exposure time. The function may be interpreted alternatively as the
probability that a randomly-selected individual will become ill, as a function of dose. In either
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case, the positive illness condition corresponds to a level of clinical diagnosis, such as pulmo-
nary function, that may be termed illness severity.

Toxicant regulation often implies the extrapolation of a quantal dose-response function
over orders of magnitude, from high doses at which effects can be observed in small laboratory
populations, to low doses of regulatory interest for which e.g. only one illness may occur in
100,000 individuals. Results of the extrapolation may depend critically on the form of the dose-
response function (DRF) [1], pointing to the need for a theoretical basis. Mathematically, the
form of the DRF is determined by the form of the illness severity distributions, i.e. the set of
functions representing population fraction presenting, versus a quantitative representation of a
clinical diagnosis, at the corresponding set of fixed doses. Hence, a theoretical basis for the
form of the illness severity distribution would provide basis for the form of the DRF. Fortunate-
ly, illness severity is the magnitude of an outcome of a complex physiological system, and dis-
tributions of complex system outcome magnitudes have shown commonalities across fields.

Distributions of illness severity
The form of the distribution of illness severities, across a population at fixed dose, has not been
well-studied. For convenience in analysis of dose-response data, distributions of the severity of
mild effects, such as changes in body weight, are sometimes assumed approximately normal or
lognormal [2]. However, of these, only the lognormal distribution is theoretically appropriate
in terms of its range over the positive real line.

Illness severity distributions may be inferred from certain biomarker data, (i.e., from a mea-
surable indicator of the severity of an illness condition), such as toxicant concentration in arte-
rial blood. For example, Clewell and coworkers [3] modeled steady-state (lifetime) arterial
blood concentrations for oral exposure to volatile compounds as:

Cart ¼
Drink � Q1

Cl1 � Va=Hba

ð1Þ

in which Drink is a continuous zero-order ingestion rate, Ql is blood flow to the liver, Hba is the
styrene blood:air partition coefficient, Va is the minute ventilation rate, and Cll is the metabolic
clearance of styrene in the liver. If it were possible to extend the approach of Eq 1 to obtain a
distribution of illness severities, by accounting for subsequent pharmacodynamic actions, a
similarly multiplicative relationship might result.

Several of the variables in Eq 1 might potentially be modeled with lognormal distributions
[4]. In that case, because reciprocals of lognormal RVs are lognormal, the product would be a
lognormal-like distribution of arterial blood concentration if the variables were either largely
independent (by the central limit theorem), or perfectly correlated (by transformation of pow-
ers of lognormal variates) [5]. However, the lognormal necessarily predicts zero probability of
zero severity. In contrast, the distribution of illness severities across a population is often
monotonically-decreasing, i.e. highest probability associated with no illness, particularly for a
low dose and/or a serious endpoint. For example, for many important endpoints, e.g. carcino-
ma, hypertension, the most prevalent condition is no illness, e.g. normally functioning (or wild
type) genes or normal blood pressure.

Distributions of complex system outcomes
In other fields, the form of the distributions of complex system outcomes has been widely ob-
served to be decidedly non-Gaussian, nearly log-log linear, or power law, in shape over orders
of magnitude in range [6–10]. If truly log-log linear, such distributions would “scale,” or re-
main invariant in form with respect to change in scale, a property they would share with many
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other continuous and infinite/semi-infinite probability distributions; therefore such distribu-
tions have been referred to as scaling or scale-free. However, the observed distributions often
have curvature. More important, the log-log linear form must break down at one or both ex-
tremes in order to maintain normalization. As a result, exponential cut-offs for power laws
have been used to fit datasets empirically. However, data are needed to position and fit the cut-
off function, generally precluding extrapolation. Therefore, a more general single function, ca-
pable of capturing the underlying emergent mechanisms over a broader range, would be
needed e.g. for regulatory dose-response extrapolation.

Although scaling distributions have been associated with systems exhibiting self-similarity
(fractal patterns) [7], self-organized criticality (cascading failures punctuating near-equilibrium
conditions) [9], preferential attachment (e.g., the tendency for new citations to cite previously-
cited work, and web sites to link to more highly-linked sites) [6,10], and other mechanisms, no
unified explanation for their recurrence has emerged. One explanation has been that such dis-
tributions arise as normed sums of independent, identically-distributed random variables
(RVs) having infinite variance [11], stable by the Central Limit Theorem though non-Gaussian.
Stable distributions are attracting, i.e. convergent with continued summation of normed inde-
pendent and identically-distributed random variables. However, an infinite variance may not
be realistic over any range.

In 1951 Weibull [12] demonstrated the “wide applicability” of his namesake distribution to
disparate complex system outcomes, including strength properties of materials; fly ash particle
size; Cyrtoideae length; Phaseolus vulgaris bean width; and heights of adult males born in the
British Isles. Much later, Mittnik and Rachev showed the Weibull distribution to dominate sta-
ble distributions in terms of fit to S&P 500 stock return data, as explained by a proposed stabili-
ty of minimum values, and stability of sums of geometrically-distributed numbers of RVs [13].
Sornette and coworkers then demonstrated the Weibull (referred to as the stretched exponen-
tial) distribution versus a wide array of observed heavy-tailed distributions [14], including of
radio and light emissions from galaxies; US oil field reserve sizes; global, US and French urban
agglomeration sizes; national population sizes; daily Forex US-Mark and Franc-Mark price
variations; Vostok temperature variations over 400,000 years; Raup-Sepkoski's kill curve; and
citations of highly cited physicists.

Applicability of the first-order kinetic model
Sornette and coworkers explained the generality of the Weibull distribution by suggesting that
complex system outcome magnitudes emerge as products of the magnitudes of a series of inde-
pendent outcome causes, and showing that products of independent elements having certain
exponential-family distributions are asymptotically Weibull-distributed in the tail [15], con-
trasting with the lognormal result indicated by the Central Limit Theorem. Subsequently, we
proposed complex process outcomes to arise rather generally as products of cause magnitudes
that are instead autocorrelated, and argued the multiplicative causal elements to be exponen-
tially-distributed by entropy-forcing [16], as will be described. We later presented arguments
that products of discrete autocorrelated causes have the discrete Weibull distribution, as dem-
onstrated versus counts of C. parvum, Giardia, total coliform, fecal coliform, and fecal strepto-
cocci in water [17]. Significantly, we also found the autocorrelated multiplicative model to
produce 1/f spectra (a power law relationship of amplitude versus frequency in time series
data, with slope approximately unity), another characteristic of many complex systems, when
the outcome magnitudes themselves are autocorrelated [18].

Mathematically the multiplicative model is equivalent to a first-order kinetic process [19],
as discussed later under Review of Model Bases. Further, many biological, chemical, and
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economic quantities grow or decay by first-order kinetics, such that their change in size is pro-
portional to their current size [20]. The relationship is ubiquitous because many changes in
magnitude occur largely in proportion to the availability of a single limiting monetary, human,
animal, plant, microbial, or chemical species. Hence the first-order, or multiplicative, model
may represent a rather general explanation for the occurrence of power law-like distributions,
at many scales. In particular, chronic toxicants are generally present in low concentrations,
such that reaction saturation effects are unimportant. For example, the effect of a toxicant may
occur in proportion to its concentration, while concentrations of other reactants remain in rel-
ative excess or otherwise constant and non-limiting. At a larger scale, the total fraction of a tox-
icant passed to a target organ is similarly proportional to the fractions passed by preceding
organs. Such pseudo-first-order reactions have rate constants which vary along a toxicological
pathway, for example between organs and in time (as well as among individuals), and these
variations are generally autocorrelated along the pathway as discussed under Review of Model
Bases.

Objectives
The purpose of this paper is to derive and demonstrate the form of the distribution of the out-
comes of autocorrelated first-order kinetic processes, with application to toxicological path-
ways. First, the first-order model is written as a serial multiplication of incremental terms,
which are generally variable and autocorrelated in size. The increments along a toxicological
pathway, in particular, are viewed as elementary causes of illness, and the information-theoret-
ic basis for their distributions is reviewed. The asymptotic form of the illness severity distribu-
tion is then derived, and shown to converge as a result of autocorrelation across increments.
To maintain generality, the result is demonstrated versus general kinetic, toxico-kinetic, and
network models of pathogenesis, and extended to the case of saturation kinetics. Results are
then demonstrated versus published data on illness severity, including data on learning disabil-
ities in children with prenatal mercury exposure, and transformed time-to-tumor data.

