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Abstract: A growing number of smart wearable biosensors are operating in the medical IoT environ-
ment and those that capture physiological signals have received special attention. Electrocardiogram
(ECG) is one of the physiological signals used in the cardiovascular and medical fields that has
encouraged researchers to discover new non-invasive methods to diagnose hyperglycemia as a
personal variable. Over the years, researchers have proposed different techniques to detect hyper-
glycemia using ECG. In this paper, we propose a novel deep learning architecture that can identify
hyperglycemia using heartbeats from ECG signals. In addition, we introduce a new fiducial feature
extraction technique that improves the performance of the deep learning classifier. We evaluate the
proposed method with ECG data from 1119 different subjects to assess the efficiency of hyperglycemia
detection of the proposed work. The result indicates that the proposed algorithm is effective in
detecting hyperglycemia with a 94.53% area under the curve (AUC), 87.57% sensitivity, and 85.04%
specificity. That performance represents an relative improvement of 53% versus the best model found
in the literature. The high sensitivity and specificity achieved by the 10-layer deep neural network
proposed in this work provide an excellent indication that ECG possesses intrinsic information that
can indicate the level of blood glucose concentration.

Keywords: electrocardiogram; artificial neural networks; deep learning; glucose; hyperglycemia;
machine learning

1. Introduction

With the advent of smart computing sensors (smart smartwatches, smartphone, and
wearable, etc.) and the emergence of the internet of medical things (IoMT), innovative
healthcare solutions and services have become more important than ever. One of the appli-
cation of IoMT is to enable smart wearable devices for continuous and remote monitoring
of people’s health to improve healthcare management in a variety of hospital and home
environments. Moreover, IoMT devices such as Apple Watch and Fitbit not only became
ubiquitous in a user’s daily life but also are becoming smarter through embedded sensors
that can monitor different physiological signals. For instance, Apple Watch series 4 and 5
have added electrodes to the digital crown and on the back of the watch that can collect
cardiac activity (ECG signal) to detect heart arrhythmia.

ECG has been primarily used in cardiac and medical fields but its commercial po-
tential is now being explored in a variety of interesting ways. For example, as previously
mentioned, smart watches are now reading ECG signals to diagnose cardiac diseases,
which are the leading causes of death in the world. According to the center for disease
control and prevention (CDC), approximately 655,000 people die of heart disease in the U.S.
every year [1]. Over the last few decades, there has been an increasing effort to develop
computer-based automatic diagnostics of the ECG [2–5]. More recently, ECG has been used
for hyperglycemia detection and continuous glucose monitoring [6–8]. Hyperglycemia
represents high level of glucose in the blood and prolonged or abnormal events of hy-
perglycemia is common in people with diabetes. The number of people with diabetes
has increased from 108 million in 1980 to 422 million in 2014, according to World Health
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Organization (WHO) [9]. In the U.S. alone 30 million adults are with diabetes, from which
7.2 million are not aware that they suffer from that condition [10]. Diabetes and prolonged
hyperglycemia, when not treated, can lead to serious health problems including blindness,
limb amputation, heart diseases, and even death. Currently, the COVID-19 pandemic
has highlighted the impact of comorbidities such as diabetes to the virus fatality rate [11].
Going further, Ref. [12] showed that high level of blood glucose at time of admission is an
independent predictor of mortality even in COVID-19 patients without diabetes. In order
to reduce the serious consequences caused by diabetes and hyperglycemia, continuous
monitoring of blood glucose concentration should be used, especially by those who manage
blood glucose levels with insulin, requiring manual injections or the use of insulin pumps.

In this paper, we go beyond the use of ECG for heart disease and aim for a non-
invasive method for continuous glucose concentration. This paper provides a detailed
explanation of the effects hyperglycemia has on ECG signals and explores a new method
to allow us to measure and detect them through a non-invasive technique. People can take
advantage of technology that they are already wearing in order to track their glucose level
concentration. Our high level proposed deep learning architecture with the state-of-the-art
feature extraction techniques is illustrated in Figure 1, which can be adopted into different
ECG domain applications.

Figure 1. Illustrative schematic of proposed ECG-based hyperglycemia detection.

Our main contributions are described as follows:

• We develop a 10-layer deep learning based hyperglycemia detection technique and
more robust approaches for processing ECGs.

