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Alternative splicing contributes to the majority of protein diversity in higher eukaryotes by allowing one
gene to generate multiple distinct protein isoforms. It adds another regulation layer of gene expression.
Up to 95% of human multi-exon genes undergo alternative splicing to encode proteins with different
functions. Moreover, around 15% of human hereditary diseases and cancers are associated with alterna-
tive splicing. Regulation of alternative splicing is attributed to a set of delicate machineries interacting
with each other in aid of important biological processes such as cell development and differentiation.
Given the importance of alternative splicing events, their accurate mapping and quantification are para-
mount for downstream analysis, especially for associating disease with alternative splicing. However,
deriving accurate isoform expression from high-throughput RNA-seq data remains a challenging task.
In this mini-review, we aim to illustrate I) mechanisms and regulation of alternative splicing, II) alterna-
tive splicing associated human disease, III) computational tools for the quantification of isoforms and
alternative splicing from RNA-seq.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Upon the completion of the Human Genome Project in 2003, the
discrepancy between the number of annotated protein-coding
genes and the number of observed human polypeptides reveals
the widespread violation of the ‘‘one gene–one polypeptide”
hypothesis. It is now commonly accepted that in higher eukary-
otes, alternative splicing plays a remarkably important role in
increasing protein diversity by allowing one gene to generate dis-
tinct protein isoforms and increasing the complexity of gene
expression regulation [1]. In humans, up to 95% of multi-exon
genes undergo alternative splicing to encode proteins with differ-
ent functions in distinct cellular processes [2]. Furthermore,
around 15% of human hereditary diseases and cancers are reported
to be associated with alternative splicing [3,4]. The analyses and
studies of alternative splicing will fundamentally advance our
understanding of mRNA complexity and its regulation, provide
valuable insights to understand disease etiology, and assist the
development of therapeutic interventions for splicing-related
diseases.
2. Mechanisms and regulation of alternative splicing

Constitutive splicing is the process that mRNA is spliced identi-
cally producing the same isoforms, while alternative splicing gen-
erates different isoforms through using different sets of exons.
Typically, there are five major subtypes of alternative splicing [5]
(Fig. 1). 1) Exon skipping (also known as cassette exons) is reported
to be the most common alternative splicing event in mammalian
cells, which results in complete skipping of one or more exons
[6,7]. 2) Mutually exclusive exons are a rare subtype where two
or more splicing events are no longer independent. They are exe-
cuted or disabled in a coordinated manner [8]. 3) Alternative 50

splice sites (alternative donors): the usage of an alternative 50

donor site, which changes the 30 boundary of the upstream exon.
4) Alternative 30 splice sites (alternative acceptors): opposite to
alternative 50 splice sites, it is the usage of an alternative 30 splice
junction site causing the change of the 50 boundary of the down-
stream exon. 5) Intron retention (IR) is the process that one or
more introns remain unspliced in the mRNA. The fate of those
intron-retaining mRNA can be different [9,10]. Some of them are
degraded by the nonsense-mediated decay pathway, while others
could generate new protein isoforms [11]. Often, malfunctional
proteins could be produced from IR and lead to diseases. In addi-
tion to the five major subtypes, alternative polyadenylation sites
and alternative promoters are often discussed under this topic.
Although these two also increase the coding potential of genomes,
184
they have very different mechanisms and are not directly related to
splicing. We will not discuss them further in this mini-review.

2.1. General mechanisms of pre-mRNA splicing

Pre-mRNA splicing occurs in a large ribonucleoprotein complex
(RNP) known as spliceosome [12–14]. The spliceosome is a
dynamic complex mainly consisting of five small nuclear ribonu-
cleoproteins (snRNPs) (U1, U2, U4/U6, U5) that recognize and
assemble on each intron to ultimately remove introns from a tran-
scribed pre-mRNA (Fig. 2) [15–19]. During the assembly, U1 binds
to the 50 splice site with the assistance of the U2 auxiliary factor
protein (U2AF) forming base pairing between the U1 snRNA and
the splice site. This earliest formed complex (complex E or commit-
ment complex) then binds to U2 to form the complex A (pre
spliceosome). Formation of the complex A ensures the intron to
be spliced out and the last exon to be retained during the final step.
The complex B (precatalytic spliceosome) is formed by the com-
plex A joining U4, U5 and U6. Then a series of intricate reorganiza-
tion events occur in order to form the complex C (catalytic step 1
spliceosome). Firstly, the U1 interaction at the donor site is
replaced by the U6 snRNP, followed by U1 and U4 leaving the com-
plex B. This lastly formed complex C catalyzes two transesterifica-
tion reactions of the splicing. During the first transesterification,
the phosphate at the 50 splice site is attacked by the 20- hydroxyl
group at the branch point which results in the 50 end of the intron
being cleaved from the upstream exon, and then joining to the
branch point by a phosphodiester bond. In the second transesteri-
fication, the phosphate at the 30 splice site of the intron is attacked
by the 30- hydroxyl of the downstream exon. This step finally
releases the intron as well ligates the two exons by a phosphodi-
ester bond [6].

2.2. Alternative splicing mechanisms

Alternative splicing is regulated by the interaction between cis-
acting regulatory sequences and corresponding trans-acting regu-
latory proteins. There are two major types of cis-acting elements
that either promote (enhancers) or inhibit (silencers) splicing
activity of nearby splice sites. Splicing enhancers can be located
either in the exon (exonic splicing enhancers, ESEs) or in the intron
(intronic splicing enhancers, ISEs). They bind to splicing activator
proteins such as serine/arginine-rich family of nuclear phospho-
proteins (SR protein family) to increase the chance of an adjacent
site being spliced. Splicing silencers include exonic splicing silen-
cers harbored in the exon (ESSs) and intronic splicing silencers har-
bored in the neighboring intron (ISSs). They bind to splicing
repressor proteins such as heterogeneous nuclear ribonucleopro-



Fig. 2. Stepwise schematic presentation of general pre-mRNA splicing. Abbreviations: BP: brunch point; SS: splice site.