Methods
Some terms are defined as follows. First-order refers to a generalized abiotic or biotic kinetic
process in which growth or decay occurs predominantly in proportion to current magnitude,
via single, parallel and/or network pathways, i.e. with overall rate law approaching dM/dt =
±rM, in whichM is the magnitude at time, t, and r is a rate constant. The size of a cause of an
illness or other incident is its magnitude, for example the fraction of toxicant passed to a recep-
tor (not eliminated), or more generally the degree of failure of a protective system. The more
general terms first-order process increment, and process increment, are used interchangeably
with cause. Elementary causes are initial causes, not related in size to other causes. Autocorrela-
tion refers to positive serial dependence along a sequence of RVs as defined by a positive Pear-
son correlation coefficient, and perfect correlation among a set of J random variables is defined
by a J x J correlation matrix in which all elements are equal to 1. Entropy refers to classical
Shannon entropy [21]. The notations f(.) and F(.) denote continuous probability density func-
tion (PDF) and cumulative distribution function (CDF), respectively. The term standard expo-
nential distribution is used to indicate an exponential distribution with a mean of unity.

Distributions of autocorrelated first-order outcomes were simulated using Matlab version
R2006a and R2010a with Statistics Toolbox. Each vector of J partially correlated exponential
RVs was simulated by the copula method [22], as a vector of J exponential inverse-CDF values
for J standard normal CDF values corresponding to a J-element multivariate normal (μ, ρ)
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random vector with mean μ = 0 and covariance matrix ρ equal to a J x J subset of the matrix
below:

• [1 0.66 0.56 0.46 0.36 0.26 0.16 0.06 0 0 . . .

• 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16 0.06 0 0 . . .

• 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16 0.06 0 0 . . .

• 0.46 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16 0.06 0 0 . . .

• 0.36 0.46 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16 0.06 0 0 . . .

• 0.26 0.36 0.46 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16 0.06 0 0 . . .

• 0.16 0.26 0.36 0.46 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16 0.06 0 0 . . .

• 0.06 0.16 0.26 0.36 0.46 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16
0.06 0 0 . . .

• 0 0.06 0.16 0.26 0.36 0.46 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16
0.06 0 0 . . .

• 0 0 0.06 0.16 0.26 0.36 0.46 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26 0.16
0.06 0 0 . . .

• . . . 0 0 0.06 0.16 0.26 0.36 0.46 0.56 0.66 1 0.66 0.56 0.46 0.36 0.26
0.16 0.06 0 0 . . .

• . . .

• . . .

• . . .]

This procedure produced a maximum correlation between (adjacent) exponential causes of
0.61. Generic metabolic networks were modeled using Pajek 1.20 network analysis software.

Simulated PDFs were fitted with distributions by maximum likelihood estimation (MLE).
Simulated CDFs were fitted by goodness-of-fit (GOF) maximization, i.e. by minimizing the de-
viance statistic, an adaptation of the 2-log likelihood ratio to quantal data [23]. Model fits were
evaluated by graphical comparison with empirical densities (N = 1000). To avoid possible
shape distortion associated with the assumption of arbitrary bin widths, empirical densities
were obtained by assigning each unique observed value of outcome size its own histogram bin,
as described previously [16,24,25]. That is, the probability density for each bin was found as
the fraction of outcomes having that size (that is,m/M, in whichm is the number of observa-
tions of that outcome size, typically one for real-valued sizes, andM is the total number of ob-
servations), divided by the bin width. Bin bounds were determined as follows. First, for discrete
data over the range 0, 1, 2, . . ., unit-width bins must begin at the count value (e.g., zero) and ex-
tend up to, but not include, the next count value (e.g., one). This observation is consistent, e.g.,
with the observation that viable microbe counts are effectively rounded down to exclude frac-
tions of microbes. For continuous data, the probability of measuring exactly zero is zero.
Therefore, again data are effectively left-censored at the limit of measurement precision, even if
zero-valued data are recorded as a result of rounding. Therefore, bin widths were measured
from the data point up to, but not including, the next observed value. Accordingly, the last
point served only to define the upper limit of the last bin, given the observed record length.
The density was then plotted at the data point. This approach maximizes the number of bins
and minimizes the effect of the unknown upper limit of the final bin, particularly influential

Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness

PLOS ONE | DOI:10.1371/journal.pone.0129042 June 10, 2015 5 / 30



for heavy-tailed data. Such empirical PDFs are maximally objective, though entirely un-
smoothed so that even large samples have wide-ranging residuals.

The chi squared and asymptotically-equivalent [26] log-likelihood ratio GOF tests were
used for their ability to indicate the probability with which a tested distribution can be rejected,
correcting the degrees of freedom for the number of distribution parameters. However, even
these tests will consistently reject the true distribution for very large datasets. For example in
this work, values of α = 0.05 and N = 1000 to 10,000, depending on parameter values, were
found to accept the true sampling distribution of simulated Weibull-distributed RVs 94 out of
100 times, but to consistently reject the true distribution for larger data sets (α = 0.05). There-
fore, model output was subjected to chi-square testing, at N = 1000, repeated 100 times and re-
ported as the number of records passing at α = 0.05. GOF tests were coded in Matlab version
R2006a and R2010a with Statistics Toolbox software.

Published quantal time-to-tumor data were fitted and plotted using the plotting position
Min[Max(0.25,m/M),M-0.25], in whichm is the number of illness-positive individuals (e.g.,
mice) andM is the total number of individuals. That is, a data point ofm = 0 positives suggests
a population illness proportion of from 0/M to 0.5/M, with a midpoint of 0.25/M. If the data
point is interpreted as the extreme value, 0/M, that point cannot be used to assess the log-likeli-
hood (because the result is undefined), whereas use of the interval midpoint allows use of the
point. Likewise, ifm =M is observed and the population proportion is interpreted at the inter-
val extreme ofM/M, the point cannot be used. Thus it was assumed for example that responses
of zero of 10 mice, and 10 of 10 mice, would have been proportional to responses of 0.25 in 10,
and 9.75 of 10, respectively, if sample sizes had been larger. This plotting position is consistent
with others published [27], and was used to better approximate the mean binomial probability
of response at times for which all or no mice were positive, and to allow GOF fitting and visual
assessment at these important times. Background risk was corrected for by subtracting the pro-
portion of positive mice at zero dose, times the total number of mice tested at each nonzero
dose, from the number of positive mice at each nonzero dose. In cases where no positive mice
were observed for the first several observation times, only the last two of those times were con-
sidered in the analysis, on the assumption that population probabilities at even lower doses
were actually zero (doses below toxic threshold) and therefore could not be used in the log-like-
lihood analysis, consistent with standard practice. Data were tested for GOF by evaluation of
the deviance statistic versus the chi-squared distribution.

Review of Model Bases
In this section, bases for the autocorrelated first-order model, including its multiplicative na-
ture, and the autocorrelated and exponentially-distributed character of the causal elements,
are described.

Multiplicative and autocorrelated character of first-order processes
A first-order kinetic model, such as one of decomposition in a single organ, is a multiplicative
process equivalent to the multiplication of cause magnitudes along a causal chain such as a tox-
icological pathway. For discrete growth/decay the equivalent multiplicative relationship is well-
known:

DA
Dt

¼ rA

AT ¼ A0

YT

t¼1
ð1þ rÞ

ð2Þ
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in which A is e.g. the concentration of toxicant A, T is the total period of reaction time, t, or dis-
tance along a pathway, II indicates a product, and the second equation is equivalent to AT =
A0(1+r)

T. While the real rate constant for growth/decay, r, varies in general as -1< r<1 (be-
cause A cannot decay to values of zero or less, nor grow at an infinite rate), the term (1+r)
is positive.

Though often assumed constant, the term (1+r) generally varies randomly in a Markovian
manner (i.e., future value is determined solely by present value, independent of past values,
such that long-term memory is lost) among individuals and in time, potentially assuming val-
ues less than and greater than unity among time increments, and is thus generally autocorre-
lated along the kinetic pathway. For example, monetary interest rates, and toxicant decay rates
within an organ, are correlated in time, and elimination and transformation rates are correlated
along a multi-organ toxicological pathway, as will be explained. In the latter case, toxicant con-
centration at the target organ is equal to the product of the fractions passed by preceding or-
gans:

AT ¼ A0

YT

t¼1
ð1þ rtÞ

¼ A0

YT

t¼1
ft

ð3Þ

in which ft = At/At-1 is the fraction of toxicant, or metabolic product thereof, passed at a path-
way increment. Thus, a first-order kinetic model is equivalent to a multiplicative model that
could be invoked to describe, for example, multi-organ transfer of toxicant, or the product of
probabilities (rates) that mutations in oncogenic or tumor suppression genes escape cell growth
controls and correction processes such as DNA repair mechanisms or apoptosis.

