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de Biologı́a, Ciencias Ambientales y Quı́mica, Universidad de Alcalá, Madrid, Spain

Abstract

Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events
of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can
also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of
eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the
aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding
Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus
unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows
extensive rearrangements but a medium size (150,897 nt) in comparison to most of angiosperms. A number of remarkable
distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most
angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its
location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All
these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced
plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous
phylogenies of Asteridae.
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Introduction

In vascular plants, the chloroplast genome (plastome) generally

consists of a 120 to 160 Knt sized circular molecule of double

stranded DNA whose gene content, gene order and genome

organization are highly conserved [1]. In spite of their highly

conserved nature, chloroplast genomes undergo recombination

and rearrangements that result in deviations from the general

rules. Completely sequenced chloroplast genomes provide valu-

able information about the duplication, loss, and transfer events in

chloroplast genomes, and phylogenetic data to resolve relation-

ships among major groups of plants such as angiosperms [2].

Moreover, the availability of an increasing number of complete

chloroplast genome sequences can also be considered a major step

forward towards exploiting the usefulness of chloroplast genetic

engineering technology [3]. The immense technical progress in

DNA sequencing has allowed for a dramatic increase in the

number of completely sequenced chloroplast genomes in the last

few years. Nowadays, nearly 250 plastomes from Streptophyta are

available in the NCBI genome database, from which c.a. 95%

correspond to vascular plants. Eudicots account for 130 com-

pletely sequenced plastid genomes, from which less than c.a. 30%

correspond to Asteridae. This plant group encloses 102 families

and 10 orders, being Cornales, Ericales, and Aquifoliales dated in

the Early Cretaceous period the most ancient [4]. Family

interrelationships are fully, or almost fully, resolved with medium

to strong support except within the order Ericales [5,6]. Ericales

include 25 families, 346 genera, and 11,545 species. Currently

Ericales contain c.a. 5.9% of eudicot diversity, of which one third

is made up of Ericaceae alone [7]. Ericaceae, the heather family, is

a large and diverse group of flowering plants composed of eight

subfamilies (Enkianthoideae, Monotropoideae, Arbutoideae, Cas-

siopoideae, Ericoideae, Harrimanelloideae, Styphelloideae and

Vaccinioideae) [8]. Arbutoideae is an understudied monophyletic

group consisting of six genera: Arbutus L., Arctostaphylos Adans.,

Arctous Nied., Comarostaphylis Zucc., Ornithostaphylos Small., and

Xylococcus Nutt. They are dry-adapted sclerophyllous taxa and

most of the diversity in this group is in regions of Mediterranean

climate in western North America [9]. Phylogenetic analyses

within Arbutoideae suggested that Arbutus is not monophyletic [9].
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The genus Arbutus includes approximately 11 species, four of them

native to the Mediterranean region: A. unedo, A. andrachne, A. pavarii

and A. canariensis, the last one being endemic to the Canary Islands.

The remaining eight species of Arbutus occur in Western North

America. Arbutus unedo L. (strawberry tree) is an evergreen shrub,

or small tree, with a circum-Mediterranean range, growing in

temperate regions where the highest temperatures occur simulta-

neously with the lowest rainfall [10].

At present, Camellia sinensis (Theaceae) (accession NC_020019),

Vaccinium macrocarpon (Ericaceae) [11] and Ardisia polysticta (Primu-

laceae) [12] are the only three species of Ericales whose chloroplast

genome has been completely sequenced. Here, we present the

complete chloroplast genome sequence of Arbutus unedo using 454

Pyrosequencing technologies, thus contributing to increase the

number of available complete sequence analyses of cpDNAs from

Ericales. Comparative analyses will provide a valuable source of

information about major restructuring events occurring during the

evolution of ericalean chloroplast genomes, and phylogenetic data

to resolve uncertain phylogenetic relationships within Asteridae.

Moreover, the availability of the complete sequence of the

chloroplast genome of A. unedo will be also highly valuable to

subsequently exploit the usefulness of chloroplast genetic engi-

neering, and to shed light on the molecular basis of the eco-

physiological strategies which permit Mediterranean plants to

thrive under very restrictive conditions.

Materials and Methods

Chloroplast Isolation and DNA Sequencing
Fresh material of Arbutus unedo L. was collected from a wild

population at Montes de Toledo (N 39.49305 W 005.12211,

Cáceres, Spain) and stored at 280uC. A. unedo is not considered a

protected species and specific permissions were not required for

collecting material in the specified location. However, it is

noteworthy that A. unedo is a protected species in other localities

in Spain (e.g. Madrid) and can be present within protected areas

such as National Parks (these are not the cases for the plant

material used in this study). The isolation of chloroplasts, and

further DNA extraction and purification, were performed

according to [13] with some modifications by Dr. J. Pérez in

Secugen (http://www.secugen.es/). The purified DNA was

sheared by nebulization, subjected to 454 library preparation

and sequenced using Genome Sequencer (GS) FLX Titanium at

Lifesequencing facilities (Parc Cièntific, Universitat de València,

Spain).

