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Abstract 

Background:  This study aimed to develop and externally validate contrast-enhanced (CE) T1-weighted MRI-based 
radiomics for the identification of epidermal growth factor receptor (EGFR) mutation, exon-19 deletion and exon-21 
L858R mutation from MR imaging of spinal bone metastasis from primary lung adenocarcinoma.

Methods:  A total of 159 patients from our hospital between January 2017 and September 2021 formed a primary 
set, and 24 patients from another center between January 2017 and October 2021 formed an independent validation 
set. Radiomics features were extracted from the CET1 MRI using the Pyradiomics method. The least absolute shrink-
age and selection operator (LASSO) regression was applied for selecting the most predictive features. Radiomics sig-
natures (RSs) were developed based on the primary training set to predict EGFR mutations and differentiate between 
exon-19 deletion and exon-21 L858R. The RSs were validated on the internal and external validation sets using the 
Receiver Operating Characteristic (ROC) curve analysis.

Results:  Eight, three, and five most predictive features were selected to build RS-EGFR, RS-19, and RS-21 for predict-
ing EGFR mutation, exon-19 deletion and exon-21 L858R, respectively. The RSs generated favorable prediction effica-
cies for the primary (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.851 vs. 0.816 vs. 0.814) and external validation (AUCs, RS-EGFR 
vs. RS-19 vs. RS-21, 0.807 vs. 0.742 vs. 0.792) sets.

Conclusions:  Radiomics features from the CE MRI could be used to detect the EGFR mutation, increasing the cer-
tainty of identifying exon-19 deletion and exon-21 L858R mutations based on spinal metastasis MR imaging.
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Introduction
Lung cancer is the most frequently diagnosed cancer 
worldwide and continues to increase in both inci-
dence and mortality [1–3]. Non-small-cell lung cancer 

(NSCLC) represents approximately 85% of all lung 
cancer cases, of which lung adenocarcinoma (LUAD) 
is the most common histologic subtype [4]. Identifica-
tion of epidermal growth factor receptor (EGFR) muta-
tions has important therapeutic implications in LUAD 
[5] because tyrosine kinase inhibitors (TKIs) have been 
effective for LUAD with EGFR mutations [6]. Patients 
with EGFR mutations are more sensitive to EGFR-TKIs 
than those with EGFR wild-type [7]. EGFR mutations 
mostly occur in exons 18, 19, 20, and 21, among which 

Open Access

†Ying Fan, Yue Dong and Xinyan Sun contributed equally to this work.

*Correspondence:  xrjiang@cmu.edu.cn

1 School of Intelligent Medicine, China Medical University, Shenyang, Liaoning 
110122, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-022-09985-4&domain=pdf


Page 2 of 9Fan et al. BMC Cancer          (2022) 22:889 

19 deletions and 21 L858R were the most common 
subtypes [8, 9] and accounted for approximately 90% 
of EGFR mutation cases [10]. Patients who carry the 
EGFR mutation in exon 19 or 21 often have a higher 
radiographic response rate to EGFR-TKIs [11], and 
higher response rate to afatinib, erlotinib, and gefitinib 
[11], resulting in longer survival time [12, 13]. There-
fore, early detection of EGFR mutations and subtypes 
is of great significance in therapeutic decisions.

Bone metastasis often occurs in LUAD, and the preva-
lence rate is approximately 30–40% [14]. In clinical prac-
tice, if tissue biopsies of primary LUAD are impossible to 
perform, a spinal metastatic lesion can be an important 
alternative for assessing EGFR mutation status [15]. How-
ever, biopsy of spinal metastases may damage the nerve fib-
ers in the spinal cord and increases the risk of metastases 
[16, 17]. Magnetic resonance imaging (MRI) is a noninva-
sive method that allows direct visualization of bone mar-
row abnormalities [18]. Contrast-enhanced (CE) MRI can 
clearly display enhanced regions within the tumor, distin-
guishing necrosis from solid tumors [19]. A previous study 
showed that CE MRI is sensitive for the diagnosis of small 
lesions of bone metastases [20]. Although MRI is a power-
ful diagnostic technique for NSCLC [21], a biomarker has 
not been created to detect the EGFR mutation in the spinal 
metastasis by visual examination of the MRI image.