• We present different feature extraction techniques. Specifically, we investigate novel
fiducial methods such as slope and temporal and amplitude characteristics. This
resulted in a feature size reduction of 97% when compared to a full ECG cardiac cycle.

• To demonstrate the effectiveness, robustness, and generalization ability of our pro-
posed methods, we conducted experiments on a new ECG database containing
68,274 samples collected from 1119 subjects.

• We provide detailed classification analysis of age, weight, height, and heart rate and
discuss the impact of these on hyperglycemia.

The remainder of the paper is organized as follows. Section 2 describes the background
of hyperglycemia and ECG. Literature review presented in Section 3. In Section 4, we
discuss the proposed approach including pre-processing steps and feature extraction
technique. Section 5 details the models, simulations, and metrics used. The experimental
results are shown in Section 6. Finally, we conclude the paper in Section 8.

2. Background
2.1. Hyperglycemia

Hyperglycemia means high (hyper) glucose (gly) in the blood (emia), also commonly
referred to as high blood sugar, and is a state of elevated levels of glucose in the blood-
stream. This naturally occurs following meals, but after a few hours the body should go
back to a normoglycemia state due to work of the insulin hormone [13]. More importantly,
high blood glucose concentration and diabetes mellitus are important predictors of sud-
den cardiac arrest, which itself has close relationship with ECG [14]. The limit between
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normoglycemia and hyperglycemia can vary from health organizations, but it is usually
100 mg/dL under a fasting state. A person in a constant state of hyperglycemia, especially
when fasting, can be in a situation where the body is not able to handle glucose anymore.
This is usually a consequence of insulin resistance, a condition where the body becomes
insensitive to insulin and, thus, the hormone is not able to decrease the glucose concen-
tration as it used to do. Insulin resistance is considered one of the pathways to type-2
diabetes mellitus [15].

The traditional method for hyperglycemia evaluation is assessment of glucose con-
centration in blood samples. Samples can be a few drops acquired by pricking the finger
or larger amounts usually obtained by health professionals. Both processes are invasive,
which is associated with pain and discomfort, being a barrier for their widespread use as a
screening mechanism. Another often under-recognized but still critical problem is the pos-
sibility of bloodborne pathogen transmission [16] such as hepatitis B/C virus (HBV/HCV),
human immunodeficiency virus (HIV), and others, due to the sharing of the same device or
its accessories among infected people. The paper from [17] states that 15 out of 18 HBV in-
fections outbreaks since the year 1990 were associated to the improper use of blood glucose
monitoring systems. Lastly, the use of invasive glucose monitoring systems also creates
a significant environmental impact due to the creation of medical waste [18]; therefore, a
non-invasive mechanism to detect hyperglycemia would be useful for individuals and the
society in general.

2.2. Electrocardiogram (ECG)

ECG signals have several essential components that are recorded as a series of positive
and negative waves referred to as the P wave, QRS complex, and T wave. The P peak
of the normal heartbeat is a small upward wave, which indicates atrial depolarization.
Approximately 160 ms after the onset of the P wave, the QRS wave is caused by ventricle
depolarization. Finally, one observes the ventricular T wave in the electrocardiogram,
which represents the stage of repolarization of the ventricles [19].

3. Literature Review

Non-invasive technologies for measuring glucose levels have been researched for
decades, being the first promising research performed by Kost et al. [20] in the year 2000.
Since then new technologies and approaches have been tried and, although none are
consumer-ready, great advances have been made. Afterward, a lot of effort has been de-
voted to develop a non-invasive sensor using different technologies such as photoacoustic
spectroscopy, Raman spectroscopy, electrochemical reaction, ultrasound, and many others;
most of them based on spectroscopy, which explores the intrinsic relation between electro-
magnetic radiation and the underlying material [18]. Although very promising, the use of
spectroscopy for glucose estimation has still not reached a cost-effective level, sometimes
requiring expensive custom hardware. Reddy et al. [21] designed a device to monitor
blood glucose level using near infrared sensors. Julian et al. [22] also proposed a near
infrared sensor to measure glucose concentration. Pai et al. [23] implemented FPGA-based
glucose monitoring with photoacoustic signal amplitude. Anas et al. [24] measured the
blood electrical impedance in which the electrode was made using four tin-lead solder
electrodes. They evaluate their hardware by measuring data over 10 subjects, ages between
20–25 years old. Liu et al. [25] developed a 4E-AFE and AD5933 measurement circuit
to measure contact impedance between electrodes and the skin for glucose monitoring.
Vilaboy et al. [26] used Raman spectroscopy to measure glucose. Even though some
work proposed non-invasive glucose monitoring, they are not developed for continuous
monitoring in which users can see their glucose level anytime at a glance.