Genome Assembly and Annotation
The obtained nucleotide sequence reads were assembled using

Mira assembly software [14]. The chloroplast genome reads were

retrieved by comparison with the asterids chloroplast genomes

downloaded from NCBI in a local BLAST database [15] and

mapping all the reads with the complete chloroplast CDS set of

Panax ginseng and ycf15 gene from Solanum lycopersicum, this pre-

assembly was used as our reference assembly (RA). The captured

reads were de novo assembled with the ‘‘uniform read distribution

(-urd)’’ option as this allows repeats to be disentangled during the

contig building phase, maintaining the average coverage multi-

plied by a value of 1.5, separating IR zones and repeats. Then, we

mapped the rest of the reads to the RA with the ‘‘also build new

contigs (-abnc)’’ option, making new contigs with reads that did

not map to the backbone. Finally, contigs were filtered and

ordered by aligning them to the RA using the BLAST program,

and jointed with gap4 from the Staden package [16]. Gap regions,

IR-LSC and IR-SSC junctions were PCR amplified with LA Taq

(Takara Bio Inc., Shiga, Japan) with specific primers (Table S1) on

a 96-well SensoQuest labcycler, PCR products were visualized on

2% agarose gels. DNA was purified using Illustra GFX PCR DNA

and Gel band Purification kit (GE Heathlcare Life Science,

Buckinghamshire, England) and sequenced with an ABI 3100

Genetic analyzer using the ABI BigDyeTM Terminator Cycle

Sequencing Ready Reaction Kit (Applied Biosystems, Foster City,

California). Long fragments had to be cloned using the TOPO XL

cloning kit (Invitrogen, Carls-bad, CA) and sequenced by ‘‘primer

walking’’. In all cases, samples were sequenced in both forward

and reverse directions. Open reading frames (ORFs) were

identified using Artemis [17] and functional assignments were

made based on the sequence similarity of BLASTp, BLASTx and

BLASTn searches against NCBI databases. Transfer and ribo-

somal RNA genes were identified using tRNAscan-SE [18], Rfam

[19] and RNAweasel [20]. All delimited genes were carefully

revised in order to assess correct reading frames and intron limits

in the case of protein-encoding genes. Thereby, we compared all

reading frames with other angiosperms considering the possible

creation of start and stop codons by editing in some cases and

searched for sequence motif characteristics at both 59 and 39 ends

of group II introns in the case of intron-bearing genes.

Delimitation of rRNAs was made on the basis of their structural

features with the aid of Mfold [21]. The graphical map of the

circular plastome of A. unedo was drawn with Organellar Genome

DRAW (OGDRAW) [22]. For general manipulations of sequenc-

es we used Geneious [23] and CLC Sequence Viewer available at

http://www.clcbio.com/products/clc-sequence-viewer/(this last

program was also used in the construction of genetic maps). The

obtained nucleotide sequence is available at the GenBank

sequence database provided by the National Center for Biotech-

nology Information (NCBI) with the accession number JQ067650.

Phylogenetic Analyses
Phylogenetic reconstructions were performed on the basis of 83

chloroplast genes from 57 species (see Table S2 for accession).

Alignments were performed with Muscle [24] and trimmed with

GBLOCKs [25] with default parameters. The sequences matrix

for each gene was subjected to JModelTest to find the best-fit

evolutionary model [26]. In order to test the phylogenetic signal

TREE-PUZZLE was used [27]. For maximum-likelihood (ML)

analyses, the concatenated nucleotide matrix of 57 taxa, and

55016 nt was analyzed with RAxML v. 7.2.8 [28] using the

GTRGAMMA and a bootstrap analysis with 500 replicates. The

Bayesian analyses were implemented with Mr Bayes V.2.1.0 [29].

The concatenated nucleotide matrix was analyzed using: GRT

+I+ G model (4 discrete rate categories by default). Markov chain

Monte Carlo (MCMC) analyses were run for 5,000,000 genera-

tions, and four independent Markov chains. Trees and model

parameters: trees were sampled every 1000 generations. Statio-

narity was assessed by examining the standard deviation of split

frequencies and by plotting the –ln Likelihood per generation

using Tracer v1.4 [30], and trees generated before stationarity

were discarded. The majority rule consensus tree produced by

MrBayes was drawn with FigTree [31].

Additional Analyses
Whole genome alignments were performed with MultiPip-

Maker [32]. Gene map and alignments of the LSC region were

performed with MAUVE [33] implemented in Geneious [23].

The frequency of codon usage was deduced on the basis of the

sequences of protein-coding genes within the cpDNA with the

assistance of the program DnaSP, version 5.1. [34]. Tandem

Unusual Features of the Arbutus unedo Plastome
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within the cpDNA of A. unedo and other asterids were found by

using the program ‘‘Tandem repeats finder’’ [35].

Results and Discussion

Genome Organization and Gene Content of the A. unedo
Plastome

The chloroplast genome of Arbutus unedo (Figure 1) is a circular

molecule of 150,897 nt within range of other angiosperms. The

cpDNA of A. unedo is structured in the typical quadripartite

structure, consisting of two inverted repeats (IRa and IRb)

separated by large single copy (LSC) and small single copy

(SSC) regions (Figure 1). The GC content of the A. unedo cpDNA is

37.31%, similar to the other reported cpDNA genomes from

asterids. The GC content of the LSC and SSC are 35.64% and

28.94%, respectively, whereas that of the IR regions is 40.55%.