Radiomics refers to the quantitative analysis of medical 
imaging, with the capability of obtaining valuable informa-
tion from imaging data that can be applied within clinical 
decision support systems for developing diagnostic and 
predictive models [22, 23]. Many radiomic approaches 
have been used to detect EGFR mutations in NSCLC. 
However, the majority of previous studies have focused on 
EGFR mutations in primary lung cancer [24–28]. Recent 
efforts have evaluated the associations between radiom-
ics features derived from metastatic lesions in the brain 
and EGFR mutation status [29–32]. Recent reports have 
revealed that MRI features of bone metastasis are also 
related to EGFR mutation status [33, 34]. However, these 
studies only assessed non-CE MR data based on limited 
sample sizes and lack of external samples to verify their 
findings, which is inherently limiting. To the best of our 
knowledge, the relationship between CE MRI of bone 
metastasis and EGFR mutation status has not yet been 
clarified. Therefore, this study aimed to explore the value 
of CE MRI-based radiomics in an attempt to identify 
EGFR mutations and subtypes based on spinal metastasis.

Methods
Patients
This retrospective study was approved by the Medi-
cal Ethics Committee of Liaoning Cancer Hospital and 
Institute, and the requirement for informed consent was 

waived. A primary set of 159 patients was enrolled from 
Liaoning Cancer Hospital and Institute between Jan. 
2017 and Sep.2021. An external set was established with 
24 patients from Shengjing Hospital between Jan. 2017 
and Sep.2021. All patients were pathologically diagnosed 
with spinal metastases from primary lung adenocarci-
noma. The inclusion criteria were as follows: (i) age > 18; 
(ii) CET1 MRI scans before surgery; and (iii) complete 
clinical data. The exclusion criteria were as follows: (i) 
other malignant tumor diseases; (ii) radiochemotherapy 
or treatment with phosphate-containing drugs; and (iii) 
vertebral compressed fractures. The primary set was 
divided into a training set and an internal validation set 
at a 2:1 ratio by stratified sampling. The external set was 
used for independent validation. Clinical data for patients 
including age, sex, smoking status, performance status, 
carcinoembryonic antigen (CEA), cytokeratin (CYFRA), 
and neuron-specific enolase (NSE) were collected from 
the hospital’s medical system. Figure 1 shows the patient 
recruitment process.

MRI acquisition and metastasis delineation
MRI scans in primary and external cohorts were per-
formed using the 3.0 T scanner (Siemens Magnetom Trio, 
Erlangen, Germany). The contrast-enhanced T1-weighted 
MRI parameters were as follows: echo time (TE) = 9.0 ms, 
repetition time (TR) = 550 ms, slice thickness = 4 mm, scan 
interval = 4.4 mm, field of view = 640 × 640 mm and matrix 
size = 256 × 256. The contrast agent (Gd-DTPA-MBA, 
Omniscan, GE Healthcare) was injected intravenously at 
a dose of 0.2 mmol/kg. Subsequently, 20 mL of saline was 
flushed at a rate of 2.0 mL/s.

Spinal metastases were manually segmented by a radi-
ologist (Xinyan Sun) with three years of experience to 
generate regions of interest (ROIs) along the border of 
the metastatic lesions in the CET1 MR image. The seg-
mentations were crosschecked by a senior radiologist 
(Yue Dong) with 17 years of experience. The delineated 
ROIs were stored in a NII format.

Feature extraction
The delineated ROIs on the MRI slices were used to 
extract radiomics features using the pyradiomics pack-
age in Python version 3.6. A set of 1967 features were 
extracted, which consisted of first-order statistical, 
shape-based and textural feature families. Various fil-
ters including wavelet, square, squareroot, gradient, 
exponential, logarithmic, local binary pattern, and 
Laplacian of Gaussian were used to transform the origi-
nal MR images. Then, first-order statistical and textural 
features were extracted from the transformed images 
to obtain the filtered features. Detailed protocols can 
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be found in a previous study [35] and the pyradiomics 
document, which is available at https://​pyrad​iomics.​
readt​hedocs.​io/​en/​latest/.