Fig. 1. Constitutive and five major types of alternative splicing. a: Constitutive splicing; b: exon skipping (cassette exons); c: mutually exclusive exons; d: alternative 50 splice
sites (alternative donors); e: alternative 30 splice sites (alternative acceptors); f: intron retention.
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teins (hnRNPs) to inhibit the splicing of nearby sites or stimulate
exon skipping.

Occasionally, the presence or absence of one single regulator is
adequate to alternatively splice a pre-mRNA [20–23]. But more
often, more than one cis-acting regulatory sequences have to work
together with splicing activators or repressors to enhance or inhi-
bit the spliceosome activity at the splice site to determine an alter-
native spicing pathway [10,20,24,25]. Interestingly, hnRNP
proteins do not always act as splicing repressors nor does SR pro-
tein always act as splicing activators. HnRNPs is a well-conserved
RNA-binding protein family in mammals [26]. In humans,
hnRNPA1 usually binds to ESS or ISS to repress exon inclusion by
steric actions, or binds to both sides of a cassette exon forming a
loop to skip the exon [27,28]. However, during the interaction with
Fas pre-mRNA, hnRNPA1 promotes exon 6 inclusion through inter-
rupting 50 splice donor site selection of exon 5 [29]. Another mem-
ber of the family hnRNPL also has the ability to both activate or
suppress exon 5 of CD45 gene [30]. More importantly, this charac-
teristic of splicing factors often appears to be strongly position-
dependent [31]. For example, a splicing factor would serve as a
splicing suppressor or an activator in different pre-mRNAs depend-
ing on whether it is bound to exons or introns. A well-studied
splicing factor, neuron-specific RNA-binding protein Nova-1 is
one of such splicing factors. CLIP Analysis has revealed that over
91% of Nova-dependent exon inclusion events occurred near either
alternative 50 splice sites or constitutive 30 splice sites, while 74% of
Nova-dependent exon skipping occurs near constitutive 50 splice
sites [32].

Splicing factors are imperative in regulating splicing events.
Being able to pinpoint the binding sites between RNA and splicing
factors provides us valuable information about splicing regulation.
The predominant methods for investigating RNA-protein binding
sites are based on cross-linking followed by immunoprecipitation
(CLIP) [22,33]. The CLIP method coupling with high-throughput
sequencing permits the transcriptome-wide investigation of RNAs
that interact with the protein of interest [34]. A variety of CLIP-
based methods have been developed. Among them, high-
throughput sequencing-CLIP (HITS-CLIP or CLIP-Seq) [34],
photoactivatable-ribonucleoside enhanced CLIP (PAR-CLIP) [35],
and individual CLIP (iCLIP) [36] are the three major ones. HITS-
CLIP was originally applied to identify genome-wide protein-RNA
interactions for the Nova protein family [32]. It is a well-
established and effective method, though the false negative rate
is high as a result of low cross-linking efficiency [34]. Comparing
to HITS-CLIP, PAR-CLIP has improved the efficiency due to the
incorporation of photoreactive ribonucleoside analogs. This proto-
col has effectively increased the resolution and signal-to-noise
ratio [35,37]. The potential drawback of PAR-CLIP is that the treat-
ment could be toxic [38,39], but some studies suggest otherwise
[35,37]. iCLIP has achieved an even higher resolution and efficiency
compared to the first two. However, the experimental set-up and
computational analysis are complicated.

The three CLIP-based experiments along with other variations
have extended the scope of the genome-wide map of protein-
RNA interactions. Choices of CLIP-based methods, experimental
design, and the selection of proper bioinformatic pipelines have
been reviewed in detail [38,40,41]. Such high-resolution maps of
protein-RNA interactions advance the understanding of splicing
regulation, and how protein-RNA interactions play a role in human
physiological and pathological process. In addition, the detection of
RNA-protein interaction can reveal biomarkers, more importantly
it could identify potential therapeutic targets [34].

The protein-RNA interaction is not the only player in regulating
alternative splicing. RNA structures also play a significant role [42].
They could either promote splicing or inhibit splicing. In general,
RNA structures aid splicing by bringing splicing signals close to
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each other. For example, in the adenoviruses ADML gene, a stem-
loop is formed in order to bring the 30 splice site into the proximity
of three possible branch points [43]. Another astonishing example
of promoting alternative splicing through RNA structures is
through a docking and selector site in the Drosophila melanogaster
DSCAM gene. DSCAM encodes over 38,000 distinct mature mRNA
isoforms by mutually exclusive splicing of 95 alternative exons
[44]. The majority of its diversity is generated by the exon 6 clus-
ter, which contains 48 alternative exons. A conserved selector
sequence is complementary to a portion of the docking site. This
RNA-RNA base pairing between the docking site and selector
sequence ensures that only one of the 48 alternative exons is used
to produce mature mRNA [45]. This pattern illustrates that these
competing RNA secondary structures are the key element to main-
tain and assist the formation of protein isoforms. As for RNA struc-
ture suppressing splicing, native RNA structures often sequester
important sequences required for splicing, thus repress the usage
of splice sites. In some other cases, structures close to exons or
splice sites may have negative impact on the recruitment of U1
or U2 snRNPs [46]. To conclude, these delicate machineries inte-
grate and interact with each other to regulate alternative splicing
in distinct cellular machines.
3. Alternative splicing associated human disease

Considering the important role of pre-mRNA splicing in com-
posing protein diversity and maintaining organism functionality,
it is no surprise that disruption of normal splicing patterns can
cause gene dysfunction and even disease. There are around
20,000 human protein-coding genes but almost 150,000 transcript
isoforms. Thus, on average each human gene has about seven tran-
script isoforms. Meanwhile, a recent study finds that over 30% of
tissue-dependent transcript variations are constituted by local
splicing variations [47]. Given that such high level of human gen-
ome complexity is exemplified by the flexibility of each gene with
alternative splicing, it is natural to consider such flexibility as a risk
factor. Indeed, a great number of human diseases have been
reported to be linked to defective splicing.