The A. unedo cpDNA contains a total of 142 genes from which 114

have a single copy, whereas 28 are duplicated (Table 1). Two

copies of each of the four genes encoding the chloroplast rRNAs

(rrn23, rrn16, rrn5 and rrn4.5) are distributed throughout the IRs.

The tRNAs are encoded by twenty-one single-copy and nine two-

copy genes distributed throughout the LSC region and the IRs,

respectively. There are 87 genes encoding putative functional

proteins. Twelve full-length and functional protein-encoding genes

have two copies located in the IRs. Thirty-eight genes encode

proteins related to photosynthesis: 8 for the photosystem I, one of

them (psaC) in two copies; 15 for the photosystem II; 6 for the

cytochrome b6/f complex; 6 for the ATP synthase; one for the

Calvin Cycle; and two copies of the ccsA for the synthesis of C-type

cytochrome. Thirty genes encode proteins related with the gene

expression machinery involved in transcription, splicing and

translation: 4 for the RNA polymerase; 9 for the ribosomal large

subunit; 15 for the ribosomal small subunit, three of them (rps7, 12

and 15) in two copies; one for maturase K; and one for the

translation initiation factor 1. Eighteen genes encode proteins for

the NADH-dehydrogenase complex involved in chlororespiration:

three of them were located within the LSC region (ndhC, K and J),

one was found within the SSC region (ndhF) and seven were

located within the IRs (ndhA, B, D, E, G, H, and I) each of them in

two copies. Finally, the cemA gene encoded for an envelope

membrane protein. In the cpDNA of A. unedo there are 15 different

genes harbouring introns (note that some of them are duplicated,

see below), which are cis-spliced (Table 2). Fourteen genes have a

single intron (8 protein-coding and 6 tRNA-coding genes), whereas

a single gene (ycf3) contains two introns. Out of the 16 genes with

introns, 12 are located in the LSC (8 protein-coding and 4 tRNA

genes), 4 are located in two copies in each of the IRs (2 protein-

coding and 2 tRNA genes). The trnK-UUU gene has the largest

intron (2,559 nt) and contains an ORF encoding the matK gene.

This gene encodes a maturase that preferentially catalyses splicing

of the trnK intron, but it may also have a generalist function.

The cpDNA of A. unedo contains a lower number of codons

(17,980) in comparison to other angiosperms [e.g. Ageratina

adenophora with 24,894 and Vigna radiata with 26,274 (Table S2)].

This is possibly due to the pseudogenization of numerous and

large ORFs in the A. unedo chloroplast genome, and the loss of the

ycf2 gene, since the cpDNAs of the three plant species are very

similar in size (150,698 nt for A. adenophora, 151,271 for V. radiata

and 150,897 for A. unedo). Table 3 show the frequency of codon

usage deduced on the basis of the sequences of protein-coding

genes. Leucine was seen to be the most frequent amino acid, with

759 codons encoding this amino acid (10.7%), while cysteine was

the least frequent, with 43 codons (1.13%). The codon usage in A.

unedo was biased toward high representation of A and T at the

third codon position (72.4%), similar to the cpDNA from other

Angiosperms [e.g. Ageratina adenophora and Vigna radiata (Table S2)].

Major Restructuring of the A. unedo Plastome
The whole-genome alignment of the A. unedo cpDNA with other

Asteridae (Figure 2) showed high conservation of many coding

regions along with remarkable rearrangements. The gene order

was compared taking N. tabacum as a reference since Nicotiana is

considered to have the ancestral angiosperm gene order [36]. As

shown in Figure 2, the cpDNA of A. unedo clearly deviates from

that of N. tabacum to a greater extent than other asterids because of

extensive rearrangements. The higher divergence is observed in a

portion comprised within position 90,000 and the end of the

sequence, which includes the two IRs and the SSC region.

Comparisons of the lengths of the three different regions of the

plastome within asterids (Figure 3) revealed a remarkable shortness

of the SSC region in comparison with most of asterids, and also

most of the other angiosperms with an average size of c.a.

18,000 nt. This feature was exclusively found in the two Ericaceae

whose cpDNA has been sequenced to date: Arbutus unedo (3,400 nt,

this study) and Vacccinium macrocarpon (3,029 nt, Table S2). The

reduction of the SSC region in these two Ericaceae was even

higher than in non-photosynthetic parasitic plants such as those

belonging to the genera Cuscuta and Epifagus, which have

extraordinary reduction of their entire chloroplast genomes

(Figure 3). The extreme shortening of the SSC regions results

from the duplication and inclusion of the entire ndhH-D operon

within each of the two IR regions which are extended to 34,232 nt

in V. macrocarpon but not A. unedo. The conservation of the regular

sizes of the IRs in A. unedo was mainly due to the loss of the ycf2

gene consisting of c.a. 7,000 nt that partially compensates the gain

of the ndhH-D operon (Figure 1). Figure S1 shows different gene

arrangements found in the SSC region including two algae

belonging to two different phyla (Streptophyta and Chlorophyta).