While not generally thought of as such, continuous growth/decay, dA/dt = rA and A = A0e
rt,

is viewed here as a continuous serial multiplication, a special case of Eq 2 as Δt! 0, as follows:

AT ¼ lim

Dt ! 0
A0

YT

t

At

At�1

¼
lim

Dt ! 0
A0

YT

t

A0ð1þ rÞt
A0ð1þ rÞðt�DtÞ

¼ A0pT

0

A0e
rt

A0erðt�dtÞ

¼ A0pT

0 e
rdt

ð4Þ

in which

pb

a½f ðxÞ�dx ¼
lim

Dx ! 0

Y
½f ðxiÞ�Dx

¼ exp
ðb

a

ln f ðxÞdx
ð5Þ

is a continuous product, or multiplicative analog to the Riemann integral, known as a product
integral [28], and the non-negative, real term er is analogous to the term (1+r) of the discrete
case. In other words, a continuous first-order kinetic process can be viewed as a continuous
multiplication of continuously varying random, vanishingly small incremental cause sizes

Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness

PLOS ONE | DOI:10.1371/journal.pone.0129042 June 10, 2015 7 / 30



(though the outcome size may be real or integer). In this paper, the quantities er and (1+r) are
referred to as rate multipliers, for continuous and discrete models, respectively.

Although use of the product integral in Eqs 4 and 5 represents an unfamiliar representation
of a known result, it is fundamental to developing the continuously multiplicative nature of the
continuous first-order kinetic rate law, not otherwise obvious. In particular, it indicates that if
Δt! dt< 1, then outcomes can arise as the product of several fractional compounding incre-
ments that collectively represent less than one cause or compounding period. Thus, Eqs 4 and
5 provide the required basis for simulation of such “continuous” first-order processes in the
Results section. Further, they clarify the definition of a population geometric mean [16].

As previously discussed, first-order kinetics are ubiquitous, suggesting applicability across
scales in many processes. For example, at a toxicological pathway scale, illness severity may be

modeled generally as Z ¼ C1

YJ

j¼1
Cj, in which Z is illness severity; C1 is the dose; subsequent

Cj are the j-th succeeding random cause sizes corresponding to rate multipliers, (1+r) or er; and
J = T is the number of discrete causes or, equivalently, the period of continuous first-order
compounding. The result of such multiplicative processes is that causes or initial process out-
comes that are either small or large become disproportionately more extreme as the process
continues. If the rate constant of the process varies randomly along its path, and/or with the
size of the first cause, C1, then the size of the outcome over many trials is described by a
probability distribution.

Increments of first-order processes, or causes, are generally highly inter-related and posi-
tively autocorrelated in size [16,29], for several reasons [16]. First, “common-mode” failures
occur in engineered systems, e.g. when multiple components are made from the same batch of
defective material or calibrated with a common faulty instrument. In such cases, the simulta-
neous failure of the corresponding redundant protective mechanisms may result in a gas explo-
sion, fire, or other negative outcome. Likewise, illness may arise in biological systems when
multiple organs are affected by a toxicant or stressor in the circulatory system, when immuno-
compromised individuals have generally weakened systems, or when large chromosomal re-
gions are lost. For example, extensive mutation in DNA repair genes may compound the effect
of preceding extensive errors in proto-oncogenes and tumor suppressor genes caused by the
same critical exposure, allowing a general dysfunction of key genes involved in cell cycle regula-
tion and growth control (and thus a neoplastic state). A second important, distinct class of
common mode failure, characteristic of complex systems, is “control-system” failure, e.g. fail-
ure of a central processor or circulatory system causing proportional systemic failures.

A third reason for correlation among cause magnitudes is that when “upstream” protective
mechanisms are overwhelmed, they may fail more completely, potentially overwhelming sub-
sequent protective mechanisms, such that first-order assimilative rate constants tend low. For
example, heavy carbon tetrachloride exposure may overwhelm induced transformation and
conjugation enzymes and transport proteins in the liver, compromising clearance and thus
overwhelming subsequent metabolic processes, ultimately increasing liver pathology. Likewise,
if an upstream valve fails completely in blocking the flow of an explosive gas, a downstream
pipe or tank wall may also fail completely. At the other extreme, if initial detoxifying mecha-
nisms in a physiological system easily address the insult, subsequent stages also succeed, such
that rate constants tend high. Thus, autocorrelation along a first-order kinetic pathway extends
the extremes of the outcome size distribution further, increasing scaling. In fact, metabolic net-
works have been shown to have scale-free distributions of the numbers of connections per
node (reaction site), explained by the model of preferential attachment [6,10].
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Form of cause magnitude distributions
To derive the form of the distribution of the product of random cause magnitudes, the general
form of the distribution of the individual cause magnitudes can be considered. One non-negative
candidate might be the lognormal, with illness severity then modeled as a product of such log-
normal cause sizes. However, although such a first-order model would be fundamentally differ-
ent from the steady-state concentration model of Eq 1, the final illness severity would similarly
be a product of lognormal RVs, resulting in the same non-monotonic, potentially-unrealistic,
lognormal distribution of severities.

In general, elementary cause magnitude distributions, like illness severity distributions, are
expected to be monotonic, because the most common condition should be no failure of a pro-
tective mechanism. For example, while blood pressure as a cause of illness may have an under-
lying lognormal-like distribution, all values below a clinical threshold are considered normal,
therefore not representing a cause of the illness to be diagnosed, such as heart disease. Thus,
the distribution of cause size is monotonic, and ranges from the clinical definition of hyperten-
sion (e.g. 120/80). In fact, monotonic cause sizes were observed in numerical models of self-or-
ganized critical pathogenesis [30].

Consistent with monotonicity, elementary cause magnitude distributions have been as-
sumed [14] and reasoned [16] to be exponential in form. The reason is information theoretic.
That is, as the number of e.g. biochemical and metabolic variables across a population in-
creases, the number and range of possible outcomes increase multiplicatively. Then, entropy is
the average log of the inverse height of the density and so, assuming normalization, is a mea-
sure of distribution “breadth.” Therefore, maximizing entropy is roughly equivalent to maxi-
mizing the range of feasible outcomes and, all-the-more-so, the number of ways to satisfy the
constraints. The maximum entropy distribution is then realized because it can be obtained in
overwhelmingly more ways than any other distribution meeting the constraints. Thus, given
the average strength of a protective homeostatic mechanism across a population, e.g. the aver-
age fraction of toxicant removed by the liver, and no further general constraints on the entropy
of its distribution, this strength will have the exponential distribution [21] as the most likely, or
maximum entropy, distribution.

As a note, gas molecular energies have one principal constraint on the entropy of their dis-
tribution, that being their mean energy indicated by gas temperature, and in fact such energies
have an exponential-form (Boltzmann) distribution. Thus, a mean cause magnitude (e.g., ex-
tent of protective mechanism failure) can be viewed as analogous to gas temperature. As a
counter-example, the distribution of particle locations in a diffusing fluid may have two gov-
erning constraints: mean advective velocity and coefficient of diffusion, corresponding to dy-
namic mean and variance, respectively. From these, the Gaussian diffusion equation can be
derived by maximizing entropy. Many other physical laws can be derived similarly [31,32], if
the necessary and sufficient physical constraints of the system can be first identified, and then
described mathematically.

Results
In this section, a new derivation of theWeibull distribution of first-order outcomes is presented,
building on arguments we presented previously for the discrete Weibull distribution, and the
distribution is demonstrated versus simulated first-order outcomes. On these bases, the term
emergent is defined and applied to theWeibull and Fréchet distributions. The Weibull distribu-
tion is then demonstrated versus physiologically-based kinetic and network models, including a
model of saturation kinetics, and versus published cancer and non-cancer dose-response data.
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Derivation of the asymptotic distribution of first-order outcomes
When first-order kinetics comprise serial multiplication of perfectly-correlated, exponentially-
distributed increments, then outcome is proportional to a power of increment size, and the dis-
tribution of outcomes is Weibull-distributed by transformation of variables [5]. Also, while
known distributions of products of partially-correlated exponential RVs are not closed-form
[33], Frisch and Sornette [15] showed that products of n perfectly independent exponential
RVs, and others distributed proportional to exp(-Dxγ) in which D is a constant and γ is a
parameter, are asymptotically Weibull-distributed in the tail, for large n. Hence, only the re-
maining body of the distribution deviates from the Weibull distribution with decreasing auto-
correlation. Thus, the question arises as to whether the Weibull distribution might obtain
asymptotically for first-order outcomes over (a) a range of autocorrelation and (b) a range of
monotonic elementary cause magnitude distributional forms. In that regard, it is not clear how
much of, or how closely, the infinite tail is Weibull-distributed for physically-relevant values of
n, or even on what scale n should be counted. More important, these results regarding systems
with perfect independence, and perfect correlation, of kinetic increments are silent regarding
the behavior of the distribution between these extremes.