Other works have shown that blood heart rate variability (HRV) can be modulated by
blood glucose levels [27]; therefore, several studies investigating HRV and glucose levels
have been developed. Amanipour et al. [27] analyzed the HRV frequency domain compo-
nents of a 59-year old diabetic female subject under normoglycemic and hyperglycemic
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conditions. They noticed a 6-fold decrease in the low frequency/high frequency ratio.
Although the study was limited to just 1 person, it corroborated the results achieved by
Fujimoto et al. [28] where that ratio was first identified to be negatively correlated with
blood glucose concentration. In 2017, Perpiñan et al. [29] assessed the impact of taking a
75 g oral glucose testing in 25 subjects, 15 with metabolic syndrome, and 10 as a control
group. They identified that the metabolic syndrome subjects presented significant higher
HRV irregularity than the control group after 30 min of glucose intake. After 60 min of
glucose intake, the HRV irregularity in people with metabolic syndrome decreased, but
that was not observed in the control group.

Another metric known to be impacted by blood glucose level is the QT interval, which
is assumed to be prolonged on people with metabolic syndrome due to their difficulty in
metabolizing glucose [30]. Farina et al. [31] assessed 99 subjects, 34 healthy, 32 pre-diabetic,
and 33 type-2 diabetics and noticed a prolongation in the QT interval of pre-diabetic
subjects. Due to the small number of subjects, this result was not considered statistically
significant and the authors suggested an analysis on a large population. Suys et al. [32]
monitored the ECG and blood glucose concentration of 9 type-1 diabetic children by using
a Holter and continuous glucose monitoring device. They also identified a prolongation of
QT and QTc (QT interval adjusted by Bazett formula) with lower blood glucose concen-
tration. Marfela et al. [33] also studied the impact of blood glucose in QT duration. More
specifically, they analyzed 20 healthy subject (10 men and 10 women) and noticed that acute
hyperglycemia resulted in a significant increase not only in QTc interval and QTc dispersion
but also in PR interval. The prolongation of the PR interval was something never investi-
gated before as related to glucose concentration. Different from almost all other studies,
Marfela et al. [33] analyzed healthy subjects instead of subjects with diabetes, metabolism
syndrome, or other health issues. Nguyen et al. [34] analyzed the effect of hypoglycemia
and hyperglycemia on ECG parameters, including HR, QTc, PR, RTc, and TpTec (T-peak to
T end). They identified that low blood glucose was associated with prolonged RTc, QTc,
and TpTec, but not with PR, in contradiction to Marfela et al. [33] findings. In contrast, high
blood concentration was related not only to a decreased RTc, QTc, and TpTec, but also to an
increased PR. Their study was limited to five subjects and, as noted by the authors, could
benefit from larger population study. All the aforementioned research focused mainly on
identifying the impact of glucose concentration in different features captured by an ECG.
In 2014, Nguyen et al. [6] went one step further by proposing a neural network model to
detect hyperglycemia using an ECG. They proposed a 3-layer feed ANN with one input
layer, one hidden layer, and one output layer, with Tansig as the transfer function between
the hidden and output layer. In addition, 16 features extracted from 10 adolescent’s ECG
signal are summarized in Table 1. The time and frequency domain features used were
selected from the Task Force work that created guidelines for HRV analysis [35]. The
dataset was divided in to 35% for training, 35% for validation, and 30% for testing. The
ANN model was tested using five different optimizers and the resulting sensitivity and
specificity were compared. The best model was a 3-layer ANN using Levenberg–Marquard
algorithm with nine nodes in the hidden layer, which provided a sensitivity of 70.59%
and specificity of 65.38% in the testing dataset; however, the prior approach is limited in
terms of data size and performance. To overcome some of the limitations of that study,
we introduce a new deep learning architecture along with feature extraction techniques to
improve performance. Our proposed work was tested with private database that contains
ECG signals of 1119 subjects.
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Table 1. Features list used by Nguyen et al. [6] to calculate hyperglycemia.