The most frequent gene arrangement is represented by Nicotiana

tabacum (Figure S1B), which was present in c.a. 75% of

angiosperms whose cpDNA has been completely sequenced. The

arrangement shown in algae such as Chara vulgaris (Figure S1A) and

Nephroselmis olivacea (Figure S1C) belonging to Streptophyta and

Chlorophyta, respectively, show remarkable similarities to those of

vascular plants. Similar to the SSC region, the gene content in the

two IRs is rather well conserved among plants. Figure S2 shows

different gene arrangements found in the IRs including the alga

Chara vulgaris. Almost 70% of Asteridae whose chloroplast genome

has been completely sequenced had the general gene content and

order of N. tabacum (Figure S2E). Similarly to the SSC and IRs, the

LSC show several relocations of genes in the A. unedo plastome.

Figure 4 shows preserved co-localization of genes on chromosomes

of different species (shared or conserved synteny) within the LSC

regions of the cpDNAs of four ericalean species (Ardisia polysticta,

Camellia sinensis, Arbutus unedo and Vaccinium macrocarpon) and

Nicotiana tabacum. A. polysticta, C. sinensis and N. tabacum exhibit a

conserved synteny, whereas A. unedo and V. macrocarpon show

extensive rearrangements resulting in a considerable loss of

synteny. We hypothesize that the LSC region of the A. unedo

plastome had experienced at least two main inversions of

segments. One of them [(1) in Figure 4] could include the segment

between trnT-GUU and trnV-UAC. The other one [(2) in Figure 4]

could include the segment between psaI and petD. A minor

additional inversion could involve a segment between trnC-GCA

and trnE-UUC and comprising of the petN and psbM genes [(3) in

Figure 4], which is inserted within the segment (2). The complex

pseudogenization process that occurred on Arbutus LSC (see below)

which affects both the accD and clpP genes may be a clue to support

Unusual Features of the Arbutus unedo Plastome
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our hypothesis about these inversion endpoints. The most

parsimonious interpretation of the distribution of the cpDNA

inversions outlines a primary evolutionary split between Ericaceae

and Theaceae.

Losses and Pseudogenization of Essential Genes
The number of genes and their order are generally conserved in

the chloroplast genomes of most angiosperms. However, as the

availability of sequenced genomes has increased, a number of

Figure 1. Gene map of the Arbutus unedo complete chloroplast genome represented as a circular molecule. Genes shown inside the
circle are transcribed clockwise and genes outside are transcribed counter clockwise. Genes for tRNAs are represented by one letter code amino acids
with anticodons. Asterisks indicate genes with introns. Pseudogenes are preceded by the Y symbol.
doi:10.1371/journal.pone.0079685.g001
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exceptional gene losses have been identified (summarized in [37]).

The rpl33 gene is lost in Phaseolus vulgaris and Vigna radiata; the infA

gene is lost in almost all rosid species; the rpl32 gene is lost in the

Populus genus; the rps16 is lost in Medicago truncatula, Phaseolus

vulgaris, Cicer arietinum, Vigna radiata and the Populus genus; the ycf1,

ycf2 and accD genes in Poaceae (Table S2). Many gene losses have

been interpreted as transfers to the nucleus. After analysing the

gene content of the cpDNA of A. unedo, we found several genes

which appeared either lost, such as ycf2, or non-functional, such as

clpP1, accD, ycf1 and ycf15 (Figure 1).

The chloroplast genome of most plants and several algae

contains two large open reading frames known as ycf1 and ycf2

Table 1. Genes found in the Arbutus unedo chloroplast genome.

Function
Different
products Total genes Total introns Gene name

Photosystem I 7 8 0 psaA, B, Cc, I, J, ycf3a, ycf4

Photosystem II 15 15 0 psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z

Cytochrome b6/f complex 6 6 2 petA, Bb, Db, G, L, N

ATP synthase 6 6 0 atpA, B, E, Fb, H, I

Calvin clycle 1 1 0 rbcL

C-type cytochrome synthesis 1 2 0 ccsAc

NADH dehydrogenase 11 18 4 ndhAbc, Bbc, C, Dc, Ec, F, Gc, Hc, Ic, J, K

RNA polymerase 4 4 0 rpoA, B, C1, C2

Maturase K 1 1 0 matK

Translation initiation factor 1 1 0 infA

Large subunit ribosomal proteins 9 9 1 rpl2 b, 14, 16, 20, 22, 23, 32, 33, 36

Small subunit ribosomal proteins 12 15 3 rps2, 3, 4, 7c, 8, 11, 12cd, 14, 15c, 18, 19

Ribosomal RNAs (4) 4 8 0 rrn23c, rrn16c, rrn5c, rrn4.5c

tRNAs 30 39 8 trnA-UGCbc, C-GCA, D-GUC, E-UUC, F-GAA, G-GCC, G-UCCb, H-GUGc, I-CAUc, I-GAUbc,
K-UUUb, L-CAAc, L-UAAb, L-UAGc, M-CAU, fM-CAU, N-GUUc, P-UGG, Q-UUG, R-ACGc,
R-UCU, S-GCU, S-GGA, S-UGA, T-GGU, T-UGU, V-GACc, V-UACb, W-CCA, Y-GUA

Envelope membrane protein 1 1 0 cemA

Pseudogenes 5 8 0 accD, clpP, ndhAc, rps16b, ycf1c, ycf15c

aGene containing two introns.
bGene containing a single intron.
cTwo gene copies in the IRs.
dGene whose transcripts are trans-spliced.
doi:10.1371/journal.pone.0079685.t001

Table 2. Genes having cis-spliced introns in the Arbutus unedo cpDNA and the lengths of exons and introns.