Mutation disrupting either trans-acting regulatory proteins or
cis-acting regulatory sequences could lead to aberrant splicing. In
general, trans-acting mutations are rarer than the other. It is very
likely due to the fact that disruptions in basal factors of the splicing
machinery are generally more lethal comparing to mutations alter-
ing splicing of a single gene in cis [48]. We will discuss some well-
characterized diseases caused by mutations in trans-acting splicing
factors as well as mutations in cis-acting regulatory sequences
leading to different types of aberrant alternative splicing.
3.1. Cerebro-Costo-Mandibular syndrome caused by disruption in the
core splicing machinery

Mutations that have impact on spliceosome components or reg-
ulatory factors of mRNA processing have been established as the
basis of some craniofacial disorders. Cerebro-Costo-Mandibular
Syndrome (CCMS) is one of rare craniofacial disorders character-
ized by the Pierre Robin sequence (severe micrognathia, glossopto-
sis, soft cleft palate, and upper airway obstruction) and posterior
rib defects. Other symptoms including intellectual disability and
microcephaly have been reported [49,50]. Although most of cases
appear to be de novo, familial examples have been reported as well
with both autosomal dominant and recessive inheritance [51].
Both Lynch et al. and Bacrot et al. identified the mutations in SNRPB
as a cause of CCMS [52,53]. As mentioned above, the spliceosome
consists of U1, U2, U4/U6, and U5 snRNPs. Each snRNP protein
includes seven cores/Sm proteins. SNRPB-encoded small nuclear
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ribonucleoprotein polypeptides B and B1 belong to the Sm factors.
Most of the SNRPB mutations are located on an alternative exon
containing a premature termination codon in regions that serve
as exonic splicing silencers. The inclusion of this exon increases
the nonsense-mediated mRNA decay activity that eventually leads
to CCMS. Other spliceosome-related craniofacial disorders have
been reported. For example, mutations in EFTUD2 lead to
mandibulofacial dysostosis, Guion-Almeida type (MFDGA) [54];
mutations in SF3B4 for Nager syndrome [55]; TXNL4A being identi-
fied as the cause of Burn-McKeown syndrome (BMKS) [56]; and
EIF4A3 in Richieri-Costa-Pereira syndrome [57]. These disorders
have been reviewed thoroughly by Lehalle et al. and Krausová
et al. [58,59].

3.2. Mutations in trans-splicing factors resulting in tumorigenesis

Alternative splicing possesses ubiquitous and flexible gene reg-
ulation in humans. Therefore, cancer cells often exploit this charac-
teristic to expand and survive. Myelodysplastic syndromes (MDS)
are a group of diverse cancers in the bone marrow caused by poorly
formed immature blood cells [60]. The splicing factor SF3B1 encod-
ing subunit 1 of the splicing factor 3b protein complex, which is a
major component of U2 snRNP, is the most frequently mutated
gene in MDS patients [61–64]. The splicing factor 3b together with
3a bind the branchpoint sequence in pre-mRNA. The stable binding
is indispensable to recruit and anchor U2 snRNP to the pre-mRNA
[65]. SF3B1 also serves as a component of the minor U12-type
spliceosome [66] and has a role in the commitment complex
[67]. SF3B1 knockdown leads to growth inhibition and deregula-
tion of numerous genes and pathways [61]. Due to the important
role of SF3B1 in spliceosome machinery, it is no surprise that
RNA-seq analysis of tumor tissues with SF3B1 mutations has
revealed global splicing defects caused by the perturbed branch
region fidelity [68–72]. Other splicing factors involving 30-splice
site recognition such as U2AF1 and SRSF2 have also been reported
to harbor somatic mutations associated with MDS [73,74]. The
detailed mechanism and pathways of aberrant splicing in cancer
progression have been reported and discussed extensively in those
referred reviews [75–79]. More importantly, the identification of
mutations in those splicing factors suggests that spliceosome
machinery could be a therapeutic target for certain cancers [61,62].

3.3. Spliceostatin A, a potent antitumor compound inhibiting splicing

As we discussed above, defects in spliceosome machinery lead
to major dysfunctions and disorders. Interestingly, the inhibition
of pre-mRNA splicing in cancer cells using Spliceostatin A (SSA)
can suppress their proliferation [80–82]. SSA is a methylated
derivative of a natural product FR901464 that inhibits pre-mRNA
splicing in vitro and in vivo by binding to SF3b, a protein subcom-
plex of U2 snRNP which is indispensable for the recognition of pre-
mRNA branchpoint. The interaction between SF3b 155-kDa sub-
unit and mRNA is disrupted by SSA, which leads to nonproductive
recruitment of U2 snRNP to 50 branchpoint. Furthermore, down-
regulation of genes that are crucial for cell division was observed,
explaining the anti-proliferative effects of SSA [82]. SSA is not only
a valuable target in cancer treatment, it can also suppress viral
replication since splicing is vital for certain class of viruses to infect
hosts [82–84].