# Feature Type

1 HR Intervals
2 PR Intervals
3 QTc Intervals
4 RTc Intervals
5 TpTec Intervals
6 Mean RR interval Time-domain

7 Standard deviation of the
RR Interval index (SDNN) Time-domain

8 Root mean square of successive
RR interval differences (RMSSD) Time-domain

9 Percentage of consecutive RR intervals
that differ by more than 50 ms (pNN50) Time-domain

10 HRV triangular index (HRVi) Time-domain

11 Baseline width of the RR interval histogram
evaluated through triangular interpolation (TINN) Time-domain

12 Very low frequency (VLF) Frequency-domain
13 Low frequency (LF) Frequency-domain
14 High frequency (HF) Frequency-domain
15 Total spectral power (TotalPw) Frequency-domain
16 LF/HF ratio Frequency-domain

4. The Proposed Approach

In this section, we describe our proposed process of an ECG-based hyperglycemia
detection. Figure 2 illustrates the steps that an ECG goes through in order to provide
the features used in the deep learning model. Those steps include Filtering, Segmentation,
Feature extraction, QT correction, Outlier removal, and Normalization and are detailed below.

Raw ECG Butterworth
Bandpass filter

[1-40Hz]

Preprocessing

Features
extraction

Fiducial points and 
Cardiac Cycles
 identification

Normalization
Outliers
removal

Features dataQT 
correction

Figure 2. Preprocessing steps.

4.1. Filtering

ECG contains various types of noise sources, including baseline wander (BW), motion
artifact (MA), and electrode movement (EM). These noises can degrade the accuracy of the
fiducial features detection algorithm. In order to remove eventual artifacts due to the setup
and removal of the electrodes on the subject, the first and last 10 s of the raw ECG signals
are ignored. The remaining data are filtered using Butterworth bandpass filter order 4
and a frequency range of 1 Hz to 40 Hz [36]. BioSPPY library [37] was used to perform
the filtering.

4.2. Fiducial Points and Cardiac Cycles Identification

The next step after filtering is to process the signal to identify the cardiac cycles. This is
important due to our choice of use fiducial features from cardiac cycles as our deep learning
model input (as further detailed in the next step). The process starts by identifying the
R-peaks, which allow us to to segment individual heart beats and further analyze the cycle
for the remaining waves. R-peak detection can be performed using the Pan–Tompkins [38]
algorithm and we used a modified version of that algorithm, which is implemented in the
BioSPPY library. The remaining waves— P, Q, S, T—were then identified with the help of
the NeuroKit library [39].
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4.3. Features Extraction

There are several different methods for features extraction from ECG signals, ranging
from simple and direct measurements based on fiducial points to more complex ones that
are based on the entire wave morphology [40]. The former case includes amplitudes and
distances between points and is known as a fiducial-based method. The latter includes
wave frequencies such as discrete wavelet transform (DWT) coefficients and is categorized
as a non-fiducial-based method. In this work, several experiments were performed by
testing a variety of fiducial-based features that could provide similar or better performance
than using the whole cardiac cycle data (one heartbeat) as the model input. A collection of
18 features composed of 9 fiducial distances directly connecting different fiducial points and
the respective slopes of such lines were found to accomplish that objective. The decision to
classify each heartbeat independently provides us with a significance increase in the size
of the training and testing dataset. Another advantage is that it decreases the potential
for overfit since even sequential heartbeats from a same subject presents different fiducial
points values while the classification in hyperglycemia/non-hyperglycemia is still the same.
Features that depends on more than a single heartbeat, such as HRV, were not used since
all features in this work must be obtained from within a heartbeat.

Initially, the heartbeat (one cycle of ECG) is quite large (600 data points). This fact
may make subsequent computations difficult. Moreover, it may include redundant and
useless information due to correlation and inter-dependencies between data points where
the informational trait of each heartbeat and its contribution to the distinction of classes
vary significantly. The aforementioned 18 novel fiducial features are potentially a distinct
ECG characteristic leading to the best results. An illustration of the distances and slopes
used can be seen in Figure 3.

P
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θ(Q
R)

θ(QT
)

θ(RT)

θ(QS)
θ(R
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Figure 3. Features extracted from an ECG cycle.