The asymptotic distribution of outcomes of partially-autocorrelated first-order processes
are derived here by examining the entropy of the distribution, as follows. First, if each cause, Cj,
of each outcome, Z, has finite positive mean, θ j, then each also has finite positive geometric
mean, G(θj). Assuming constant nonnegative and, with no loss of generality, integer numbers
of causes, J, these geometric mean cause sizes can be written in terms of Z as:

GðyjÞ ¼ ð
YJ

j¼1
CjÞ1=J ¼ ZZ ð6Þ

in which η = 1/J, and the expression for G(θj) is not closed form for the exponential distribution
using Eq 5. Then, the mean of Zη across all outcome realizations, E[Zη], in which E[.] is the ex-
pectation operator, is also a finite positive constant [17]:

E½ZZ� ¼ E½GðyjÞ� ¼ GðyjÞ: ð7Þ

For Cj distributed exponential, the mean and the scale parameters of Cj are equal. Hence, a
further constraint specifying the scale of the product as a function of the mean geometric mean
cause size, is required. In fact, the first-order process engenders such a constraint, as follows:

Z ¼
YJ

j¼1

Cj

lnZ ¼
XJ

j¼1

lnCj

E½lnZ� ¼ E
XJ

j¼1

lnCj

" #

E½lnZ� ¼ E½J lnGðyjÞ� ¼ J lnGðyjÞ

ð8Þ

The last step follows from the expression of a geometric mean as the exponential of the average
logarithm [16], and confirms the existence of a relationship between constraints (7) and (8),
through the θj. A parallel development can be written for continuous first-order compounding,
replacing sums with integrals as in Eq 5.
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In essence, the natural tendency of an elementary cause magnitude distribution towards
higher entropy is most generally constrained in terms of its mean magnitude, itself a sort-of
physical “temperature” indicating the average magnitude of potential failure or other cause. In
first-order systems, this simple constraint on process increment size engenders a constraint ex-
pressing the η-th moment of process outcome size (also representing the mean geometric-
mean cause size), and a further related constraint expressing the mean log system outcome
size.

Having identified the operative physical constraints on first-order outcome size, and formu-
lated mathematical constraints (Eqs 7 and 8) representing the physical constraints, though not
the relationship between them, it is straightforward to maximize entropy by the method of
Jaynes [31] to obtain the following distribution [32]:

max �
ð1

0

fðzÞlog½fðzÞ�dz

S:T:
ð1

0

fðzÞdz ¼ 1

ð1

0

zZfðzÞdz ¼ GðyjÞ; 0 < Z < 1; 0 < GðyjÞ< 1

and
ð1

0

ln z fðzÞdz ¼ J lnGðyjÞ �1 < J lnGðyjÞ< 1

fðzÞ ¼ expf�l0 � l1z
Z � l2 ln zg ¼ z�l2expð�l1z

ZÞð1

0

z�l2expð�l1z
ZÞdz

fðzÞ ¼ Zl1ðl1zÞl2

G
l2 þ 1

Z

� � exp½�ðl1zÞZ�; 0 � z < 1; 0 < l1 < 1; � 1 < l2 < 1

ð9Þ

Eq 9 is the generalized gamma distribution, a limiting distribution subject to the constraints
shown, when the three constraints are independent, in which λ0, λ1, and λ2 are Lagrange multi-
pliers (constants); η is a shape parameter equal to 1/J for discrete compounding [for continuous
compounding, 1/(JΔt), as will be shown in the next section]; λ1 is a scale parameter; and λ2 is a
shape parameter.

The third constraint of Eq 9 can be seen related to the correlation among the Cj. That is, if
the Cj are correlated, then when the Cj tend higher than unity, their product will tend higher
still as they become disproportionally more extreme, such that ln[Z] will tend high, and vice
versa when the Cj tend low. When the Cj are not correlated, the effect will be reduced, and E[ln
(Z)] will tend closer to zero. Thus, the absolute value of E[ln(Z)] tends toward a direct relation-
ship with correlation.

When first-order increments (cause sizes) are perfectly exponential and autocorrelated, the
Weibull form obtains, in which case the previously noted relationship between the last two
constraints of Eq 9 is λ2 = η- 1:

fðzÞ ¼ Z
x

z
x

� �Z�1

exp � z
x

� �Z� �
; 0 < x; Z; 0 � z < 1 ð10Þ

The facts that the Weibull special case of Eq 9 (a) obtains exactly for the perfectly-correlated
special case of the physical constraints proposed, and (b) has parameters that are related gener-
ally as predicted, suggest that the proposed constraints are both necessary and sufficient. (For
other systems: without the second constraint of Eq 9 the result would be a power law regardless

Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness

PLOS ONE | DOI:10.1371/journal.pone.0129042 June 10, 2015 11 / 30



of cause size distribution [34]; if η = J = 1, i.e. no first-order growth/decay, the gamma is ob-
tained [32]). However, when first-order increments are partially correlated, the distribution is
not well-characterized.

To see how first-order increment autocorrelation affects the shape and resulting entropy of
Eq 9, note that whenever J (for continuous compounding, JΔt, as shown in the next section) is
fixed, η is constant, and when the increment scales, θj, are fixed, the scale (units) of the product
of the increments, λ1 in Eq 9, must also be constant. Therefore, λ2 of Eq 9 must account
completely for the degree to which first-order increments are exponential and autocorrelated.
Furthermore, using the general expression for the entropy of a maximum entropy distribution
[35], the entropy of Eq 9 is:

Hmax ¼ l0 þ l1E½ZZ� þ l2E½lnZ� ð11Þ

Thus, as process autocorrelation varies, @Hmax/@λ2 = E[ln(Z)], @Hmax/@E[ln(Z)] = λ2, and
@Hmax/@{λ2E[ln z]} = 1. That is, changes in entropy due to changes in process autocorrelation
are equal to the product, positive or negative, of λ2 and E[ln Z], the two of which covary with
process autocorrelation. Therefore, the entropy of the first-order outcome size distribution ap-
proaches that of the Weibull distribution,Hmax = λ0 + λ1E[Z

η]+(η−1)E[ln(Z)], continuously
with changes in λ2E[ln(Z)] and, by inference, autocorrelation of incremental rates, assuming
exponentially-distributed incremental rates. In that case, a sequence of outcomes of first-order
kinetic processes having incremental rates distributed with entropy constrained only by finite
positive mean, converges in distribution from one with tail asymptotically Weibull, to the Wei-
bull, as increment autocorrelation increases from perfect independence to perfect autocorrela-
tion and as the entropies of elemental cause size distributions are maximized.♦

Demonstration by simulation and meaning of Weibull distribution
exponent
To demonstrate convergence of the distribution of first order outcomes to the Weibull distribu-
tion as generally as possible for varying autocorrelation, cause magnitudes were sampled as
randomly as possible over semi-infinite range, subject to finite positive mean. That is, cause
sizes were sampled from independent, partially-correlated, and perfectly correlated (identical)
standard exponential distributions, and multiplied. Resulting distributions were tested for
GOF versus the two common, semi-infinite, two-parameter distributions having finite mo-
ments, i.e. the Weibull and lognormal distributions, and the Pareto I power law distribution.