3.4. Disease associated with changes in ratios of protein isoforms
caused by dysregulation in alternative splicing

Tauopathies describe a class of neurodegenerative disorders
characterized by neuronal and/or glial inclusions composed of
the microtubule associated protein, tau [85]. The tau protein family
187
consists of a group of six highly soluble protein isoforms produced
by alternative splicing from a single gene MAPT (microtubule asso-
ciated protein tau) [86]. The functionality of the tau protein family
is mostly in maintaining the stability of microtubules in axons
where it binds to microtubules via microtubule repeat regions.
One of these microtubule binding regions is encoded by the alter-
natively spliced exon 10. The longest tau isoform (4R isoform) has
four microtubules repeat-regions (R1, R2, R3, R4) at the C-terminal
caused by exon 10 inclusion while the shortest isoform (3R iso-
form) has three repeats (R1, R3 and R4) due to the exon 10 skipping
event. These splicing events are spatially and temporally regulated,
and literatures documented that mutations in exon 10 alter its nor-
mal ratio of inclusion and exclusion. This fraction change has been
confirmed to be the cause of frontotemporal dementia with parkin-
sonism linked to chromosome 17 [87,88]. Growing evidence also
shows that several other neuron degenerative diseases such as Alz-
heimer’s disease, Parkinson’s disease and Huntington’s disease can
be associated with microtubule dysfunction caused by imbalanced
ratio of tau isoforms [89–94].

The Wilms’ tumor gene WT1 is another example that alteration
of its isoform expression causes human disease: Frasier syndrome.
WT1 encodes a zinc finger protein that binds to DNA. Its exon 5 and
9 are alternatively spliced leading to the formation of four isoforms
[95,96]. An intronic point mutation on WT1 causes the disruption
of alternative splicing at the splice donor site of exon 9, which fur-
ther prevents the synthesis of WT1 + KTS isoform. Studies suggest
that the gonadal development may be particularly sensitive to
the imbalance of WT1 + KTS and WT1 � KTS which eventually leads
to Frasier syndrome [97].

The above examples illustrate that abnormal changes in isoform
ratios can cause human diseases. Moreover, in such cases it is
imperative to accurately estimate isoform abundance in order to
shed light on the relative contribution of each isoform to the differ-
ent physiologic states. We will discuss isoform quantification in
detail in part III.

3.5. Distinct disease severity caused by point mutations in mutually
exclusive exons

Timothy syndrome is a rare congenital disorder that primarily
affects the heart but can also affect many other tissues including
teeth, nervous systems, and immune systems. There are two docu-
mented types of Timothy syndrome: classical (type-1) and atypical
(type-2). They are both caused by de novo point mutations in CAC-
NA1C, a gene encodes an alpha-1 subunit of a voltage-dependent
calcium channel [98]. At least 19 out of 55 exons of CACNA1C are
subject to alternative splicing [99–101]. Its transmembrane seg-
ment IS6 is encoded by inclusion or exclusion of the mutually
exclusive 8 and 8a exons [102]. Point mutations on those exons
lead to a mutated channel that shows a much slower voltage-
dependent inactivation leading to a larger influx of calcium ions.
Since the mutations only occur in one of the mutually exclusive
exons, usually the ion channel encoded by the unaffected exon will
function normally. Exon 8 is expressed in the smooth muscle,
while exon 8a is expressed in the cardiac muscle [100,102]. Thus,
mutations on CACNA1C cause different level of severity in patients
with Timothy syndrome. The most fatal mutation takes places in
the cardiac exon 8a, which often leads to cardiac arrhythmia, while
mutations found in the smooth-muscle-related exon results in a
less severe outcome [98,103].

3.6. Familial dysautonomia caused by a mutation in the 50 splice site
leading to an exon skipping event

Familial dysautonomia (FD) is a rare, recessive genetic disorder
that affects the development and survival of sensory sympathetic
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and parasympathetic nerve cells in the autonomic nervous system.
The autonomic nervous system controls involuntary actions such
as digestion, breathing, and the regulation of blood pressure and
body temperature. Therefore, patients with FD show various symp-
toms including insensitivity to pain, difficulty swallowing, poor
growth, pneumonia, labile blood pressure and gastrointestinal dys-
motility. FD is the result of loss-of-function of an inhibitor of kappa
light polypeptide gene enhancer in B-cells, kinase complex-
associated protein (IKAP, also known as elongator complex protein
1, ELP1) [104]. Most FD patients have a point mutation in the 50

splice donor site of exon 20. It is a T > C transition that weakens
the intronic part of the 50 splice site and results in a skipping event
of exon 20. Translation of this mRNA produces a truncated IKAP
protein, which misses all amino acids encoded from exon 20. Thus,
the decreased level of functional IKAP protein expression causes
many FD symptoms. In addition, studies also indicate that IKAP
deficiency results in down regulation of genes involved in oligo-
dendrocyte differentiation and myelination which could be the
cause of demyelination symptoms of FD patients [48,105]. This
example not only demonstrates the complexity of mutations in
splice sites, it also suggests that such a mutation may have impact
on multiple physiological process.
3.7. Disease caused by intron retention

Intron retention (IR) has been the least described subtype of
alternative splicing until recently. Intron-retaining transcripts
were previously thought to be non-functional since they would
be degraded by nonsense-mediated decay, a surveillance pathway
that prevents such aberrant mRNA from being translated into
potentially harmful abnormal proteins [11,106–109]. However,
recent studies have confirmed that IR is not only a conserved form
of alternative splicing, but also plays an essential role in controlling
and enhancing the complexity of gene expression [9,110]. Here, we
will discuss some consequences of abnormal IR and the emergent
role they play in diverse diseases.

IR is a widespread event occurring in many diseases. Point
mutations occurring at critical splice control points such as donor
or acceptor sites can result in partial or full retention of specific
introns. Autoimmune polyendocrine syndrome type 1 (APS-1) is
a rare and complex recessively inherited disorder of immune-cell
dysfunction with multiple auto immunities [111,112]. Loss-of-
function mutations of the autoimmune regulator gene (AIRE) have
been reported to cause APS-1. AIRE is a transcription factor
expressed in the thymus medulla and lymph nodes. It controls
the local transcription of tissue-specific proteins typically
expressed in peripheral tissues, thus allowing the negative selec-
tion of self-reactive T cells [113,114]. The c.463G > A transition
in AIRE generates an aberrant transcript retaining intron 3. This
aberrant intron 3-retaining transcript generates a truncated pro-
tein with a premature stop codon. The truncated protein contains
only the first normal functional 154 amino acids followed by 48
aberrant amino acids [115].