Gene Location Exon I nt Exon II nt Exon III nt Intron I nt Intron class Intron II nt Intron class

atpF LSC 145 410 – 714 IIA – –

ndhA IR 553 539 – 1073 IIB – –

ndhB IR 777 756 – 684 IIB – –

petB LSC 6 642 – 736 IIB – –

petD LSC 8 481 – 792 IIB – –

rpl2 LSC 391 434 – 672 IIA – –

rpl16 LSC 9 408 – 10367 IIB – –

rpoC1 LSC 453 1626 – 738 IIB – –

rps16 LSC 40 188 – 857 IIB – –

trnA-UGC IR 37 35 – 807 IIA – –

trnG-UCC LSC 23 48 – 692 IIB – –

trnI-GAU IR 37 35 – 950 IIA – –

trnK-UUU LSC 37 35 – 2514 IIA – –

trnL-UAA LSC 35 50 – 521 I – –

trnV-UAC LSC 39 35 – 620 IIA – –

ycf3 LSC 124 230 153 680 IIB 722 IIB

doi:10.1371/journal.pone.0079685.t002
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Table 3. Codon-anticodon recognition pattern and codon usage for the chloroplast genome of Arbutus unedo.

Amino acid tRNA Codon No.* Amino acid tRNA Codon No.* Amino acid tRNA Codon No.*

Ala trnA-UGC GCU 497 Lys trnK-UUU AAA 678 Ser trnS-GCU AGU 254

trnA-UGC GCA 305 trnK-UUU AAG 191 trnS-GCU AGC 69

trnA-UGC GCC 172 Leu trnL-CAA UUG 380 trnS-GGA UCU 402

trnA-UGC GCG 130 trnL-UAA UUA 685 trnS-GGA UCC 197

Cys trnC-GCA UGU 160 trnL-UAG CUU 405 trnS-UGA UCA 232

trnC-GCA UGC 43 trnL-UAG CUA 242 trnS-UGA UCG 96

Asp trnD-GUC GAU 521 trnL-UAG CUC 116 Thr trnT-GGU ACU 407

trnD-GUC GAC 134 trnL-UAG CUG 97 trnT-GGU ACC 176

Glu trnE-UUC GAA 670 Met trnM-CAU AUG 441 trnT-UGU ACA 286

trnE-UUC GAG 220 Asn trnN-GUU AAU 591 trnT-UGU ACG 91

Phe trnF-GAA UUU 676 trnN-GUU AAC 168 Val trnV-GAC GUU 385

trnF-GAA UUC 311 Pro trnP-UGG CCU-P 295 trnV-GAC GUC 133

Gly trnG-GCC GGU 445 trnP-UGG CCA-P 223 trnV-UAC GUA 392

trnG-GCC GGC 153 trnP-UGG CCC-P 145 trnV-UAC GUG 137

trnG-UCC GGA 549 trnP-UGG CCG-P 95 Trp trnW-CCA UGG 317

trnG-UCC GGG 220 Gln trnQ-UUG CAA 497 Tyr trnY-GUA UAU 542

His trnH-GUG CAU 341 trnQ-UUG CAG 136 trnY-GUA UAC 117

trnH-GUG CAC 87 Arg trnR-ACG CGA 282 Stop – UAA 38

Ile trnI-CAU AUA 490 trnR-ACG CGU 280 – UAG 17

trnI-GAU AUU 759 trnR-ACG CGG 65 – UGA 18

trnI-GAU AUC 292 trnR-ACG CGC 62

trnR-UCU AGA 306

trnR-UCU AGG 86

*Numerals indicate the frequency of usage of each codon in 17,947 codons in 73 potential protein-coding genes.
doi:10.1371/journal.pone.0079685.t003

Figure 2. Whole genome alignment of the Arbutus unedo chloroplast genome with other asterid chloroplast genomes obtained with
MultiPipMaker [32] taking that of Nicotiana tabacum as the reference. Sequence identity is shown by red (75–100%), green (50–75%), and
white (,50%). Positions of some genes in N. tabacum are indicated as a guide (genes encoding proteins and rRNAs are indicated as yellow and red
arrows, respectively). The taxonomic classification is indicated on the left (AP: Apiales, AS: Asterales, GE: Gentianales, LA: Lamiales, SO: Solanales, ER:
Ericales).
doi:10.1371/journal.pone.0079685.g002
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Figure 3. Comparison of the lengths of LSC, SSC and IR regions among Asteridae. Accession numbers of the corresponding genomes are
indicated in Table S2.
doi:10.1371/journal.pone.0079685.g003