In Fig 1, the distributions of products of exponential RVs are shown together with fitted
Weibull distributions. The values η = 1/3 with J = 3, and η = 1/70 with J = 70 were selected to
cover an (unrealistically) broad range in terms of the number of distinct causes (e.g. organs
with differing kinetic characteristics), or first-order compounding increments. Further, Wei-
bull distributions often have values of η> 1, in which case the distribution is non-monotonic.
Therefore, “continuously” compounded first-order processes having η = J = 3 were also simu-
lated, by assuming a compounding interval equal to 1/9. That is, this case was simulated by a

conceptually new method based on Eqs 4 and 5, as
Y3

j¼1
cj
1=9 = exp

X3

i¼1
ð1=9ÞlnðciÞ, in which

Δt = 1/9 is the first-order compounding interval and J = 3 is the period of continuous com-
pounding (or, equivalently, the number of discrete compounding increments), to simulate val-
ues of η = 1/ (JΔt)> 1. Summarizing specifically, the products of perfectly independent

standard exponential RVs, ci'', were simulated as (a)
Y3

j¼1
ðcj0Þ1=9, (b)

Y3

j¼1
cj
0, and (c)

Y70

j¼1
cj
0.

Products of partially correlated standard exponential RVs, cj'', were likewise simulated as
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(d)
Y3

j¼1
ðcj00Þ1=9, (e)

Y3

j¼1
cj
00, and (f)

Y70

j¼1
cj
00. Products of perfectly correlated (identical) stan-

dard exponential RVs, cj''', were simulated as (g) cj'''
1/3, (h) cj'''

3, and (i) cj'''
70.

By inspection, the Weibull distribution fit the simulated first-order outcome sizes well,
whereas the lognormal underestimated the probability of small severities. Similar results were
obtained when input distributions (a) varied by orders of magnitude in scale, and (b) varied in
distribution, i.e. by standard normal distributions left-truncated at zero (data not shown). Fits
of the Pareto I, though appearing visually close for J = 70, were rejected by the chi-squared test
(α = 0.05) in 100 of 100 simulations for all cases examined. Results suggest, for example, that

Fig 1. Simulated (o) and fittedWeibull (––), lognormal (—), and Pareto I (. . .) distributions of the products of perfectly independent standard

exponential RVs, ci''. Panels were simulated as (a) exp
X3

i¼1
lnðci

0Þ1=9, (b)
Y3

i¼1
ci

0, and (c)
Y70

i¼1
ci

0; the products of partially correlated standard exponential

RVs, c’'i, simulated as (d) exp
X3

i¼1
lnðci

00Þ1=9, (e)
Y3

i¼1
ci

00, and (f)
Y70

i¼1
ci

00; and the products of perfectly correlated (identical) standard exponential RVs, ci''',
simulated as (g) ci'''

1/3, (h) ci'''
3, and (i) ci'''

70. [Conditions: N = 1000, MLE parameter estimates]

doi:10.1371/journal.pone.0129042.g001
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the distribution of tumor magnitudes across a population which initiated simultaneously
would be Weibull-distributed, given that normally functioning (or wild-type) genes are the
most probable (i.e., monotonic elementary cause magnitude distributions) and that rates
(probabilities) of expression of multiple mutations of genes involved in cell cycle regulation
and apoptosis compound multiplicatively over time.

In Fig 2, the fits of the Weibull and lognormal distributions are shown as functions of the
number of first-order compounding increments, J, and increment autocorrelation. As shown,
the Weibull distribution was well demonstrated for products of one to five correlated cause
sizes. Increased correlation corresponded with improved fit, and fit to larger values of J. The
lognormal was not demonstrated in general. In light of the dependence of entropy on E[ln(z)]
shown by Eq 11, typical case (e) was re-run with exponential distributions having means of 100
and 0.01 (representing greater than ±6 logs of scale in z). The result was 87 (0) and 90 (1) of
100 passing fit to the Weibull (lognormal), respectively, indicating the Weibull result is robust
to the scale of measurement, for typical values of η.

Results of Figs 1 and 2 corroborate the derivation of the previous section by illuminating the
physical meaning of η. That is, fitted parameter η decreased to (JΔt)-1 as cause size correlation
increased. For example, η-values fitted to one simulation were as follows: (a) 4.6531>> 9/3,
(b) 0.5296>> 1/3, (c) 0.0976>> 1/70, (d) 3.3972> 9/3, (e) 0.3779> 1/3, (f) 0.0433> 1/70,
(g) 2.9949ffi 9/3, (h) 0.3308ffi 1/3, and (i) 0.0142ffi 1/70. As seen, values of η decreased with
decreasing causal independence. Furthermore, while Δt strongly influenced the shape of the
distribution of outcomes (Fig 1), it did not affect the fit of the Weibull distribution to this

Fig 2. The number of simulated distributions passing a chi squared test for fit to theWeibull and
lognormal distributions, as a function of the number of multiplicative asymptotic exponential causes
and causal dependence. [Conditions: 1000 sets of N = 1000 simulated data points, α = 0.05].

doi:10.1371/journal.pone.0129042.g002
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shape (Fig 2). For example, cases (a) and (b), both assuming J = 3 independent increments,
were both accepted by the chi-squared test at the identical rate, though differing drastically in
scale due to the difference in Δt, and therefore η. Hence, both cases lie on the same lines (inde-
pendent/Weibull and independent/lognormal) in Fig 2. Similarly, cases (d) and (e) were ac-
cepted at identical rates, as were cases (g) and (h). Therefore, generalizing on the result shown
in the derivation presented in the previous section, the Weibull exponent parameter reflects
the number, J, of discrete first-order compounding increments or, equivalently, the continuous
compounding period, T, along with the width of the interval of first-order compounding, Δt,
and is increased to account for imperfect increment autocorrelation. Of course, Weibull pa-
rameters η and ξ also reflect any deviation of the forms of the cause size distributions from the
exponential. In any case, overall, ηmay be interpreted as the log-scale of outcome-size.

Emergent property of the Weibull and Fréchet distributions
Based on the foregoing derivation and simulations, the multiplication of non-numerous ran-
dom cause sizes produces Weibull distributions of outcome size due to autocorrelation and
entropic forcing of elementary cause size distributions. This property of distributions of auto-
correlated first-order outcomes is termed here emergence, defined for discrete process incre-
ments as follows:

Let Cj
n = C1

n, C2
n, . . ., CJ

n be a sequence of n series of J random variables having respective
densities f(θj)

n, where θj = (θ1, θ2, . . ., θJ) is a parameter vector. Let E[g1(Cj
n)] = μ1,j, E

[g2(Cj
n)] = μ 2,j, . . . E[gK(Cj

n)] = μ K,j be constraints on the Shannon entropy of the f(θj)
n, in

which E[.] is the expectation operator, the gk = g1, g2, . . ., gK are continuous functions, the μ

k,j are constants, and 0< k<1. Let Cb
n, Cb+1

n, . . ., Cb+B
n be a (B+1)-member subset of

C1
n, C2

n, . . ., CJ
n. Let RB

n be the correlation matrix of C1
n, C2

n, . . ., CB
n, TB be a B x Bmatrix

having all elements equal to 1, and RB
n! TB as n!1. Let f(θj)

n be a special case of f(θk)
n,

such that one or more values of the parameter vector, θk, is equal to h(B), in which h is a con-
tinuous function, and the corresponding values of the parameter vectors θj are equal to h(1).
Let the Shannon entropy of the f(θj)

n approach a maximum subject to E[g1(Cj
n)] = μ 1,j, E

[g2(Cj
n)] = μ 2,j, . . . E[gK(Cj

n)] = μ K,j, as n!1. Then, if the product
YbþB

j¼b
Cn
j converges in

distribution to f(θk) for all B as n!1, f(θk) is emergent.
and analogously for continuous process increments as follows:

Let CJ
n be a sequence of n random integrable functions on R = [0, J], 0< J<1. Let CJ

n be
distributed everywhere with probability density function f(θj)

n, where θj is a set of functions
on R representing the vector of parameters of f(θj). Let E[g1(Cj

n)] = μ1,j, E[g2(Cj
n)] = μ 2,j,

. . . E[gK(Cj
n)] = μ K,j be constraints on the Shannon entropy of the f(θj)

n, in which E[.] is the
expectation operator, the gk = g1, g2, . . ., gK are continuous functions, the μ k,j are constants,
and 0< k<1. Let CB

n be the segment of CJ
n on [b, B], 0� b< B� J. Let RB

n be the corre-
lation functions of the CB

n, and RB
n ! 1 as n!1. Let f(θj)

n be a special case of f(θk)
n,

such that one or more values of the parameter vector, θk, is equal to h(B), in which h is a
continuous function, and the corresponding values of θj are equal to h(1). Let the Shannon
entropy of the f(θj)

n approach a maximum subject to E[g1(Cj
n)] = μ 1,j, E[g2(Cj

n)] = μ 2,j, . . .
E[gK(Cj

n)] = μ K,j, everywhere for all lags, τ, as n!1. Then, if the product integral

pB
bCB

dB converges in distribution to f(θk) for all CB, f(θk) is emergent.
Informally, when a discrete or continuous series of correlated RVs, or any subset thereof, all

coming from a common, asymptotically-maximum entropy distribution (by implication, aris-
ing in nature as a result of the tendency towards higher entropy) are multiplied (e.g., in a
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physical process), the resulting outcome size converges in distribution to a consistent, or emer-
gent, form as (natural) autocorrelation of the series increases, and as the entropy of the distri-
butions of the correlated RVs increases subject to prevailing (physical) constraint(s).
Emergence implies that products of autocorrelated, asymptotically exponential RVs are distrib-
uted asymptotically Weibull, and that products of such Weibull products are also asymptotical-
ly Weibull-distributed. Also, because reciprocals of Weibull RVs are distributed Fréchet [36],
the Fréchet distribution can emerge via first-order processes. Other distributions, such as the
lognormal and Pareto I, for which powers of the RV have the parent distribution by transfor-
mation of variables, are possible candidates for mathematical emergence. However, the re-
quired constraints on the entropy of their elementary cause size distributions may not
represent typical physical systems closely.