Recent studies also revealed that IR events are very common
across cancer patients. Partial retention of intron 6 of GSTP1 has
been confirmed as one cause of the head and neck cancer [116].
Truncated cyclin D1b is produced by CCND1with partially retained
intron 4, which leads to the prostate and esophageal cancer
[117,118]. Moreover, in a recent large-scale transcriptome profil-
ing study, IR events are observed in solid cancers originating from
bladder, breast, colon, colon, head and neck, kidney, liver, lung,
prostate, rectum, stomach, thyroid, and endometrium, as well as
in acute myeloid leukemia [119].
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3.8. Transcriptome-wide alternative splicing analysis in disease

Aberrant splicing greatly contributes to the pathologies of many
diseases as mentioned. Indeed, the detection of differential splicing
not only serves as predictive, diagnostic, or prognostic biomarkers
but also stratifies patients with different conditions. Here we
briefly discuss examples of transcriptome-wide sequencing unveil-
ing differential splicing events in diseases. Lin et al. identified 593
differential splicing events between Huntington’s disease (HD) and
control brains, and four splicing factors with significantly altered
expression [120]. The follow-up study verified the impact of the
splicing factor PTBP1 on disease-associated splicing patterns in
HD patients [120]. Similar study identified hundreds of aberrant
splicing events in Alzheimer’s disease [121]. For cancers, differen-
tial alternative splicing is more than a diagnostic biomarker.
Increasing evidence indicated that it could elucidate the progres-
sion and serve as prognostic biomarkers [122,123].

Many studies employed univariate and multivariate Cox regres-
sion analyses to identify survival-associated alternative spicing
events and to compute risk scores [124–132]. More recently, a
novel statistical model SURVIV (Survival analysis of mRNA isoform
variation) has shown its ability to outperforms the conventional
Cox regression model [133]. SURVIV uses a survival-
measurement-error model to estimate uncertainty of mRNA iso-
form ratios and assesses the association between isoform ratios
and survival time of cancer patients. SURVIV outperforms Cox
regression model under many different settings especially with
low-depth or moderate-depth RNA-seq data. This makes SURVIV
extra practical since many clinical studies have not yet reached
deep sequencing depth.

Beyond the significant role of alternative splicing in disease
diagnosis and prognosis, it is more than informative to deep dive
into disease pathological mechanisms to investigate how dysfunc-
tions of alternative splicing lead to distinct diseases and to connect
phenotypes with genotypes. Despite the profound genetic under-
standing for many human genetic diseases, causative genetic vari-
ations or functional roles of highly correlated variations of many
diseases still consist of a big piece of puzzle. To facilitate the under-
standing from genetic variants to human pathologies, it is neces-
sary to accurately quantify gene expression at the individual
transcript isoform level since isoforms are the ultimate units to
execute gene functions. In addition to the expression quantifica-
tion of annotated genes, the discovery of novel transcript isoforms
and novel splicing events is also crucial for deciphering the role of
alternative splicing in human physiology and pathologies.
4. Computational tools for isoform quantification from RNA-seq

Over the past few years, massively parallel RNA sequencing
(RNA-seq) has become a powerful tool for comprehensive tran-
scriptomic analysis. Furthermore, with the cost of deep sequencing
dropping drastically, large scale studies for expression and alterna-
tive splicing have become plausible. Such studies will expedite the
discovery of more splicing-related diseases and the gained knowl-
edge has the potential to develop preventive and therapeutic inter-
ventions for these diseases.

However, precise quantification of alternative splicing is still
hindered by the technological limitation, mainly the limited read
length. During an RNA-seq experiment, mRNA is extracted from
the tissue, then fragmented and reverse transcribed into cDNA,
which is further amplified and sequenced by high-throughput,
short-read sequencing methods. Ideally transcriptome assembly
can be performed to reconstruct genome regions being transcribed.
However, considering the typical read length of RNA-seq ranging
from 50 bp to 150 bp, and the fact that transcript isoforms of the



Table 1
Methods of isoform or splicing analysis from RNA-seq. We summarized a collection of benchmark characteristics from simulated studies, literature reviews [142–144], and
software documentation. Abbreviations: ICA: isoform-centric approaches; ECA: exon-centric approaches; EM: expectation maximization algorithm; VB: variational Bayes
inference algorithm, MCMC: Markov chain Monte Carlo.

Methods Speed Alignment-free Novel transcript/splicing
event discovery

Major algorithm Input format Memory
Usage

Multi-threading

Cufflinks ICA Relative slow No Yes EM SAM/BAM Medium Yes
StringTie ICA Fast No Yes Network flow SAM/BAM Medium No
RSEM ICA Relative slow No No EM SAM/BAM/FASTQ Medium No
WemIQ ICA Fast No No EM SAM Medium No
eXpress ICA Fast No No EM SAM/BAM Small Yes
Sailfish ICA Extremely fast Yes No EM, VB FASTA/FASTQ Small Yes
Kallisto ICA Very fast Yes No EM FASTA/FASTQ Small Yes
Salmon ICA Very fast Yes No EM, VB SAM/BAM/FASTQ Small Yes
MISO ECA Fast No No MCMC SAM Small Yes
SUPPA ECA Fast No Yes (with de novo

assembler)
Density-based
clustering algorithm

Expression in TPM Small Yes

SplAdder ECA Fast No Yes Splicing graph BAM, GTF/GFF Small No
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same genes are usually difficult to distinguish, the expression
quantification of transcript isoforms remain challenging.