Feature selection and radiomics model construction
To estimate stability and reproducibility of all 
extracted features, intraclass correlation coefficient 
(ICC) analysis was performed to access interobserver 
agreements of the features [36]. Thirty patients were 
randomly invited to perform ICC analysis, 15 with 
EGFR wild-type and 15 with EGFR mutation. The cut-
off value was set as 0.85, and features with ICC > 0.85 
were retained. Subsequently, these candidate features 
were further evaluated using the Mann–Whitey U test. 
Features with P-value  < 0.05 were retained, then fur-
ther selected by least absolute shrinkage and selection 
operator (LASSO) regression. The optimal lambda 
was selected with 5-fold cross-validation. By integrat-
ing the selected imaging features with the correspond-
ing non-zero LASSO coefficient, radiomics signatures 
(RSs) were developed to predict EGFR mutations and 
subtypes (RS-EGFR, RS-19, and RS-21) by logistic 
regression using the “glmnet” package in R version 3.6. 

All models were constructed on the primary training 
set and tested on both the internal and external valida-
tion sets.

Statistical analysis
All statistical analyses were performed using R and Med-
Calc 20.0.14 (MedCalc Inc.). A two-sided P-value < 0.05 
was considered significant. Statistical differences in dis-
tributions between patients and variables were evaluated 
using the t-test, Mann–Whitney U test, and chi-square 
test, as appropriate. The Youden index [37] was used to 
determine the optimal cutoff values in the ROC analysis. 
The area under the ROC curve (AUC), accuracy, speci-
ficity (true negative rate), and sensitivity (true positive 
rate) were calculated to assess the prediction capabili-
ties. Figure 2 shows the workflow of this study.

Results
Patients’ characteristics
The clinical characteristics of the patients are summarized 
in Table 1. We included 62 patients (33.9%) with wild-type 
EGFR and 121 patients (66.1%) with EGFR mutations. 

Fig. 1  Illustration of the patients’ recruitment in this study

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/


Page 4 of 9Fan et al. BMC Cancer          (2022) 22:889 

Fig. 2  Workflow of this study

Table 1  Clinical characteristics of the patients in the primary and external validation sets

SD Standard deviation, PS Performance status, CEA Carcinoembryonic antigen, CYFRA Cytokeratin, NSE Neuron-specific enolase

Primary training
(n = 105)

Internal validation
(n = 54)

External validation
(n = 24)

Characteristic EGFR 
mutant
(n = 69)

EGFR 
wild-type
(n = 36)

p EGFR mutant
(n = 35)

EGFR 
wild-type
(n = 19)

p EGFR mutant
(n = 17)

EGFR 
wild-type
(n = 7)

p

Age (Mean ± SD) 58.71 ± 9.34 57.14 ± 11.28 0.448 58.14 ± 12.11 59.21 ± 8.95 0.738 59.06 ± 7.78 60.14 ± 5.61 0.742

Sex 0.080 0.799 0.202

  Male 26 (37.7%) 20 (55.6%) 19 (54.3%) 11 (57.9%) 5 (29.4%) 4 (57.1%)

  Female 43 (62.3%) 16 (44.4) 16 (45.7%) 8 (42.1%) 12 (70.6%) 3 (42.9%)

Smoking status 0.063 0.532 0.344

  Yes 20 (29.0%) 17 (47.25) 10 (28.6%) 7 (36.8%) 4 (23.5%) 3 (42.9%)

  No 49 (71.0%) 19 (52.8%) 25 (71.4%) 12 (63.2%) 13 (76.5%) 4 (57.1%)

PS Score 0.553 0.645 0.551

  0 8 (11.6%) 2 (5.6%) 3 (8.5%) 1 (5.3%) 3 (17.6%) 3 (42.9%)