Demonstration versus simulated severity distributions
Because elimination and biotransformation rates vary across a population and in time, a distri-
bution of chronic toxicant concentrations, each an autocorrelated first-order (Weibull) out-
come, may be realized at the target tissue. For example, Fig 3 depicts the mass fraction of a dose
of hydrophilic toxicant passing the stomach to the duodenum and liver and, following partial
elimination (primarily from the liver), on to three pharmacodynamic reactions terminating in

Fig 3. Definition diagram for a generalized, physiologically-based, first-order model of a liver-mediated toxicological pathway, including a terminal
series of three generalized pharmacodynamic steps.

doi:10.1371/journal.pone.0129042.g003
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illness. (Of course stomach to duodenum transfer is direct, whereas e.g. the duodenum-to-liver
pathway may include diffusion, toxin-protein binding, active energy-dependent transfer, a func-
tion of intestinal mucosal blood flow, and other mechanisms.) Final normalized illness severity
at a fixed dose, A0, can be expressed in a first-order PBPD sense as:

A=A0 ¼ f3f2f1fL½fSfDfF þ fSð1� fFÞ�; ð12Þ

in which fS is the fraction passed by the stomach, fF is the rate of distribution of fS to the duode-
num, fD is the further fraction passed to the liver, fL is the fraction passed by the liver, and f1, f2,
and f3 are generalized intermediate metabolic fractions representing pharmacodynamic interac-
tions. Alternatively, the model could be simplified to account for principal steps only. For exam-
ple, if the fraction fF is either large or small, a basic model might be:

A=A0 ¼ f1fL ð13Þ

The results of Eqs 12 and 13 are plotted in Fig 4(a) and 4(b), respectively, assuming fractions
passed, fX, to be distributed exponential with mean 0.1. GOF results are shown in Table 1. The
Weibull distribution was accepted consistently, in contrast with the lognormal and Pareto I.
Such multiplicative models could apply as well to e.g. probabilities of mutations that would col-
lectively result in uncontrolled cell proliferation or malignant transformation.

Demonstration versus simulated metabolic network models
Following the arrival of a Weibull distribution of concentration at the target tissue, smaller-
scale pharmacodynamic interactions may occur by parallel and network pathways, which may
collectively result in an aggregate process that proceeds generally in proportion to prevailing
concentration, i.e. by overall autocorrelated first-order kinetics. In fact, metabolic, protein, and
regulatory networks have been shown to have largely “scale-free,” or power law-like degree dis-
tributions (of the number of connections per vertex) [10,37], as a result of largely (but not
wholly) preferential attachment of new network nodes to the more highly connected existing
nodes [38]. Moreover, the preferential attachment model can be viewed as one of autocorre-
lated first-order kinetic growth, as shown in S1 File.

Basic simulations of severity distributions resulting from chemical attack on a biological net-
work were conducted as follows. First, undirected networks constructed with 80% preferential/
20% uniform attachment of new vertices, starting with 10 initial vertices, each having 0.1 proba-
bility of connection initially, were assumed as generalized test models of the target network. Be-
cause the architecture of individual biological networks has been found highly dynamic and
variable [39], average vertex degree among the simulated networks (trials) was assumed to vary
according to a normal (μ = 25, σ = 5) distribution (average degree must be defined for each simu-
lation to define a stopping point for new connections). Then the size, S, of the largest cluster of
connected vertices following attack on the network hubs by a system-specific toxicant was stud-
ied, as a measure of the remaining integrity in a network. That is, the difference in Swas measured
in fifty 1000-vertex networks after removal of five of the 10 initial (generally highest-degree) net-
work vertices, simulating strong chemical toxicity targeting hubs of the network controlling the
physiological function affected. Because each hub removed tends to be successively smaller in de-
gree, due to removal of links to previously removed hubs, the process is roughly first-order.

In Fig 5(a) and Table 1, the distribution of resulting severities, ΔS, is shown. No significant
difference from the shifted, three-parameter Weibull distribution with threshold, 162, equal to
the minimum ΔS (N = 50; α = 0.05; p = 0.31) was found. Note that distributions obtained were
characteristically noisy, like real biological data, and difficult to fit with 95% confidence to any
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distribution. However, the same networks were then restored and subjected to removal of dis-
crete Weibull (mean 5, parameters ξ = 0.70, η = 0.74)-distributed [17] numbers of the 10+ ini-
tial vertices. This variability modeled a variable concentration of toxicant reaching the target
organ. The distribution of resulting severities, shown in Fig 5(b) and Table 1, was fitted by the
Weibull distribution (N = 50; α = 0.05; p = 0.80). Biological networks are not yet well-under-
stood, and the assumptions of the simulations presented, particularly the percent preferential
attachment of new nodes, affect the log-log linearity of the resulting distribution. Therefore,
definitive comparison of the Weibull distribution with competitive distributions was not

Fig 4. Simulated (o) and fittedWeibull (––) and lognormal (—) distributions of illness severity.
Severities were simulated as (a) the results of the multiplicative model of illness severities of Eq 12, and (b)
the results of the simplified multiplicative model of illness severities of Eq 13. [Conditions: all fractions, fX,
distributed standard exponential, N = 100,000; subsequent fractions correlated by copula; MLE parameter
fits]

doi:10.1371/journal.pone.0129042.g004
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attempted. However, results suggest Weibull-like distributions of severity may result from
chemical attack on such metabolic networks.

Demonstration versus simulated outcomes of saturation kinetics
Acute toxicants (and pharmaceuticals) may not be the limiting reactant in physiological sys-
tems, in which case pseudo-first-order kinetics may not apply. Rather, acute toxicants may act
according to saturation kinetics, generally the Michaelis-Menten (Monod) rate law, in which
the rate of change in concentration is asymptotically first-order at low concentration, increasing
to a maximum, zero order rate at high concentration. Similarly, generalized saturation kinetics
may apply to the rate of change in illness severity. The Michaelis-Menten integrates as follows:

dz
dt

¼ r0z
K þ z

z
z0

� �K

ez�z0 ¼ er
0t

ð14Þ

In Eq 14, K is the positive real half-saturation constant, r' is the real maximum-rate constant, Z0
is the initial magnitude, er' is the exponentially-distributed growth/decay multiplier. Then, the
distribution of saturation-kinetic outcomes, when er't is distributed Weibull (ξ, η) and K is con-
stant, can be found by transformation of variables as:

FðzÞ ¼ 1� exp � zKez

x

� �Z� �
; 0 < z < 1

fðzÞ ¼ Z
K
z
þ 1

� �
zKez

x

� �Z

exp � zKez

x

� �Z� � ð15Þ

Table 1. Simulation GOF results.