Figure 4. Gene map and alignment of the LSC region of three ericalean species in relation to Nicotiana tabacum. (A) Gene map of the
LSC region in the chloroplast genome of Nicotiana tabacum. (B) Gene alignment of the LSC region of Ardisia polysticta, Camellia sinensis, Arbutus
unedo, Vaccinium macrocarpon belonging to Ericales and Nicotiana tabacum belonging to Solanales. MAUVE multiple alignment [33] implemented in
Geneious [23]. Colored outlined blocks surround regions of the genome sequence that aligned with part of another genome. The coloured bars
inside the blocks are related to the level of sequence similarities. Lines link blocks with homology between two genomes. Accession numbers of the
corresponding genomes are indicated in Table S2.
doi:10.1371/journal.pone.0079685.g004
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encoding proteins of 1901 and 2280 amino acids in tobacco, which

are essential for cell survival [38]. In most land plants, two

identical ycf2 copies are located in the IR regions. However,

independent losses of the ycf2 gene occurred in various

angiosperms [39]. In A. unedo the ycf2 gene is completely absent,

whereas the ycf1 gene remains residual as a pseudogen in two

copies within each IR region (Figure 1 and Figure S2C). After

reviewing the status of these two genes among asterids, we found

that the ycf2 gene was only completely lost in the cpDNA of A.

unedo. We also found non-functional forms of this gene in other

Asteridae (e.g. V. macrocarpon and T. caeruleum (Table S2). The

functionality of some other ycfs, apart from ycf1, ycf2, ycf3 and ycf4,

has been questioned by their relatively frequency as pseudogenes.

This is the case of ycf15 found as pseudogen in A. unedo and also in

other asterids. The ClpP1 gene encodes a caseinolytic protease

which has been found in almost all bacterial species and eukaryotic

organelles [40]. This gene is present in all plant lineages with a few

exceptions being essential for plant development in tobacco [41].

In this study, we found that the clpP gene appears as a non-

functional pseudogene exclusively in the two analysed Ericaceae

(A. unedo and V. macrocarpon). In this study, we found the presence of

the accD gene as residual pseudogene in the cpDNA of three

asterids: A. unedo, V. macrocarpon and T. caeruleum. This gene encodes

one of the four subunits that constitute the plastid Acetyl-CoA

carboxilase (ACCase) which catalyzes the formation of malonyl-

CoA in fatty acid synthesis. The rps16 gene for ribosomal protein

S16 (rps16) which is generally encoded in the chloroplast genome

of flowering plants, is interrupted by two stop codons in A. unedo.

This gene appears non-functional in several plant lineages and is

replaced by nuclear genes [42].

The essentiality of the ycf1, ycf2, clpP, accD and rps16 genes and

their absence or presence as pseudogenes suggested that they could

be substituted by nuclear-encoded versions. Hence, we hypothe-

size the possible transference of copies of these essential genes to

the nucleus. Further studies based on searches of nuclear-encoded

copies of these genes along with verification of their expression,

targeting to the chloroplast and its correct functioning will be

necessary to test this hypothesis. From a practical point of view,

extensive rearrangements and pseudogenizations may have

consequences when designing appropriate transformation vectors

to express transgenes. To date, at least 14 different insertion sites

were proposed for the targeting of transgenes within the

chloroplast genome [43]. A number of these sites are inapplicable

due to pseudogenizations and rearrangements in the cpDNA of A.

unedo (e.g. rbcL/accD, 59rps12/clpP, petD/rpoA). This fact stresses the

importance of having the complete sequence of the chloroplast

genome of a plant species in order to design a successful protocol

of transformation.

Large Tandem Repeats are Found in the A. unedo
Plastome

Tandem repeats (TRs) are ubiquitous, unstable genomic

elements, which have historically been designated as non-

functional DNA. However, mutations in these repeats often have

notorious phenotypic consequences. Some of these mutations are

deleterious such as those causing diseases in humans, whereas

others are beneficial such as those conferring useful phenotypic

variability [44]. In yeasts and humans, TRs are frequently found

in promoters and are directly responsible for the divergence in

transcription rates [45]. In this study we searched for tandem

repeats within the cpDNA of A. unedo and other asterids by using

the program ‘‘Tandem repeats finder’’ [35]. A total of 53 TRs

were found in A. unedo. This number was only surpassed by five

asterid species out of the 36 studied (Figure 5). The remaining

species had an average of 30 TRs (except non-photosynthetic

parasitic plants whose cpDNA is highly reduced). Generally, the

species with higher number of TRs also show the largest genome

sizes (Figure 5). However A. unedo was an exception. This species

had one of the smallest genome sizes among the analysed asterid

species, but it had one of the highest numbers of TRs (Figure 5).

Recently, a new class of large TR has been discovered in the

pathogenic yeast Candida glabrata, which are termed megasatellites.

These TRs are DNA tandem arrays made of large motifs

widespread in this species (40 copies in a genome of 12.34 Mb),

which seem to promote genome rearrangements by interfering

with DNA replication (reviewed in [46]). In our analysis, we found

TRs of more than 150 nt of period size (megasatellites) in only four

Asteridae: V. macrocarpon (219 nt), A. unedo (213 nt), A. adenophora

(241 nt) and J. nudiflorum (150 nt), whereas most of the studied

species showed consensus sizes smaller than 50 nt. In general,

species with a high number and/or large amount tandem repeats

(more than 52 tandem repeats and/or 100 nt of consensus size)

showed extensive rearrangements and/or pseudogenizations.