The direct line length between two points, such as P and Q, were calculated using
Euclidean distance as shown in Equation (1).

distance(P, Q) =
√

PQx2 + PQy2

=
√
(Qx − Px)2 + (Qy − Py)2

(1)

where the Qx and Px show the location of fiducial Q and P at x; Qy and Py are indicate the
amplitude of of fiducial Q and P.
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The slope was calculated using Equation (2):

slope(PQ) =
PQy
PQx

=
Qy − Py
Qx − Px

(2)

The list of all 18 features used in this work is shown in Table 2.

Table 2. Features extracted from ECG.

# Feature # Feature

1 PQ length 10 QR slope
2 PQ slope 11 QS length
3 PR length 12 QS slope
4 PR slope 13 QT length
5 PS length 14 QT slope
6 PS slope 15 RS length
7 PT length 16 RS slope
8 PT slope 17 RT length
9 QR length 18 RT slope

4.4. QT Correction

The QT interval is a metric that is known to have its value impacted by the subject’s
heart rate [41] and from glucose concentration [33]; therefore, to help the model better
detect the glucose impact, it is important to have the heart rate interference reduced as
much as possible. Several formulas have been developed to correct the QT interval for heart
rate, the famous being Bazett’s equation. While still widely used, it does not always work
efficiently since it over-corrects when heart rate is lower than 60 bpm and under-corrects
when heart rate is higher than 60 bpm. A study performed by Vandenberk et al. [42]
analyzed five different QT corrections equations, including Bazett’s. Their conclusion was
that the Framingham formula provided the best correction, so that was used in this work.
Based on that formula, the QT interval can be converted by using Equation (3):

QTc = QT + 0.154 ∗ (1 − RR) (3)

where QTc is aligned QT interval and RR is calculated from the heart rate as shown in
Equation (4):

RR =
60

heartrate
(4)

4.5. Outliers Removal

The features extracted in the previous step, can present some outliers. Removal of
such inconsistent data contributes to a faster training and better model performance. The
outliers were identified using the interquartile range (IQR) [43] method, which defines
a lower and upper bound based on the range between the first and third data quartiles.
Equation (5) below shows how IQR and the lower and upper bounds are calculated:

IQR = Q3 − Q1

Lowerbound = Q1 − 1.5 ∗ IQR

Upperbound = Q3 + 1.5 ∗ IQR

(5)

where Q1 and Q3 are the first quartile and third quartile values, respectively. Data points
located below the lower bound or above the upper bound values were removed. A high
number of outliers could be a consequence of a very noisy signal or also a poor fiducial
points identification algorithm; therefore, it is important to not only remove that data but
also check the percentage of the whole data that were flagged as outliers. High percentages
may indicate a need for a revision of the fiducial points identification algorithm. The
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dataset used in this work had 68,274 samples and 16,756 were identified as having at
least one outlier feature and thus were removed, leaving 51,518 to be used in the model.
Removing the entire sample due to just one outlier feature is a very conservative approach
and was used since the number of samples left was still significant and more than enough
for training and testing. If a smaller dataset was used, different outlier removal approach
could be used such as replacing the outlier feature with the average value of that feature
for that same subject.

4.6. Normalization

The features extracted in the previous step do not share the same units, so it is very
important to standardize them not only to remove their mean, but also scale them to a unit
variance before feeding them into the machine learning model. Failing to do so can slow
down training and even hinder the model learning process. This normalization process
can be performed using the Equation (6):

z =
x − µ

σ
(6)

where µ is the mean and σ is the standard deviation of the samples. That calculation has
been easily measured with the help of the StandardScaler function available in the Python
Scikit-learn library [44].

5. Experimental Setup
5.1. Dataset

Several public ECG datasets are available for research purposes, especially at the
Physionet bank [45]. Unfortunately, in order to detect hyperglycemia, the dataset must
include not only ECG data, but also glucose concentration measurements taken at the
same time as the ECG was being recorded. In addition, in order to have a robust model, a
large amount of data should be available for model training and testing. In this study, we
used a large, novel ECG dataset that contains not only ECG recordings and blood glucose
concentration, but also profile information such as age, gender, height, weight, and heart
rate. The distribution of blood glucose concentration across those different profiles can be
seen in Figure 4.

The database was collected by the Research Center for Applied Sciences, Academia
Sinica, Taiwan based on the following protocol:

• Each subject participated in two sequential recording sessions, both taken in the
morning.

• Each session consisted of the recording of a 60-s single-lead ECG and blood glucose
concentration.