Moreover, the discovery of novel transcripts using short reads is
one of the most challenging tasks in RNA-seq [134]. Short reads
hardly ever spanning across splice junctions complicate the infer-
ence of full-length transcripts especially for lowly expressed tran-
scripts. The identification of transcription start and end sites also
remains a difficult mission [135]. Recently, another computation
difficulty emerges as sequencing depth further increases due to
the affordable sequencing. The massive sequence data may not
only overwhelm hardware resources, but also confound heuristic
algorithms that may not be scalable to that gigantic size of data
[136].

Various computational tools have been developed in order to
tackle these major complications in the last decade. In general,
methods for alternative splicing analysis can be divided into two
major categories: isoform-centric approaches and exon-centric
approaches. Isoform-centric approaches quantify full-length tran-
script isoforms, and then the alternative splicing ratio can be esti-
mated based on the ratio between isoforms including and isoforms
excluding an alternative exon of interest. Exon-centric approaches
directly focus on the quantification of exon inclusion ratios.

Base on whether the reference genome or the reference tran-
scriptome is utilized, transcript quantification can be categorized
as reference-based approaches or de novo assembly-based ones
[137]. Reference-based approaches first align reads to a reference
genome. Then those mapped reads are distributed to known anno-
tated isoforms computationally. Or a splicing graph representing
all possible alternative splicing events can be built upon the
mapped reads and individual isoforms are finally assembled by
traversing the graph. The high sensitivity of reference-based
approach permits the discovery of novel transcript as well [138].
For example, several popular methods, such as StringTie [139]
and Cufflink [138] apply genome-aligned reads and take advantage
of existing annotations when assembling transcripts including
novel ones. Transcript isoform quantification is performed simulta-
neously or afterwards. Although the majority of reference-based
quantification methods align reads to the genome, recently there
are methods that developed as alignment-free approaches. Such
alignment-free methods pre-index reference transcripts, break
sequence reads into k-mers, and then preform fast matches to
the pre-indexed transcripts as ‘‘pseudo”-alignments.

In general, referenced-based approaches are computationally
economic and more suitable for isoform quantification especially
when the high-quality reference is available. But for non-model
organisms de novo assembly-based method is indispensable. De
novo assembly-based approaches usually rely on a De Bruijn graph
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to assemble isoforms, therefore the required computational
resources are enormous. Regarding to the alternative splicing anal-
ysis, even though some studies have demonstrated that de novo
assembly-based method is capable of detecting novel splicing
events, the application on human datasets remain sparse
[140,141].

In this review, we will mainly focus on reference-based
isoform-centric or exon-centric methods. Representative packages
for the detection and quantification of isoforms or splicing events
with or without the discovery of novel isoforms or splicing events
will be discussed. To facilitate users’ selection, we summarized a
collection of benchmark characteristics for these representative
tools based on simulated studies, literature reviews [142–144],
and software documentation (Table 1). We will briefly mention
de novo assembly-based methods afterwards.
4.1. Isoform-centric analysis tools

4.1.1. Cufflinks
Although developed nearly a decade ago, Cufflinks is perhaps

one of the most popular approach for expression quantification,
especially for simultaneous novel transcript discovery and abun-
dance estimation [138]. Cufflinks adopts and extends the ideas
from expressed sequence tag (EST) assemblers such as PASA, which
collapse alignments to transcripts on the basis of splicing compat-
ibility [145]; as well as Dilworth’s theorem which was originally
applied to assemble a parsimonious set of haplotypes from
sequencing reads of a mixed virus population [146]. The approach
reduces the transcript assembly problem into searching a maxi-
mum matching in a weighted bipartite graph that represents com-
patibilities among fragments. Their validation results suggest that
Cufflinks is capable of not only improving transcriptome-based
genome annotation but also discovery of novel transcripts.
4.1.2. StringTie
StringTie is another highly efficient transcript quantification

tool which has the ability to discover novel transcripts [139]. It
uses a novel network flow algorithm combined with an optional
de novo assembly step to discover and quantify transcripts concur-
rently. StringTie has assembled 53%more transcripts than Cufflinks
in a benchmark of 90 million reads from human blood. Moreover, it
runs faster and consumes less memory. StringTie belongs to the
updated Tuxedo protocol (HISAT, StringTie, Ballgown) which
achieves faster speed, substantially memory saving, and more
accurate overall results than the previous Tuxedo protocol (Tophat,
Cufflinks, Cuffdiff) [147]. The output of StringTie is also compatible
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with downstream specialized tools such as Cuffdiff, DESeq2, edgeR,
and so on.

4.1.3. RSEM
RSEM is also a popular tool for quantifying gene and isoform

abundances from single-end or paired-end RNA-Seq data
[142,143,148,149]. RSEM takes original FASTQ sequence files as
well as BAM/SAM alignment files. It is equipped with Bowtie2,
STAR and HISAT aligners internally for read alignment. Or users
can choose their preferred alternative aligner by providing aligned
BAM/SAM files. RSEM is an Expectation-Maximization (EM)
algorithm-based method, which assigns mapped reads to tran-
script isoforms and estimates the maximum likelihood (ML) of rel-
ative abundances of transcript isoforms. However, since the
assignment of reads to isoforms are resulted from iterations of
the EM method, the performance of RSEM is relatively inefficient
[142,149]. Given the recent massive sequence data size, the speed
of RSEM has become a major drawback.

4.1.4. WemIQ
Precise transcriptome quantification is also hindered by non-

uninform short-read sampling. The severity of overdispersion can
be exemplified by non-uniform read distribution along single-
isoform genes. The hidden bias is multifactorial with many
unknown causes, which varies between sequencing platforms
and protocols. To address this fundamental problem and fully har-
ness the power of transcriptomics data, Chen’s group has devel-
oped a series of statistical models to tackle the overdispersion
issue in bulk RNA-seq and single-cell RNA-seq (scRNA-seq) [150–
152]. The RNA-seq bias in these models is estimated by a
generalized-Poisson model (GPSeq) in a data-adaptive and
assumption-free manner [150]. GPSeq estimates the bias directly
from read-count distribution and does not need to specify the
(often unknown) bias sources. GPSeq outperforms commonly used
bias correction methods and still efficiently removes bias in cases
that traditional methods fail [151].