Interestingly, in A. unedo the larger TRs (213 and 117 nt) were

found near the clpP and accD pseudogenes. Smaller TRs were also

found near the two copies of the ycf1 pseudogen. More exhaustive

studies would be necessary to establish relationships between the

presence of certain TRs and genome rearrangements, pseudo-

genizations and/or transference of genes from chloroplasts to the

nucleus.

Seven Out of 11 Plastid-encoded ndh Genes are
Duplicated in A. unedo

The chloroplast NAD(P)H dehydrogenase (Ndh) complex is

involved in photosystem I (PSI) cyclic electron transport and

chlororespiration (reviewed in [47]). Several studies have suggested

that the chloroplast NDH complex is involved in protective or

adaptive mechanisms of plants to different stresses, which increase

reactive oxygen species (ROS) formation and cause oxidative stress

e.g. [48–50]. The chloroplast Ndh complex includes 11 subunits

encoded by the chlororoplast ndh genes, which are widespread

among the three regions of the plastome of most plants. Six ndh

genes constitute the ndhH-D operon located within the SSC region

in most plants. The genes of this operon are co-transcribed

forming a 7–8 Kb primary transcript, which undergo a series of

posttranscriptional processes including intercistronic cleavages,

intron splicing and C to U editing. Such posttranscriptional

modifications have consequences on gene expression modulating

differential transcript levels and thereby the corresponding

proteins (e.g. [51–54]). The two Ericaceae A. unedo presented here

and V. macrocarpon [11] are the only two species which show a

duplication of the entire ndhH-D operon among all streptophytes

whose cpDNA has been sequenced to date. In other plants, only

partial duplications of the operon can be found [e.g. Trachelium

caeruleum and Ipomoea purpurea among Asteridae; Pelargonium x

hortorum and Monsonia speciosa among Geraniaceae (Figure S3 and

Table S2)]. It is noteworthy that generally cpDNAs with unusually

duplicated ndh genes exhibit extensive rearrangements and a

higher frequency of pseudogenes. The possible causal link among

these three features remains to be determined. Repeated

duplication of some chloroplast-encoded genes such as the clpP

correlated with an increase of synonymous substitution rates and

positive selection of the resulting protein in certain plant lineages

[55]. In order to test if this was a more general rule extendible to

the ndh genes, we obtained an estimate of the synonymous

substitution rates by using the program DnaSP 5.1 [34]. As shown

in Figure S4, we found a low v, dN/DS or Ka/Ks ratio (ratio of

the number of non-synonymous substitutions per non-synonymous
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site) in all cases (,,1). This means that the studied proteins seem

to undergo purifying selection instead of positive selection.

Surprisingly, this conservationism is also found in V. macrocarpon,

which shows pseudogenization of three ndh genes (ndhG, ndhI and

ndhK).

All the contrasting features regarding the ndh genes found in A.

unedo and V. macrocarpon, makes these two plant species exception-

ally interesting when investigating the functionality of the

chloroplast NDH complex at different levels such as gene

expression and its regulation; stoichiometry among NDH subunits;

structure of the NDH complex and its interactions with other(s)

thylakoid complex(es); enzymatic properties, etc. From an

ecophysiological perspective, there is consensus in that chloror-

espiration and the NDH complex are not relevant under non

stressful conditions but, they should be indispensable to prevent

the over-reduction of intermediates of the photosynthetic electron

transport and the concomitant ROS production under stress [56].

The difference in relation to the ndh genes found in A. unedo and V.

macrocarpon with respect to other plans and between them open

new perspectives to test the involvement of NDH complex, and

possibly other components of the chlororespiratory pathway in the

adaptation of Mediterranean plants to highly fluctuating and often

stressful environmental conditions.

Application of Parallel Sequencing of Chloroplast
Genomes to Resolve Phylogenetic Relationships within
Asterids

The Asteridae represent an evolutionary successful group with

over 80,000 species or 1/4–1/3 of all flowering plants. The

phylogeny of asterids has been explored with analysis of a number

of chloroplast-encoded genes resolving with strong support basal

interrelationships among Cornales, Ericales, Lamiidae, and

Campanulidae [4]. However, the relative positioning of the orders

Gentianales, Lamiales and Solanales within lamiids remains

unresolved. In some cases, Solanales and Lamiales are grouped

within the same clade, which does not include the order

Gentianales [57] whereas in other cases, Gentianales and Lamiales

are grouped within the same clade, which does not include

Solanales [12,58]. Here we present an updated phylogeny of

Asteridae including 55 specimens from ten different orders

(including five ericalean species) and two rosid species as outgroup

(see Table S2 for accessions). All analyses were based on a

Figure 5. Tandem repeats in the Arbutus unedo plastome and other asterids. (A) Genome sizes, number of repeat found and maximum
consensus size of some asterids arranged by their genome size. (B) Frequency of tandem repeats by length.
doi:10.1371/journal.pone.0079685.g005
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nucleotide sequence alignment comprising 55016 nt including 83