  1 48 (69.6%) 29 (80.6%) 22 (62.9%) 15 (78.9%) 11 (64.7%) 3 (42.9%)

  2 10 (14.5%) 3 (8.3%) 8 (22.9%) 2 (10.5%) 2 (11.8%) 1 (14.2%)

  3 3 (4.3%) 2 (5.6%) 2 (5.7%) 1 (5.3%) 1 (5.9%) 0 (0.0%)

CEA (Mean ± SD) 127.01 ± 225.86 118.40 ± 184.17 0.364 84.4 ± 178.92 107.57 ± 276.57 0.738 102 ± 132.94 81.22 ± 124.14 0.187

CYFRA
(Mean ± SD)

8.66 ± 13.51 10.51 ± 10.12 0.473 9.8 ± 13.09 12.19 ± 10.34 0.140 14.18 ± 19.25 6.61 ± 3.19 0.852

NSE (Mean ± SD) 21.01 ± 14.59 21.47 ± 11.03 0.787 21.44 ± 16.73 15.22 ± 6.71 0.258 28.11 ± 28.34 18.15 ± 5.99 0.710
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Among the EGFR mutant patients, 48 patients (39.7%) had 
EGFR mutations in exon 19, 52 patients (43.0%) had EGFR 
mutations in exon 21, and 21 patients (17.3%) had EGFR 
mutations in exon 18/20. There were no significant differ-
ences (P > 0.05) in terms of age, sex, smoking status, PS, 
CEA, CYFRA, and NSE levels between the EGFR wild-type 
and EGFR-mutant groups in the primary and external sets.

Radiomics feature selection
To predict EGFR mutations, we selected eight features as 
the most important predictors. All features belonged to 
the textural feature family and showed good prediction 
performance in terms of AUCs. The features showed 
statistically significant differences (P < 0.05) in predict-
ing EGFR mutations. To predict exon-19 deletion and 
exon-21 L858R mutations, three and five most important 
features were selected, respectively. All features gener-
ated an acceptable predictive performance, with AUCs 
ranging from 0.621 to 0.723. Table 2 lists the prediction 
performance of the selected features. Figure 3 shows the 
correlations among the selected features.

Radiomics signature construction and validation
We used the most important selected features to incorpo-
rate their nonzero coefficients to build radiomic signatures 
(RSs). The developed RS-EGFR aims to distinguishing 

EGFR mutant patients from EGFR wild-type patients. 
The developed RS-EGFR aims to distinguish patients with 
EGFR mutations from patients with wild-type EGFR. The 
developed RS-19 aims to distinguish patients with EGFR 
mutations in exon 19 from those with EGFR mutations 
in exon 18/20/21. RS-21 aims to distinguish patients with 
EGFR mutations in exon 21 from those with EGFR muta-
tions in exons 18/19/20. Figure  4 indicates that our RSs 
can effectively differentiate between patients with wild-
type EGFR, EGFR mutations, exon-19 deletion and exon-
21 L858R mutation.

Radiomics model performance
Table  3 presents the prediction performance of the RS-
EGFR, RS-19, and RS-21 in the primary and external valida-
tion sets. ROC curves of the RSs were shown in Fig. 5. For 
the prediction of EGFR mutation, the RS-EGFR generated 
AUCs of 0.851 and 0.807 in the primary and external valida-
tion sets, respectively. To predict the exon-19 deletion and 
exon-21 L858R mutations, the RS-19 and RS-21 yielded 
predictive AUCs of 0.816 and 0.742 and 0.821 and 0.764 in 
the primary and external validation sets, respectively.