Simulation Distribution GOF*

PB-PD model, Eq 12, fX, exponential with mean 0.1 Weibull 93/100

Lognormal 0/100

Pareto I 0/100

Simplified first-order PB-PD model, Eq 13, fX, exponential with mean
0.1

Weibull 94/100

Lognormal 0/100

Pareto I 0/100

Metabolic network model, constant toxicant dose, Fig 5(a) Weibull p = 0.31

Metabolic network model, variable toxicant dose, Fig 5(b) Shifted
Weibull

p = 0.80

Michaelis-Menten saturation kinetic outcomes, Eq 14, z0 = 50,
K = 25, E[r'] = -7.5, t = 1~10, r' ~ correlated standard exponential

Weibull 97/100

Lognormal 0/100

Pareto I visually log-log
non-linear

Michaelis-Menten saturation kinetic outcomes, Eq 14, z0 = 50,
K = 25, E[r'] = -7.5, t = 1~10, r' ~ identical standard exponential

Weibull 30/100

Lognormal 0/100

Pareto I visually log-log
non-linear

*χ2 test results,

α > 0.05: number of simulations passing/total simulations, or p-value.

doi:10.1371/journal.pone.0129042.t001
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Importantly, a deterministic saturation process may be approximated by an autocorrelated
first-order process for which the rate constant decreases as reactant increases. In fact, the rela-
tionship is seen to be exact if the first-order rate constant decreases smoothly with concentra-
tion as r = r'/(K + C). This curvilinear relationship, representing perfect dependence though
not perfect autocorrelation, suggests that the Weibull distribution may adequately model com-
mon saturation kinetic rate laws. Moreover, in toxicological applications, particularly to chron-
ic toxicants, little or no saturation is expected. Therefore, while the three-parameter univariate
distribution of Eq 15 may be useful in pharmaceutical applications, the two-parameter Weibull
may be applicable even after the onset of saturation, potentially valuable to minimize data re-
quirements in many applications.

To examine the empirical applicability of the Weibull and lognormal distributions to the
outcomes of Michaelis-Menten kinetics when er' varies across a population, fit to the Michae-
lis-Menten rate law was tested, for z0 = 50, K = 25, E[r'] = -7.5, and t = 1~10. This case was se-
lected such that the first five kinetic steps are more nearly zero order, and the final five are
more nearly first-order. Simulation was by the differential form of Eq 14, and random r' was

Fig 5. Simulated illness severities,ΔS, defined as reduction in the size of the largest cluster
remaining after removal of some of the most connected vertices of 50 1000-vertex scale-free
networks, and fittedWeibull distributions. Severities were simulated as (a) ΔS—162 after removal of 5
vertices, and (b) ΔS after removal of discrete Weibull-distributed numbers of vertices averaging 5.
[Conditions: average network connectivity distributed normal (25, 5); MLE parameter fits]

doi:10.1371/journal.pone.0129042.g005
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generated as described for Fig 1. That is, dzj was computed as r'zi/(K + zi) in each i-th of 10
time steps, and used to computed zi+1 = zi + dzi. As shown in Fig 6 and Table 1, the Weibull
distribution fit the case of correlated r' in 97 of 100 simulations (χ2 α = 0.05), whereas the log-
normal and Pareto I fit in none. Even in the extreme case of perfect (linear) correlation among
time increments, i.e. r' constant with respect to time, the Weibull distribution fit 30 of 100 sim-
ulated outcome sizes, whereas the lognormal again fit none. Therefore, the Weibull form ap-
pears initially to be robust to the onset of saturated kinetics.

Fig 6. Simulated (o) and fittedWeibull (––) and lognormal (—) distributions of the outcomes of
Michaelis-Menten saturation kinetics, with maximum-rate constant simulated as (a) partially
correlated standard exponential RVs, and (b) perfectly correlated (identical) standard exponential
RVs, both simulated as described for Fig 1. [Conditions: N = 1000, MLE parameter estimates]

doi:10.1371/journal.pone.0129042.g006
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Demonstration versus available empirical data: noncarcinogen
The generality of the Weibull form has been well-demonstrated versus empirical data on a
broad range of natural and anthropogenic complex system outcomes previously, and the distri-
butions of Fig 1 may cover the range of shapes of many such reported heavy-tailed distribu-
tions. However, the Weibull distribution has not been studied with respect to illness severities.

To demonstrate the Weibull distribution empirically for illness severity, data of Kjellström
and co-workers on children of mothers having varying concentrations of hair mercury during
pregnancy [40,41] were obtained. To examine possible neurotoxicity of mercury on the chil-
dren, results of five scholastic and psychological tests, abbreviated as TOLD_SL, WISC_RP,
WISC_RF, MCC_PP and MCC_MOT (data shown in S1 Table), were related to maternal hair
mercury. Four matched dose groups were identified by the authors: 6–87, 3–5.99, 0.1–2.99, and
0.1–2.99 mg/kg hair mercury. Groups were used by the authors to develop a relationship be-
tween mercury dose and population health response, and were used here to evaluate the form
of the distributions of illness severity at each approximately-constant dose. The last two, con-
sidered control groups by the authors, are not considered here. Illness severity is defined here
as the difference between the maximum score of a group and each individual score in that
group, plus unity. The fits of the illness severity distributions to the Weibull and lognormal
forms, for the five test scores and two dose groups, are shown in Table 2 and Fig 7.

The severity distributions are visually similar to the simulated distribution of Fig 1(a), and
again the Weibull distribution fits were superior, particularly at low severities where the log-
normal is approaching zero probability. By the KS test, no Weibull distribution fits were re-
jected, whereas 10 of 15 lognormal fits were rejected. By the more rigorous chi squared test, the
lognormal was rejected in all cases, whereas the Weibull distribution was accepted (p = 0.05) in
8 of 10 cases. Of note, the Weibull distribution was also strongly favored in plots of the com-
bined control groups, as well (data not shown). The Pareto I distribution was not fitted due to
the obvious visual log-log nonlinearity of all plots.

Table 2. Fits of the Data of Kjellström et al. on Test Scores of Children with Prenatal Mercury Exposure to theWeibull and Lognormal Distributions

6–87 mg/kg hair Hg* 3–5.99 mg/kg hair Hg*

Test p Weibull Lognormal Weibull Lognormal

TOLD_SL X2 0.2647 1.0597e-7 0.6491 1.4248e-6

KS 0.4084 0.0011 0.4373 0.0054

η 3.9328 - 2.3261 -

WISC_RP X2 0.0122 6.2639e-6 5.2516e-4 0.0011

KS 0.2115 0.0013 0.2454 0.0269

η 2.0188 - 2.2945 -

WISC_RF X2 0.8913 0.0059 0.4211 3.5344e-4

KS 0.8196 0.0796 0.6584 0.0570

η 2.5488 - 2.6893 -

MCC_PP X2 0.4857 6.2089e-5 0.4199 0.0306

KS 0.6737 0.0757 0.9727 0.5275

η 1.8027 - 2.0073 -

MCC_MOT X2 0.2525 0.0210 0.1574 0.0028

KS 0.9103 0.2486 0.1166 0.0016

η 1.7677 - 1.6261 -

*The Pareto I distribution was not fitted due to visual log-log nonlinearity of all plots

doi:10.1371/journal.pone.0129042.t002
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Demonstration versus available empirical data: carcinogen
Dose response data on carcinogens do not generally reflect a numeric severity, except in terms
of time-to-tumor. That is, tumor weights, for example, are not generally recorded. Statistical
analysis of time-to-tumor data was reviewed by Krewski and Brown [42]. Perhaps most widely
applied has been the Multistage Weibull model [42], a multivariate model in which the dose-
response function is assumed to be an exponential distribution on a product of a power of
time-to-tumor and a polynomial of the dose of a toxicant. At a constant dose, this model im-
plies a Weibull distribution of time-to-tumor. However, more recently tumor growth kinetics

Fig 7. Empirical distributions (o) of test score differences (maximum group score minus individual
score plus one) in children born of mothers of varying hair mercury during pregnancy, and fitted
Weibull (−) and lognormal (—) distributions. Rows 1–5: TOLD_SL, WISC_RP, WISC_RF, MCC_PP and
MCC_MOT, respectively; columns 1–2: 6–87 and 3–5.99 mg/kg hair mercury, respectively.

doi:10.1371/journal.pone.0129042.g007
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have been proposed to be first-order, using rescaled dimensionless mass and time variables
based on principles of allometric scaling [43,44].

Assuming first-order tumor growth kinetics, time-to-tumor is related to tumor mass/severi-
ty by z� = (er)τ, in which z� is a constant unitless tumor size (e.g. mass) corresponding to posi-
tive diagnosis (e.g. neoplasm or carcinoma), τ is the time-to-positive-diagnosis, and r is the
growth rate constant. In that case, if (er) is an exponentially-distributed cause size, then the
time-transform distribution of τ can be found, by transformation of variables and recognition
of the result as the distribution of the reciprocal of a Gompertz random variate, as:

fðtÞ ¼ fyexpðf=tÞ
t2expfy½expðf=tÞ � 1�g

FðtÞ ¼ expf�y½expðf=tÞ � 1�g
ð16Þ

Assuming saturation kinetics proceeding to a fixed observable tumor size, z�, the relationship
between e-r' and t is the same as for the first-order case, as follows:

z�
z0

� �K

ez��z0 ¼ ðer0 Þt ð17Þ

Hence, by the autocorrelated first-order model, time-to-tumor is distributed by Eq 14 whether
first-order or saturation kinetics apply.