chloroplast genes obtaining identical topologies after ML and

Bayesian analyses. Figure 6 shows a phylogram whose topology is

overall consistent with those of previously published phylogenetic

reconstructions (e.g. [2,12,57,58]). However, only in our phylog-

eny, and that of [2] Gentianales and Solanales are grouped within

the same clade, which does not includes Lamiales. If we focus on

the support of each clade in the different phylogenies, we obtained

the highest values to date (0.98/100 for PP/BT). These results

dissipate the uncertainty of the relationships among Gentianales,

Lamiales and Solanales: Solanales and Gentianales seem to be

more closely related to each other than to Lamiales. Probably, the

support of the relationships among problematic taxa may be

improved by increasing the number of species representatives of

each taxa and the number of analysed sequences, as is the case of

the three orders referred to above.

For future investigation, we propose sequencing the same 83

chloroplast genes and using a higher number of species

representing each Ericalean family to resolve the uncertainty of

interfamilial relationships within Ericales. This stresses the

importance of sequencing more chloroplast genomes within this

order. In this line, the generated gene sequences in this study

alongside other available in Genbank, will be helpful for

developing universal primers to further reveal the molecular

phylogeny of Ericales, even at lower taxonomic levels including

populations by sequencing more variable intergenic regions.

Conclusions and Perspectives
A. unedo is the first Arbutoideae, second Ericaceae and third

ericalean species whose plastome has been completely sequenced

(January 2013), which shows a number of unusual features that

can be further exploited in a variety of fields. Comparative studies

of plastome architecture and tandem repeats would be a valuable

source of information about the duplication, loss, and transfer

events of chloroplast genes providing information about patterns

of evolution. The complete loss or pseudogenization of a number

of essential genes (accD, clpP, rps16, ycf1, ycf2) could allow studies

about the putative presence of the corresponding nuclear-encoded

genes, patterns of expression, structural features of the proteins,

their import into the chloroplasts and possible physiological

consequences. The duplication of the ndhH-D operon provides an

extra-copy of each gene within the operon with respect to most

plants and perhaps a ‘‘natural overexpression’’. This particularity

Figure 6. Phylogram based on sequence analysis of 83 chloroplast genes from 57 plant species (Table S2). Asterisks indicate nodes
with values of 0.1 and 100 for bootstrap values and posterior probabilities, respectively. The scale bar indicates substitutions/site. The current
taxonomic classifications are indicated on the right (i.s., incertae sedis).
doi:10.1371/journal.pone.0079685.g006
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makes this plant species very interesting for the study of the

expression and the physiological role of the chloroplast Ndh

complex in relation to other plants with a single copy of the

referred operon. Knowledge of the general structure and sequence

of the A. unedo plastome, as well as gene losses or pseudogenizations

and gene duplications, may be useful to study possible alterations

in posttranscriptional events in relation to other well-studied

plants, as well as being useful for exploiting chloroplast genetic

engineering technology. Finally, in this study we show an

improved phylogeny of asterids including 57 different species with

a number of Ericales which resolves some uncertainties of previous

phylogenies.

Supporting Information

Figure S1 Gene maps representative of the most
recurrent variants of the SSC region in plants. Accession

numbers of the corresponding genomes are indicated in Table S2.

(TIF)

Figure S2 Gene maps representative of the most
recurrent variants of the IRs in plants. Accession numbers

of the corresponding genomes are indicated in Table S2.

(TIF)

Figure S3 Gene map of the ndhH-D operon in plants
showing examples of complete and partial duplications.
Coding regions are indicated as arrows. Duplicated portions are

indicated in red. Introns and intergenic regions are indicated as

thick and thin black bars, respectively. Accession numbers of the

corresponding genomes are indicated in Table S2. The scale bar

indicates positions in nt.

(TIF)

Figure S4 dS and dN values of 17 chloroplast genes.
These genes are: ndhA 1017 nt; ndhB 1473 nt; ndhC 342 nt; ndhD

1306 nt; ndhE 303 nt; ndhF 2247 nt; ndhG 396 nt; ndhH 1179 nt;

ndhI 487 nt; ndhJ 474 nt; ndhK; 675 nt; rbcL 1425 nt; atpA 1494 nt;

psbA 957 nt; cemA 682 nt; petA 963 nt; psbB 1515 nt. Diagram

shows the pairwise dS values and dN values along with the dN/dS

values between six asterid species and the outgroup (Gossypium

hirsutum), three Ericaceae (Au: Arbutus unedo; Rs: Rhododendron simsii;

Vm: Vaccinium macrocarpon) and three Asteraceae (Aa: Ageratina

adenophora; Ga: Guizotia abyssinica; Ha: Helianthus annuus). Accession

numbers of the corresponding genomes are indicated in Table S2.

(TIF)

Table S1 List of primers used to complete gap regions
in IR-LSC and IR-SSC junctions.

(DOCX)

Table S2 List of taxa included in either text or figures
with GenBank accession numbers and the correspond-
ing bibliographic references.

(DOCX)
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