Discussion
Noninvasive evaluation of EGFR mutation status and 
subtypes based on bone metastasis is of great clinical 
significance, yet it has not been well studied. Previous 

Table 2  Prediction performance of the most important features for predicting the EGFR mutation, exon-19 deletion and exon-21 
L858R

Feature Mean ± SD AUC​ P

EGFR mutant EGFR
wild-type

Exon-19 deletion Exon-21
L858R

exponential_glszm_SmallArea
Emphasis (F1)

−0.20 ± 0.87 0.38 ± 1.13 – – 0.652 0.010

exponential_ngtdm_Strength (F2) −0.19 ± 0.55 0.36 ± 1.47 – – 0.629 0.029

log-sigma-3-0-mm-3D_glcm_InverseVariance (F3) 0.17 ± 1.00 −0.32 ± 0.92 – – 0.649 0.009

log-sigma-5-0-mm-3D_glrlm_Long
RunHighGrayLevelEmphasis (F4)

−0.15 ± 0.92 0.29 ± 1.1 – – 0.640 0.019

wavelet-HHL_glcm_ ClusterShade (F5) 0.11 ± 1.09 −0.2 ± 0.77 – – 0.632 0.017

wavelet-HHL_glrlm_GrayLevel NonUniformityNormalized (F6) 0.10 ± 1.15 −0.19 ± 0.59 – – 0.633 0.032

wavelet-HHL_glrlm_Long RunHighGrayLevelEmphasis (F7) −0.18 ± 0.64 0.34 ± 1.41 – – 0.624 0.048

wavelet-LLL_glszm_Small AreaLowGrayLevelEmphasis (F8) −0.03 ± 0.68 0.07 ± 1.44 – – 0.658 0.011

original_shape_Elongation (F9) – – 0.42 ± 0.85 – 0.723 < 0.001

square_glrlm_LongRunHighGray
LevelEmphasis (F10)

– – 0.45 ± 1.40 – 0.675 0.011

wavelet_LLL_firstorder_Skewness (F11) – – 0.38 ± 1.27 – 0.647 0.056

lbp-3D-k_glszm_ SmallAreaLowGrayLevelEmphasis (F12) – – – 0.23 ± 0.89 0.628 0.067

log-sigma-3-0-mm-3D_glszm_ SmallAreaLowGrayLevelEmphasis (F13) – – – 0.29 ± 1.34 0.673 0.008

log-sigma-5-0-mm-3D_glcm_Imc2 (F14) – – – 0.33 ± 0.65 0.645 0.031

square_glszm_SizeZoneNonUniformityNormalized (F15) – – – 0.29 ± 0.77 0.621 0.078

wavelet-LHL_firstorder_Median (F16) – – – 0.39 ± 0.66 0.639 0.038
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Fig. 3  Pearson correlation coefficient matrix of the selected features (F1-F16) for the prediction of RS-EGFR (a), RS-19 (b) and RS-21 (c)

Table 3  Prediction performance of RS-EGFR, RS-19 and RS-21

AUC​ Area under the receiver operating characteristic curve, ACC​ Accuracy, SEN Sensitivity, SPE Specificity, SD standard deviation

RS Primary training Internal validation External validation

AUC (95%) ACC​ SEN SPE AUC (95%) ACC​ SEN SPE AUC (95%) ACC​ SEN SPE

RS-EGFR 0.851 (0.774-0.921) 0.800 0.722 0.870 0.780 (0.645-0.916) 0.741 0.771 0.737 0.807 (0.595-0.938) 0.625 0.765 0.857

RS-19 0.816 (0.716-0.917) 0.739 0.964 0.561 0.789 (0.636-0.942) 0.600 0.786 0.714 0.742 (0.478-0.919) 0.623 0.833 0.636

RS-21 0.814 (0.714-0.914) 0.739 0.655 0.875 0.770 (0.609-0.931) 0.657 0.800 0.700 0.792 (0.530-0.946) 0.529 0.750 0.889

Fig. 4  Developed RSs for the prediction of EGFR mutation (a), exon-19 deletion (b) and exon-21 L858R (c) mutation



Page 7 of 9Fan et al. BMC Cancer          (2022) 22:889 	

studies related to our study mainly focused on primary 
lesions of lung adenocarcinoma and highlighted that 
radiomics can be helpful in predicting EGFR mutations 
and subtypes mainly from medical imaging [10, 21, 26, 
38]. Recently, CE MRI has been shown to provide infor-
mation about the vascularity of the tissue and its sur-
rounding environment [39]. A previous report indicated 
that CE MRI can reflect an increase in blood vessels of 
the tumor in the paraspinal muscles and spinal canal, 
thereby assessing the spread of the tumor outside the 
skeletal system [40]. To the best of our knowledge, this 
study is the first attempt to investigate CE MRI-based 
radiomics for the assessment of EGFR mutation status in 
bone metastases.