For isoform-level quantification, they developed WemIQ [151].
The heterogeneity of read counts along a multi-isoform gene is
caused by both RNA-seq bias and annotation heterogeneity (i.e.,
exonic positions are shared by different isoforms). The challenge
is to separate bias from signals during deconvolution of isoform
expression. WemIQ addresses this challenge by assigning different
weights to reads at different positions. Weights are derived from
bias-correction factors using GPSeq. Then an EM algorithm is used
to distribute reads among different isoforms and maximize the
weighted loglikelihood. Both simulation and empirical analyses
showed that WemIQ significantly improves the accuracy of isoform
quantification and estimation of exon inclusion rates.

4.1.5. eXpress
eXpress is a more recent tool that takes advantage of an online-

EM inference procedure that permits accurate inference of tran-
script abundance after a single pass over the read alignments
[153]. In eXpress, Roberts and Pachter modified the online EM
algorithm that resolves the fragment-assignment problem into
one that works directly with estimated counts instead of relative
abundances. In the algorithm, each incoming fragment can be
mapped to any number of target sequences and assigned to its
mapped target based on the previously estimated counts. As frag-
ments being processed, their assignment allows the algorithm to
update and improve parameter estimates. This dynamic scheme
greatly enhances the convergence speed and improves software
performance. However, since eXpress is still an alignment-based
method, it requires input alignments in the SAM/BAM format.
Thus, although the procedure itself is fast, the alignment step is
still inevitable and time consuming.
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4.1.6. Sailfish
Alignment-based quantification tools are usually relatively

slow, below we will introduce three alignment-free methods
developed in the past few years. Sailfish is a k-mer-based
approach, which completely avoids the time-consuming step of
mapping reads to a reference genome [154]. Expression quantifica-
tion is performed by extraction of k-mers from reads followed by
exact matching of the k-mers using a hash table. This approach
provides much faster quantification estimates than other
approaches (typically 20 times faster). Although it claimed there
was no trade-off of accuracy loss, fragmenting sequence reads into
k-mers indeed loses valuable information [142,143]. K-mers may
align to more transcripts than the read itself since they are shorter,
thereby leading to loss of accuracy.

4.1.7. Kallisto
Kallisto is another alignment-free k-mer-based method devel-

oped to tackle the inadequate accuracy mentioned in the previous
method [143]. It is based on pseudoalignment of reads and uses
fast hashing of k-mers together with the transcriptome de Bruijn
graph, which has been proven to be crucial for DNA and RNA
assembly [155]. Clustering of pseudoalignments originated from
the same transcripts into equivalence classes permits simpler like-
lihood function and more efficient algorithm convergence. The
accuracy of Kallisto is similar to those of alignment-based RNA-
seq quantification approaches since its pseudoalignments explic-
itly maintain the information provided by k-mers across reads,
yet the speed of Kallisto is two orders of magnitude faster.

4.1.8. Salmon
Salmon is introduced by the same developers of Sailfish; it is

also an ultra-fast alignment-free method [156]. Interestingly the
developers no longer utilize k-mer-based algorithm. Salmon
applies a two-phase parallel inference procedure consisting of a
reduced data representation, and a novel lightweight read align-
ment algorithm. The first online phase uses a variant of stochastic,
collapsed variational Bayesian inference (SCVB0) to estimate initial
expression levels, model parameters, and to construct equivalence
classes over the input fragments. During the second offline phase, a
variational Bayesian EM algorithm is applied over a reduced repre-
sentation of the data to refine the initial transcript abundance esti-
mates until a data-dependent convergence criterion is achieved.
This method achieves both significantly faster speed and state-
of-art accuracy, and it is now wildly applied in RNA-seq data anal-
ysis because of those merits. One convenience Salmon provides is
that, unlike other two alignment-free methods, it also takes SAM/
BAM files as input. Therefore, for analyses requiring better quality
control, Salmon may be the choice.

4.2. Exon-centric analysis tools

4.2.1. MISO
As mentioned above, event-based approaches are the emerging

direction for alternative splicing analysis. MISO (Mixture-of-
Isoforms) is a statistical model that quantifies expression of alter-
natively spliced exons and isoforms and identifies differentially
regulated ones across samples [157]. The MISO model uses proba-
bilistic method (Bayesian inference) to compute the probability of
the reads originated from a certain isoform. MISO enables both
exon-centric analysis and isoform-centric analysis with improved
accuracy for quantification and differential detection across
samples.

4.2.2. SUPPA
SUPPA is another powerful tool to investigate alternative splic-

ing events [158]. SUPPA generates alternative splicing events from
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an input annotation file. It calculates the percentage or ‘‘proportion
spliced-in” (PSI) to describe relative abundance of splicing events
or transcript isoforms, exploiting the fast transcript quantification.
Differences of these relative abundances (DPSI) across different
samples are also reported to quantify differential splicing. SUPPA
achieves a much faster computational speed, while its accuracy is
on a par with most standard methods based on analysis of exper-
imentally validated events. SUPPA would be an effective and
affordable choice for splicing analysis of big datasets. While SUPPA
itself is restricted to annotated splicing events, coupling with novel
transcript reconstruction methods such as StringTie makes it a
powerful tool to identify novel splicing events.