• ECG was acquired using Analog AD-8232 with a sampling rate of 1000 Hz [46].
• Blood glucose concentration was measured using Accu-Chek Mobile blood glucose

monitoring system [47].

A total of 1119 subjects participated, including 386 females and 733 males with age
varying from 38 to 80 years old. They were not required to fast and their overall health
status was not disclosed. For this work, each of the ECG recordings was analyzed and
the ones with low quality were discarded, resulting in dataset of 1963 recordings. The
ones from subjects with glucose concentration higher than 100 mg/dL were labeled with
hyperglycemia. An example of ECG recordings from a subject with hyperglycemia and
non-hyperglycemia can be seen in Figure 5. Both curves are similar in shapes and thus a
simple visual inspection of such ECG would not be sufficient to identify if the patient is
with hyperglycemia, which is possible but extracting the fiducial features as proposed in
the work.
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Figure 4. Distribution of the blood glucose concentration (BGC) with different profile information:
(a) age; (b) height; (c) weight; (d) heart rate.
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Figure 5. ECG signal from a person with hyperglycemia and without hyperglycemia.

5.2. Hardware and Software

A computer with processor Intel(R) Core(TM) i9-9900K 3.60 GHz, 16 GB RAM, and
64-bit Windows OS was used for the simulations. All the work was performed using
Kubios HRV Premium software [48], Python programming language, BioSPPy (Biosig-
nal Processing in Python), NeuroKit framework for Python, Jupyter notebooks, Keras,
and TensorFlow.

5.3. Training and Testing

The 1963 ECG readings were segmented in cardiac cycles and then an equal proportion
of hyperglycemia state and non-hyperglycemia state were selected, resulting in a dataset of
68,274. As mentioned before, the outlier removal process purged 16,756 samples, leaving
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a net of 51,518 samples to be used in the model. An 80/20 split was used to create the
training/testing dataset; therefore, the training dataset contained 41,214 samples and
the 10,304 testing samples, with almost equal representation of hyperglycemia and non-
hyperglycemia samples.

5.4. Models and Metrics

Several machine learning models and configurations have been explored, including
logistic regression, support vector machine (linear, gaussian, polynomial) and deep neural
network (DNN). Three performance metrics were used to evaluate the hyperglycemia
detection performance: true positive rate (TPR), false positive rate (FPR), and the area
under the curve (AUC). FPR or (1-Specificity) is the percentage of healthy ECG that
is wrongly classified as hyperglycemia whereas TRP or sensitivity is the percentage of
hyperglycemic events that was successfully classified as hyperglycemia. AUC of the
receiver operating characteristic (ROC) curve was the performance metric used to compare
the models since in binary classification problems, such as these, the threshold used to
distinguish between the two output labels (hyperglycemia and non-hyperglycemia) have
a direct impact in performance metrics. The ROC plots the model performance in terms
of TPR versus FPR across different thresholds. The area of these curves thus provides a
combined performance measurement of all these thresholds. We also used sensitivity and
specificity as another metric for classification performance. Sensitivity measures how often
a test correctly generates a positive result for people who have the hyperglycemia condition
being tested for, whereas specificity measures a test’s ability to correctly generate a negative
result for people who do not have hyperglycemia. Extensive simulations of different DNN
architectures were also performed in order to identify optimal hyperparameters. For non-
ANN models, the simulations were configured with a maximum number of iterations
of 10,000. For ANN simulations, the models were trained with 1000 epochs and early
stopping when no loss improvement has been achieved in the last 100 epochs. In order
to make sure the DNN does not over-train, validation has been used as an early stopping
method. The training optimizer used a stochastic gradient descent (SGD) with learning
rate 0.0001, which was reduced by half every time no improvement was obtained after
20 sequential epochs.

6. Experimental Result

Table 3 summarizes the simulations with the best performance for the different models.
A comprehensive list of all models tested and their respective performance can be seen in
Appendix A.

Table 3. Models performance.