Eight features were identified as the most predictive 
for EGFR mutations, all of which were textural features. 
This may suggest that the intratumoral heterogeneity 
within the spinal metastasis was related to the EGFR 
mutation status, considering that textural features can 
reflect intratumoral non-uniformity [41]. This was partly 
consistent with Lindberg’s study, which demonstrated 
the relationship between EGFR mutations and hetero-
geneity and aggressiveness of lung cancer [42]. To pre-
dict exon-19 deletion and exon-21 L858R, we identified 
three and five most important features from the CET1 
MRI, respectively. Notably, most of the selected features 
(four of five) for predicting exon-21 L858R belong to the 
textural feature class. This may indicate that heteroge-
neity distributions within the metastasis were different 
between tumor carrying exon-19 deletion and exon-21 
L858R mutations. The selected original_shape_elonga-
tion feature describes the ROI shape. A higher value of 
this feature indicates a rounder tumor shape. Our find-
ings suggest that tumors with exon-19 deletion tend to 

be rounder compared with that carrying exon-21 L858R 
or EGFR wild-type.

Before this study, Jiang et  al. reported that non-
enhanced MRI-based radiomics can be used to assess the 
EGFR mutation status in bone metastases but failed to 
analyze the specific mutation sites [33]. Previous investi-
gations on the assessment of exon-19 deletion and exon-
21 L858R are limited. Li et al. [10] generated an AUC of 
0.79 for detecting exon-19 deletion and exon-21 L858R 
using radiomics based on primary lung adenocarcinoma. 
Cao et  al. [43] yielded an AUC of 0.901 for detecting 
exon-19 deletion and exon-21 L858R based on metasta-
sis from the original lung adenocarcinoma. However, the 
small sample size, single-center data and lack of external 
validation all results in low clinical values of their find-
ings. This study first predicted the EGFR mutation and 
then further assessed whether the mutation was located 
in exon 19 or 21. Our results revealed that features from 
CE MRI have good potential to detect EGFR mutations 
and subtypes.

Furthermore, we sought to explore the association 
between clinical factors and EGFR mutation status, and 
found that no clinical factor was associated with the 
EGFR mutation status and mutation subtypes in both 
primary and external cohorts. This was inconsistent with 
previous reports that indicated that age and smoking 
were highly correlated with EGFR mutations [26, 40, 44] 
and subtypes [10]. CEA level and sex were also previously 
suggested as independent predictors of EGFR mutation 
status [25, 45]. However, there were some studies sup-
ported our findings. Ren et  al. [34], Kim et  al. [39] and 
Zhang et al. [44] also found that age, smoking, CEA level 
and sex were not correlated with the EGFR mutation sta-
tus in their datasets.

Fig. 5  ROC curves of the developed RS- EGFR, RS-19 and RS-21 in the primary training (a), internal validation (b) and external validation (c) sets
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Limitation
This study had some limitations. First, although the find-
ings were externally validated on an independent set, the 
sample size was small because of data collection challenges. 
The most important features identified on CET1 MRI will 
need to be verified on a large scale. Second, some impor-
tant MRI sequences (e.g., T1-weighted, T2-weighted, and 
T2-weighted fat-suppressed MRI) were not included. 
Lastly, this study only evaluated the EGFR mutation status 
before treatment. Assessment of resistant EGFR-T790M 
mutations in EGFR gene is also important in clinical prac-
tice to improve individual treatment management.

Conclusion
In conclusion, this study assessed CET1 MRI-based radi-
omics for predicting EGFR mutation and subtypes based 
on the bone metastasis. The developed models per-
formed well on the external set, which may indicate good 
potential in future clinical applications.
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