4.2.3. SplAdder
While most of event-based methods do not support the identi-

fication of novel splicing events, SplAdder is a powerful tool to
tackle the task. To avoid the computational burden posed by the
identification of complete transcripts, SplAdder takes an innovative
approach which treats individual splicing events as proxy for tran-
scriptome characteristics [159]. SplAdder takes a given annotation
and summarizes all transcripts of a gene into a splicing graph. The
splicing graph is further augmented with new information
extracted from RNA-seq (i.e. new introns and exon segments
detected in the alignment). Alternative splicing events can be iden-
tified through the augmented annotation graph, and eventually be
quantified with RNA-seq data. SplAdder is able to detect all main
types of alternative splicing as well as multiple (coordinated) exon
skips. In terms of accuracy, SplAdder has achieved an overall high
accuracy in the benchmark comparing to various other state-of-
the-art methods, while remaining computationally efficient.

4.3. De novo assembly-based and reference-free tools

Discovery of novel transcripts has been challenging ever since
the question was posed. Although tools such as Cufflinks [138],
StringTie [139], SLIDE [160,158], and IsoLasso [161] take advantage
of different algorithms (EM, Lasso, network flow algorithm, and so
on) and incorporate existing annotations to perform transcript dis-
covery, the results of accurate transcript reconstruction exhibit
certain disagreements and remain unsatisfactory [135]. More
importantly, those genome-guided novel transcript detection
may be biased by the process itself [134,162]. One way to mitigate
the bias from the reference genome is to apply de novo transcript
assembly through packages such as Trinity [163], Trans-AbySS
[164], and Oases [165]. Trinity is by far the most widely applied
de novo assembler with over 10, 000 citations. It is named Trinity
as three software modules were involved. Inchworm first assem-
bles the RNA-seq data into linear contigs; Chrysalis then groups
related contigs and constructs de-Bruijn graphs; finally Butterfly
examines the reads and reports full-length transcripts through
dynamic programming. In splicing analysis, de novo assembly-
based approaches usually first reconstruct and quantify isoforms,
and then quantify alternative splicing events. One exception, KisS-
plice [166], de novo assembles alternative splicing events directly,
and achieves a higher accuracy than other de novo full-length tran-
script assemblers.

4.4. Comparison of different analysis tools

Most of the isoform quantification with known transcripts
exploit either EM algorithms or Bayesian inference to perform
the read-count deconvolution. The difference mainly lies in the
algorithm convergence speed [142]. One exception is WemIQ
which also handles the bias correction in RNA-seq to improve
the quantification accuracy. Generally, alignment-free methods,
such as Salmon and Kallisto are extremely fast. One should take
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advantage of those tools when processing tremendously large-
scale data. Alignment-based methods sometimes have slightly bet-
ter performance in accuracy than alignment-free methods accord-
ing to previous evaluation [142].

The accuracy of novel transcript or splicing event discovery still
remains questionable, due to the lack of agreement of different
methods, one should consider combine two or more approaches
to validate with each other if high accuracy is desired. As men-
tioned before, the quantification of novel isoforms suffers from bias
when deploying methods incorporating existing annotation. Using
de novo assembly-based methods such as Trinity followed by
downstream quantification packages such as RESM, eXpress, or
Salmon may mitigate the issue. A recent study shows that in terms
of conducting alternative splicing annotation and differential anal-
ysis, the results of de novo assembly-based methods and
reference-based methods overlap by only 70% with noticeable dif-
ferences [141]. Since assembly-based methods are capable of
detecting more novel events and reference-based methods per-
form better for lowly expressed transcripts, Benoit-Pilven et al.
suggest that the combination of those would be a better alternative
[141].

Isoform-centric methods and exon-centric methods comple-
ment with each other. The choice should be decided by the raised
biological questions. Each of the different approaches could shed
light on different discovery. While isoform-centric methods rely
on quantification of full-length transcripts, exon-centric
approaches have bypassed this step by directly exploiting the
quantification of alternative splicing events. Some studies con-
cluded that exon-centric methods are superior to isoform-centric
methods [167–169]. Another study showed that some exon-
centric methods may not handle multiple replicates well [170].
We also argue that although exon-centric methods are more sensi-
tive with known transcripts, isoform-centric ones provide more
flexibility in novel and complicated alternative splicing events.
Current isoform-centric methods are mainly hindered by the com-
putational accuracy issue resulting from short reads. Recent
advances in third-generation sequencing (long-read technology)
such as single molecule real time sequencing (SMRT) from Pacific
Biosciences, or the Nanopore sequencing from Oxford can produce
substantially longer reads. With reads longer than a typical full-
length transcript, in the near future, the accuracy of isoform quan-
tification will allow the direct quantification of splicing events.
5. Conclusion

It has been more than four decades since Walter Gilbert first
proposed the concept of alternative splicing: special combination
of exons being spliced together to make special differentiation
products [171]. Our understanding about alternative splicing is
advancing rapidly with the help of molecular research, high-
throughput sequencing and bioinformatic tools, yet there are still
more to explore how alternative splicing functions at cellular level.

As discussed above, quantification of full-length transcripts and
lowly expressed genes are the two major stumbling blocks for
alternative splicing studies based on RNA-seq. We envision
advances in two types of technologies may resolve those issues
in the near future. 1) Long-read sequencing, SMRT and Nanopore
sequencing technologies, has the potential to sequence the entire
transcript bypassing the reconstruction issue. Those technologies
have been proven applicable in revealing full-length transcripts
and alternative splicing events [172–176]. 2) Single-cell RNA-seq
(scRNA-seq) examines gene expression on a cellular resolution
with optimized next-generation sequence technologies. With
proper protocols and bioinformatic pipeline, scRNA-seq has the
potential to better unravel lowly expressed transcripts and splicing
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events [177–180]. No doubt there are still limitations in both tech-
nologies. Long-read sequencing suffers from high error rates, thus
de novo transcript detection and quantification is still unsatisfied
[181]; scRNA-seq usually yields fewer expressed genes caused by
limited sequence depth and suffers from little distinguishment
between technical and biological noise [180]. But with the combi-
nation of those newer technologies with traditional ones, more and
more powerful computing tools, complete understanding of alter-
native splicing will be fulfilled in the near future.
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