Model AUC

10-layer DNN 94.53%
Logistic Regression (C = 5) 62.44%
SVM Linear (C = 50) 58.99%
SVM Polynomial (d = 6) 56.36%
SVM Gaussian (C = 2) 52.03%

The deep neural network with 10 layers and 500 units per layer, except for the output
layer, provided the best performance among all models simulated. The network architec-
ture can be seen in Figure 6. The loss training is illustrated in Figure 7 and it is noticeable
how the network stopped learning right after the 500 epoch mark with the validation
loss not improving anymore. After training, the testing dataset is then used to validate
the performance of our proposed DNN architecture. For these, the whole dataset, which
included both hyperglycemia data and non-hyperglycemia data, was used.
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Figure 6. Deep neural network architecture that provided the best performance.
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Figure 7. The 10-layer DNN training and validation loss. It shows that the network has stopped
learning 500 epoch in which the validation is not degraded.

The model presented a training AUC of 98.44% and testing AUC of 94.53% as can be
seen in the ROC curves in Figure 8.

Figure 8. The 10-layer DNN ROC and AUC.

A 10 k-fold cross validation was also performed in order to verify the performance
consistency of the model, resulting in an average AUC of 93.65%. The AUC for each k-fold
round can be seen in Table 4.
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Table 4. The 10 k-fold cross validation (10-layer DNN).

k AUC k AUC

1 96.98% 6 97.17%
2 97.23% 7 97.43%
3 96.40% 8 98.23%
4 97.34% 9 96.94%
5 96.03% 10 95.49%

The proposed model was also compared against the best model identified in the
literature. Since the work presented by [6] was developed based on different features and
dataset, we replicated their 3-layer ANN model with a few adjustments and using our
dataset. For each of the 1963 ECG readings we extracted the same 16 features described
in Table 1. The time and frequency domain features were extracted using the Kubios
HRV Premium software. We created the 3-layer ANN with nine nodes in the hidden
layer. Instead of using the Levenberg–Marquard algorithm for training and hyperbolic
tangent sigmoid (Tansig) as transfer function, we used stochastic gradient descent (SGD)
for training and the hyperbolic tangent (tanh) as the transfer function since the originals
were not available in Keras. The simulated model resulted in a testing sensitivity of 65.64%,
specificity of 56.21%, and AUC of 61.68%. A comparison between our model and the
proposed by [6], with the adjustments detailed above, can be seen in Table 5.

Table 5. Model comparison.

Sensitivity Specificity AUC

10-layer DNN 87.57% 85.04% 94.53%
3-layer ANN [6] modified 65.64% 56.21% 61.68%

The 10-layer DNN proposed in this work represents not only an relative performance
improvement of 53% but also a demonstration that an end-to-end DNN approach has the
potential to be used on ECG-based hyperglycemia detection system.

Results Discussion

Additionally, heart rate, age, weight, and height profiling studies may also show
important characteristics to substantiate and understand the effect of hyperglycemia as
previous studies have shown. As can be seen in Figure 4, there is no significant correlation
between blood glucose concentration and profile information such as heart rate, age, weight
and height. In other words, blood sugar can affect people of any age, weight, height, and
heart rate. Our proposed non-invasive continuous glucose monitoring system will also
help each user keep control over his/her blood sugar and prevent complications. Even
though we found that heart rate variability has no direct impact on hyperglycemia, several
research suggested using heart rate variability to detect diabetes. Swapna et al. [49] heart
rate variability (HRV) derived from ECG signal as a source of diabetes detection. They
employed long short-term memory (LSTM) and convolutional neural network (CNN) to
extract HRV features; followed by SVM classification. A total of 20 subjects with 10 min
recording from normal and diabetes groups are collected. They claimed 95.7% accuracy
is obtained when they applied CNN 5-LSTM with the SVM network. Singh et al. [50]
also used heart rate variability (HRV) to detect blood glucose levels. In the Framingham
Offspring Study, One thousand nine hundred nineteen with a mix of men and women
participated. HRV variables features that were included in their study were standard
deviation normal RR intervals, high frequency (HF, 0.15 to 0.40 Hz) and low-frequency
(LF, 0.04 to 0.15 Hz) power, and LF/HF ratio. Similar to [50], Faust et al. [51] used high
frequency (HF), and low-frequency (LF) feature set from RR interval with 15 patients with
diabetes; 15 healthy volunteers. An approximate entropy (ApEn) was employed to measure
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distinction between regularity and irregularity of HRV. In recent work, Li et al. [52] they
used ECG signal with 21 subjects to monitor three glucose ranges using CNN where 87.94%
accuracy in low glucose level, 69.36% accuracy in moderate glucose level, and 86.39%
in high glucose level was reported. They did not identify hyperglycemia in their study.
Moreover, most work on hyperglycemia detection used limited feature sets including
HR. The drawback of work is that heart rate variability will change based on different
conditions such as exercise, emotional, walking, etc. So it would be difficult to judge if the
changes are due to hyperglycemia or other conditions.