The ED01 project, in which>24,000 female BALB/c StCr/fC3Hf/Nctr mice were exposed to
the carcinogen 2-acetylaminofluoren [45], has provided perhaps the most complete dataset for
analysis of time-to-tumor models. In the constituent studies of the ED01 project found useful
for assessing the applicability of Eq 16, feed concentration was held constant at selected doses,
dosing was continuous, and mice were sacrificed and necropsied for bladder neoplasm, liver
neoplasms, and bladder carcinomas at nine selected time intervals. Intervals were chosen such
that moribund and dead mice could be similarly necropsied, and counts included with the sac-
rificed animals at the times nearest their death or removal. In this way, the proportion of all an-
imals having z> z� could be computed. Therefore, these data (reproduced in S2 Table) were
fitted to the Weibull and time-transform distributions. Data for all dose levels were plotted as
such, and based on these plots it was considered that only doses of 75, 100, and 150 ppm pro-
duced sufficient positive counts to reasonably assess the fit of the distributions.

Fits of the datasets are presented in Table 3 and Fig 8. As shown, the Weibull and time-
transform distributions both passed (p = 0.05) in only three of seven cases. However, the fit of
the time-transform distribution was visually quite good with the exception of the 33-month
data points. This increased neoplasia and carcinoma at 33 months relative to those predicted
by first-order kinetics may be explained by the advanced age of these mice, which were ca. 65%
past their life expectancy [46], and the resulting compromised immune response. Thus the
time-transform distribution of time-to-tumor, corresponding to a Weibull distribution of ill-
ness severity, was demonstrated within reason, given transformed biological data collected for
a different purpose.

Discussion and Conclusions
As can be seen in the simulations presented, the Weibull distribution can plot essentially log-
log linear over wide range, suggesting that it may sometimes be mistaken for a power law. In
fact, linearity is increased further when η varies, either within systems or in datasets pooled
across systems, as shown in S2 File. Of note, the generality of first order mechanisms may also
explain the fact that similar, apparently log-log linear distributions are generally obtained
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regardless of the units of analysis of outcome size (e.g., mass of gas released explosively, dollars
of damage, or mortality) [47], and are further generally obtained for all subsets of the data ana-
lyzed, (e.g. refinery explosions, explosions occurring from 2003 through 2012, or explosions in
the mid-western US) [48].

The emergence of the Weibull and Fréchet distributions is related to multiplication-stability
[13], differing in that convergence increases with the autocorrelation and entropy (e.g., expo-
nential character) of elements rather than with their independence and multiplicity. The simu-
lation results of Fig 2 suggest that as the number of first-order compounding increments
becomes large, the form of the outcome size deviates from the Weibull, unless autocorrelation
among increments is perfect. However, in some physical systems an emergent distribution may
be an attracting form, increasing in convergence with increasing increment numbers, because
as outcome magnitude evolves multiplicatively toward more extreme values, these values may
become either much larger or much smaller than subsequent control mechanisms can contain,
leading to increased correlation among cause magnitudes that increasingly represent failures of
essentially naught or 100%. For example, organs may easily assimilate a low-level stressor, or
fail completely at a high level.

At first the term emergence may seem overly general for a property specific to first-order
processes. However, first-order systems are apparently quite general in complex systems; con-
sider that at least the two well-known mechanistic models of complex systems which produce
outcome sizes having scaling distributions, self-organized criticality [49] and preferential
growth [10], can be viewed as particular cases of autocorrelated first-order kinetics, as ex-
plained in S1 File. Also, the generality of the result may be further enhanced in predominantly
first-order systems because sums of perfectly correlated RVs of the same distribution, up to a
change in scale, have the parent distribution. That is, we may expect that sums of correlated
Weibull-distributed products, perhaps representing parallel first-order pathways, also tend to-
wards the Weibull distribution.

Taken together, results suggest that the occurrence of the Weibull distribution in autocorre-
lated multiplicative systems parallels the occurrence of the Gaussian distribution in indepen-
dent linear (additive) systems. In fact, Johnson et al. [50] note:

“The close agreement that Weibull demonstrated between his observed data and those pre-
dicted with the fitted models was quite impressive. . . . The Weibull distribution is undeni-
ably the distribution that has received maximum attention during the past 23 years [since
1970] . . . This is clearly evident from the large number of references (most of which have
been published since 1970) at the end of this chapter [518 cited].”

Table 3. Fits of the ED01 Data on Sacrificed, Moribund, and DeadMice to theWeibull and Time-Trans-
form Distributions.

Endpoint Dose (ppm in feed) p, Weibull p, time-transform

Bladder neoplasms 75 (same as bladder carcinomas)

Bladder neoplasms 100 (same as bladder carcinomas)

Bladder neoplasms 150 9.2972e-008 0.2469

Liver neoplasms 75 0.0055 0.3494

Liver neoplasms 100 0.1502 7.7304e-004

Liver neoplasms 150 0.0021 3.8176e-008

Bladder carcinomas 75 0.8366 0.2631

Bladder carcinomas 100 0.3100 7.9544e-004

Bladder carcinomas 150 3.3529e-014 0.0060

doi:10.1371/journal.pone.0129042.t003

Distributions of Autocorrelated First-Order Kinetic Outcomes: Illness

PLOS ONE | DOI:10.1371/journal.pone.0129042 June 10, 2015 25 / 30



They observed further that, in spite of its empirical ubiquity, the only physical meaning at-
tributed to the Weibull distribution had been that of a distribution of failure times in reliability
analysis, when the failure (hazard) rate takes certain forms [51]. Subsequently, LaHerrere and
Sornette [14] suggested, based on empirical analysis and examination of independent multipli-
cative systems, that:

“Multiplicative processes often constitute zeroth-order descriptions of a large variety of
physical systems, . . .” and “We do not claim that all power law distributions have to be

Fig 8. Empirical distributions (o) of ED01 study data on bladder neoplasms, liver neoplasms, and bladder carcinomas resulting from continuous
exposure to the carcinogen 2-acetylaminofluoren, and fittedWeibull (—) and first-order time-transform (−) distributions.Columns 1–3: liver
neoplasms, bladder neoplasms, and bladder carcinomas, respectively; Rows 1–3: 75, 100, and 150 ppm, respectively. Bladder neoplasm and bladder
carcinoma data are identical at 75 and 100 ppm (all neoplasms malignant), therefore not shown again.

doi:10.1371/journal.pone.0129042.g008
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replaced but that observable curvatures in log-log plots that are often present may signal
that another statistical representation, such as a [Weibull distribution], is better suited.”

Based on the derivation and demonstration presented in this paper, the following conclu-
sions can be drawn:

1. The Weibull distribution is derived as the asymptotic distribution of first-order growth/
decay kinetic processes. Convergence to the Weibull distribution results from the existence
of finite positive mean elementary cause magnitudes, and increases with autocorrelation
among increments of a first-order kinetic process. Hence, the distribution is said to be
emergent;

2. The generality, dominance, and initial basis of the Weibull distribution shown previously
for many natural and anthropogenic complex system outcomes may be explained by the
ubiquity of autocorrelated generalized first-order processes in physical systems and result-
ing Weibull emergence, a property which may engender multiplication stability in some
systems;

3. In autocorrelated first-order systems the Weibull distribution, which may appear log-log
linear in shape, is suggested to dominate the Pareto I power law distribution. Also in such
systems, the emergent result is suggested to dominate multiplicity- and independence-driv-
en convergence of products of identically-distributed RVs to the lognormal distribution (by
the Central Limit Theorem);

4. The Weibull exponent parameter represents the number and rates of the first-order com-
pounding increments, the autocorrelation of compounding increments, and the degree to
which increments are exponential in distribution. Overall, the lumped exponential parame-
ter (like power law exponents) may be viewed as a logarithmic-scale parameter; and

5. The Weibull distribution represents a general distribution of illness severity, and is shown
to be robust to the onset of saturation kinetics in autocorrelated first-order systems.
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