7. Challenge

Collecting ECG signals is a challenging task as it is sensitive to various environmental
factors that will impact on the quality of data. Thus, inaccurate ECG acquisition may lead
to a wrong prediction and accordingly affect clinical decision. Moreover, in this work we
used a fiducial feature extraction technique to distinguish between hyperglycemia and
non-hyperglycemia; however, the fiducial feature extraction method is sensitive to noise
and may lead to a wrong fiducial detection.

8. Conclusions

Automated continuous hyperglycemia detection is a real need for patients who need
to frequently monitor their blood glucose levels such as type 1, 2 diabetic people or
pregnant women with gestational diabetes. ECG-based hyperglycemia identification is an
non-invasive method that provides continuous high blood glucose level monitoring. The
proliferation of consumer wearable devices with ECG reading capabilities such as smart
watches, wristbands, and even handheld ECG readers provide an environment where
ECG acquisition is becoming accessible to everyone. The recent advancements in low-cost
wearable sensor technologies enable the use of ECG-based continuous glucose monitoring
that is quick, painless, and easy, without the need of extra hardware or devices being placed
in the patient.

To this end, various machine learning models and feature extraction techniques have
been adopted to determine optimal parameters so that better accuracy can be obtained.
This work presented a novel fiducial feature extraction method with 10-layer deep neural
network. Our proposed deep learning model achieved a 94.53% AUC, 87.57% sensitivity,
and 85.04% specificity, representing an relative improvement of 53% versus the best model
found in the literature.

For future work, the extension of this model to detect hypoglycemia and even the
shift from a classification model to a glucose concentration prediction (regression) could be
sought after.
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Appendix A. Detailed Models Simulations Results

The Table A1 below shows the performance, measured as the Area Under the Curve
(AUC) of the testing dataset for different non-ANN models and C (or degree for SVN
Polynomial) parameters.

Table A1. AUC values for different models and C/degree parameter.

C
or Degree

Logistic
Regression

SVM
Linear

SVM
Gaussian

SVM
Polynomial

0.001 61.45% 58.02% 18.60% -
0.01 62.09% 53.86% 18.16% -
0.1 61.87% 42.17% 17.61% -
1 62.37% 57.36% 47.90% 55.92%
2 61.87% 44.01% 52.03% 55.14%
3 61.87% 57.57% 52.03% 42.74%
4 61.92% 43.47% 52.03% 48.17%
5 62.44% 42.22% 52.03% 41.85%
6 61.95% 41.88% 52.03% 56.36%
7 61.91% 41.96% 52.03% 50.15%
8 62.43% 44.88% 52.03% 50.00%
9 61.85% 50.16% 52.03% 50.00%

10 62.39% 41.37% 52.03% 50.00%
20 61.86% 57.93% 52.03% 50.00%
30 61.84% 48.64% 52.03% 50.00%
40 61.90% 41.66% 52.03% 50.00%
50 62.44% 58.99% 52.03% 50.00%
60 61.86% 57.56% 52.03% 50.00%
70 61.87% 56.22% 52.03% 50.00%
80 61.93% 51.63% 52.03% 50.00%
90 61.92% 56.93% 52.03% 50.00%

100 62.37% 42.46% 52.03% 50.00%

For ANN models, Table A2 below shows the AUC for different number of layers and
number of units per layer.

Table A2. AUC values for different number of layers and units per layer.

# of Units per Layer
(exc. Output Layer)

# of Layers

100 200 300 400 500

2 49.96% 50.00% 50.00% 79.64% 50.00%
3 79.34% 50.00% 50.00% 50.00% 50.00%
4 80.46% 49.99% 88.68% 50.00% 89.25%
5 83.64% 87.02% 88.57% 90.76% 50.00%
6 82.94% 89.85% 91.68% 91.06% 92.53%
7 85.69% 90.78% 91.94% 92.43% 93.20%
8 86.57% 89.49% 92.76% 92.26% 93.44%
9 88.81% 89.96% 92.80% 92.91% 93.59%
10 89.06% 91.88% 92.29% 94.34% 94.53%
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